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Abstract

Assistance systems should be able to adapt to individual task-related skills and knowledge.

Structural-dimensional analysis of mental representations (SDA-M) is an established

method for retrieving human memory structures related to specific activities. For this pur-

pose, SDA-M involves a semi-automatized survey of users (the “split procedure”), which

yields data about users’ associations between action representations in long-term memory.

Up to now this data about associations has commonly been clustered and visualized by

SDA-M software in the form of dendrograms that can be used by human experts as a tool to

(manually) assess users’ individual expertise and identify potential issues with respect to

predefined action sequences. This article presents new algorithmic approaches for automa-

tizing the process of assessing task-related memory structures based on SDA-M data to

predict probable errors in action sequences. This automation enables direct integration into

technical systems, e.g. user-adaptive assistance systems. An evaluation study has com-

pared the automatized computational assessments to predictions made by human scholars

based on visualizations of SDA-M data. The different algorithms’ outputs matched human

experts’ manual assessments in 84% to 86% of the test cases.

1 Introduction

Suitable prediction of human behavior is a highly promising, but also challenging objective

[1]. Predictions about a specific person’s memory lapses and action errors with respect to

given tasks can not only help human teachers or trainers to focus their instruction on each

trainee’s weak points, but could also be fed into a wide spectrum of technical assistance sys-

tems to support user-specific adaptation. This is especially important when subsystems of

human cognition with limited capacity, such as those related to attention, are required to deal

with different sources of input in parallel. Our research focuses on investigating how anticipa-

tory assistance systems can facilitate cognitive aspects of human activities and human-machine

interaction. Prototypical application scenarios for this are in-car driver information systems

and assistive smart glasses overlaying the real world with virtual content. For example, the
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recently researched ADAMAAS smart glasses are intended to assist disabled or elderly people

in daily activities [2]. In such contexts, giving excessive step-by-step assistance for a task by

constantly placing vast amounts of visual information within the users’ field of view could be

annoying and distracting at best, perhaps even dangerous. It may also lead to a high degree of

dependence on the technical systems and impede learning processes when users resort to

mindlessly following a system’s instructions. Instead, the amount of information presented to

users should be restricted to the required minimum. This generally conforms with established

principles from disciplines such as human-centred design (ISO 9241-110; ISO 14915), human-

computer interaction [3], ergonomics (ISO 15005), and usability engineering [4]. Therefore, it

must be determined in which situations assistance is actually required. This is the case when

users are either unsure about what to do, or when they would do something wrong. In perilous

or time-critical task sequences, these situations should obviously be anticipated beforehand to

mitigate possible damage. In non-critical activities, feasible predictions can contribute to

smoother task execution, better user experience and better performance rather than waiting

for human errors to occur and trying to correct them afterwards. Technical systems that incor-

porate such an anticipatory module, combined with effective assistance features, can induce a

new level of learning processes.

This article proposes a new computational approach for generating such predictions. To

this end, task-related knowledge in each individual’s long-term memory is retrieved using

structural-dimensional analysis of mental representations (SDA-M) [5]. A software-based pre-

diction module is then used to assess individual problems in task execution. Finally, we report

results from a study assessing the expected accuracy of different alternative algorithmic

approaches.

2 Task-related mental representation structures

From a cognitive-perceptual perspective mental representations can be considered as the cog-

nitive basis to organize and execute complex motor actions and movements [6]. In the middle

of the 19th century, classical ideas in psychology led to the “ideomotor” approach [7, 8], which

distinguishes the important role of a cognitive equivalent of actions in memory [9]. Since that

time different lines of research in cognitive psychology, philosophy, cognitive robotics and

other disciplines refer to the central role of mental representations in action organization with

different definitions and perspectives [10–13]. For the purpose of this article it seems useful to

refer to mental representations as a functional structure that integrates both perceptual and

cognitive features to achieve context-specific action goals [12].

2.1 Background

Planning and acting in a goal-oriented way requires a structured cognitive basis that integrates

person, environment, and task information [14–16]. Cognitive aggregations and chunking

reduce the planning cost and facilitate action and movement control [17, 18]. From this point

of view, mental representations overcome the complexity of redundant environments to con-

trol complex movements and action sequences, leading to task-related order formation. A

seminal theoretical framework for movement control by Bernstein [19] described the multiple

ways to reach a movement goal as a degrees-of-freedom problem. Bernstein developed a task-

dependent evolutionarily-originated multi-level model of movement control. However, the

idea of a hierarchical cognitive architecture has been investigated using diverse approaches

[20–23]. A suitable model for the research presented in this article was proposed in [24]. The

model of the cognitive architecture of action uses a goal-oriented approach of regulatory levels

and representational levels that are functionally autonomous [13]. This so-called “cognitive
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action architecture approach” (CAA-A) differentiates between two regulatory levels of mental

control (level IV) and sensorimotor control (level I) which initiate volitional and control strat-

egies (IV) and lower level processes, such as automatized movements and reflexes (I), respec-

tively [25, 26]. The two representational levels of sensorimotor (II) and mental representation

(III) build the cognitive information basis. Whereas perceptual effects and their spatial-tempo-

ral features are stored on the sensorimotor representation level (II), the cognitive units of com-

plex actions, the so-called basic action concepts (BACs), are located on the level of mental

representation (III). BACs can be seen as the building blocks of motor memory that are con-

nected to perceptual effects of actions [12, 13]. A number of studies have investigated the

essential role of BACs in long-term memory in manual actions [27], sports actions [6, 28],

sports tactics [29] or rehabilitation [30, 31]. The results characteristically show that mental rep-

resentations of people with a high level of competence and expertise are well-integrated tree-

like structures that are in line with the biomechanical structure of the task. However, the men-

tal representations of novices, young children or stroke patients reveal less hierarchically orga-

nized cognitive structures. These findings are supported by experiments from [25] regarding

modularity in motor control [32] which indicated a clear structural relationship between men-

tal representation and the kinematic structure of movement. Furthermore, current projects

and investigation on job-related knowledge have been conducted [13, 33, 34]. We assume that,

as for tactical knowledge and complex actions, the structures of working tasks in occupational

rehabilitation are stored in memory [29] and change over the course of learning [35]. The cog-

nitive representation of such tasks can be investigated by applying the structural-dimensional

analysis of mental representations (SDA-M) method.

2.2 Analysis with the SDA-M method

With the SDA-M it is possible to analyze human memory structures related to a given set of

items (e.g. actions). We argue that well-integrated cognitive networks lead to structured deci-

sions in the SDA-M split procedure. The method then provides psychometric data that can be

analyzed on an individual and on a group level. To this end, SDA-M can comprise up to four

phases [5, 36] which are outlined in the following.

2.2.1 Step 1: Split procedure and distance scaling. When SDA-M is used to analyze a

specific task or activity, the task/activity is first split into sub-tasks or actions which are indi-

cated by textual descriptions, pictures or illustrations, short video clips, or a combination of

those means. This is done by researchers in collaboration with domain experts (e.g. coaches)

in order to provide a “plausible and workable set” of actions [5]. These action items are then

shown to study participants or users on a computer screen. Fig 1 shows the split procedure

user interface concept for the mobile touch-friendly version of our SDA-M software. Actions

are chosen in random order as reference objects or “targets” and then, one after another, all

other actions are compared to the current target in random order. The user must decide for

each pair of actions whether these are directly associated during task execution or not. The

decisions made in the context of each target result in a particular decision tree, i.e. in the end

the number of decision trees is equal to the total number of actions. The tree for a given target

consists of nodes containing the subsets of actions which the user considered as “associated”

or “not associated” to the target in a splitting step. Hereby a value of xi = si � |Ni| is assigned to

each action, with |Ni| being the number of actions contained in the node; si = 1 if the user

stated that the actions in the node were “associated” to the target, and si = −1 otherwise. (Note:

Multiple splitting steps may be performed for each reference action in order to yield a more

fine-grained distance measure. However, most contemporary applications of SDA-M, includ-

ing this study, are restricted to only one splitting step for each reference action, resulting in
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binary decision trees of height 1, in order to reduce the required time and effort for partici-

pants.) [37] argued that a metrically defined measure of distance from a reference object (tar-

get) to any other can be obtained by standardizing the respective xi values to z-scores, thus

establishing a “Z matrix” containing one such (row) vector of z-scores for each action. The

SDA-M software then creates matrices containing the correlations (“R matrix”) and Euclidean

distances (“D matrix”) between all rows of the Z matrix. The distance values in the D matrix

(or, equivalently, the correlation values in the R matrix) contain all information to completely

define an individual’s representational structure [38]. The subsequent steps of SDA-M are

therefore functions of these matrices.

2.2.2 Step 2: Hierarchical clustering and visualization. The distances calculated in the

first step are now used as the metric for hierarchical agglomerative average-linkage clustering.

The results are visualized by a dendrogram to facilitate human assessment of the mental repre-

sentation structure. Many SDA-M applications stop at this point.

2.2.3 Step 3: Extraction of feature dimensions. The third step aims to uncover the latent

criteria or feature dimensions that seem to have guided subjects’ decisions during the split pro-

cedure. To this end, the R matrix is subjected to factor analysis with a special cluster-oriented

rotation procedure [5, 36], the details of which are irrelevant for this article.

2.2.4 Step 4: Analysis of interindividual differences. Finally, pairs of individual or sub-

group-specific cluster structures can be analyzed for their degree of similarity. SDA-M

employs the invariance measure λ for this purpose, which takes the total numbers of clusters

and their pairwise congruence into account.

2.2.5 Usage in individual cognitive assessment and coaching. Numerous previous stud-

ies have indicated that educated psychologists and domain experts could use dendrograms

from SDA-M (step 2) to detect individual issues regarding action execution and derive helpful

advice for performance optimization, e.g. [16, 24, 39–41]. The SDA-M method enables

addressing individual needs by taking the essential information about the underlying cogni-

tive-perceptual action system into account [16]. For example, mental representations related

Fig 1. SDA-M software interface. In this UI concept illustration of our SDA-M tool for mobile devices the two

exemplary action representations are related to the activity ‘building a birdhouse’.

https://doi.org/10.1371/journal.pone.0212414.g001
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to gymnastics skills were retrieved from novices and experts. Individual mistakes in carrying

out the movement were analyzed based on SDA-M data. It was reported that individual inter-

ventions based on those mental representations accelerated and optimized the learning process

and brought novices’ mental representation structures closer to those of experts [26, 35, 39].

The SDA-M method has been applied to numerous activities in manual action, sports, dancing

and rehabilitation [13, 24, 26, 28, 42] to investigate expertise-dependent memory structures

and develop related individualized training strategies [16, 43].

3 Algorithmic prediction of human action errors

With reference to the abovementioned research publications we take for granted that SDA-M

data visualized as dendrograms can be interpreted by appropriately trained human specialists

(psychologists, mathematicians etc.) to identify deficits in memory structures. On account of

this, the current study investigated how SDA-M data can be automatically interpreted by a

technical system and trigger corresponding assistance when needed. We developed two alter-

native algorithmic approaches to human error prediction based on SDA-M data. These shall

be called Analysis of Most Probable Actions (AMPA), and Correct Action Selection Probability
Analysis (CASPA), respectively. Both algorithmic approaches require as input

• a predefined list of all correct action sequences (related to an activity), and

• valid SDA-M data for a specific person X (related to an activity).

The output of the algorithms then indicates when (i.e. after which actions) person X may

require assistance while performing the activity.

3.1 Assumptions and prerequisites

Both algorithms require the overarching activity or task to be represented in SDA-M through

a set of n subtasks or actions (“BACs”) satisfying the following criteria:

• Atomicity: Each action is self-contained insofar as it is assumed to be executable by each per-

son without issues. If this was not the case, it must be divided further into feasible sub-

actions before performing the SDA-M split procedure. The resulting BACs can be under-

stood as problem-solving operators available to users.

• Sequential discreteness: Actions do not overlap in time. All correct sequences of actions can

be formed by strictly ordering a subset of all actions.

• Non-recurrence: Each action appears at most once in each correct action sequence. (Note: In

practical applications this restriction can often be worked around by adding sequential infor-

mation to descriptions of identical actions in the SDA-M split procedure, e.g. “Pressing the
yellow button for the first time” and “Pressing the yellow button for the second time”).

• Completeness: The total set of actions considered during the SDA-M split procedure com-

prises all actions that can be executed while performing the activity.

• Context-independence: Environmental and contextual factors not explicitly incorporated

into action descriptions do not influence behavior.

• Currentness: The SDA-M data for a given person is valid in the sense that his or her task-

related memory structure has not changed since the SDA-M split procedure was performed.

In practical applications these theoretical assumptions may not hold to full extent, hence

decreasing the achievable accuracy of predictions, but not necessarily rendering the results
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unusable. For example, the assumption of completeness will commonly be violated to some

degree by focusing, for pragmatic reasons, on a set of probable task-related actions instead of

all possible actions. This is inevitable because the SDA-M split procedure (the “manual” part of

the method) has a time complexity of Θ(n2), i.e. the time for performing it grows quadratically

as a function of the number of actions. According to our experience in practice this usually

limits the number of incorporable actions to approximately 10-15 (depending on the time

required for each decision), because subjects are rarely willing to perform split procedures last-

ing much longer than quarter of an hour. In a similar vein [38] stated that the number of

actions “should not be chosen higher than 20. Otherwise, the decisions made regarding the

similarity of stimuli may become inconsistent”. The requirement of sequential discreteness

must be accounted for when determining the actions (“BACs”). Furthermore, participants

should be disposed to ideally associate each action exactly with what they believe to be the

immediate preceding and subsequent actions with respect to correct sequences. To this end,

the current version of our SDA-M software incorporates an introductory video (in German)

that instructs participants to state whether the displayed actions are executed immediately

before or after another during task execution. Note that many, but not all previous applications

of SDA-M complied with the requirement of sequential discreteness [30, 31, 43].

3.2 Algorithm I: Analysis of Most Probable Actions (AMPA)

The first step of SDA-M involves calculating a measure of distances between any two of the

analyzed items (e.g. objects or actions) in a person’s long-term memory. Algorithm I deter-

mines whether there is a correct immediate follow-up action which has lowest distance among

all actions (or second-lowest distance in the case that the second-last action has lowest distance

to the last executed action), which equates to the strongest association between these actions.

We call this a “Correct Most-Probable Action” (CMPA), being aware that there may be more

than one CMPA in any situation. If there are no CMPAs in a current situation then it is proba-

ble that the person will either choose an (incorrect) action with stronger association or not

know how to proceed, i.e. assistance is required. The concept of assuming that exactly those

chunks which have the highest activation (≙ lowest distance) are always chosen is very

straightforward and may seem highly simplified given the noisy nature of human behavior.

Nonetheless it constitutes a promising heuristic; e.g. it has successfully been used as a basic

assumption for a computational cognitive model of instance-based learning [44].

To formalize this approach, let n 2 N be the total number of actions related to the consid-

ered task and A = {a1, . . ., an} the set of all these actions. Let S� A be the set of all actions a spe-

cific person has already executed in a given situation, including action ai 2 S as the second-

most recent one and aj 2 S being the most recent one. Let CS� A\S be the set of all correct

immediate follow-up actions in this situation, and Dax ;ay
the distance between any two actions

ax and action ay in the person’s memory (as calculated by SDA-M; see paragraph 2.2.1). Then

the value of competent(S) indicates whether in this situation, after action aj, the person is

assumed to know what to do next on their own:

competentðSÞ ≔
1 if 9ac 2 CS : 8ðx 2 N j x � n ^ x 6¼ i; jÞ : Daj;ac

� Daj;ax

0 otherwise

(

ð1Þ

In this formula, action ac is a CMPA. Note that it is not required that there is a correct

action with strictly smaller distance than all other actions, but only that it is among those

actions closest to the most recent one. Action aj itself as well as its immediate predecessor ai
are hereby disregarded (in contrast to less recent actions from set S). Since SDA-M’s pairwise
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distance values are undirected, it would be neither unexpected nor detrimental to task execu-

tion if ai had lower distance to aj than all correct follow-up actions, but it seems rather improb-

able that ai would be repeated after aj. With respect to these aspects, AMPA is an optimistic
heuristic.

As an example, assume that exactly these two action sequences are correct for some task:

seq1 ≔ ða1; a2; a3; a4; a7Þ

and

seq2 ≔ ða1; a2; a3; a5; a6Þ:

ð2Þ

Now assume that a person has already executed the actions (a1, a2, a3) with S being the set

of this tuple’s elements. If, among all actions, the most recently executed action a3 has lowest

distance to its predecessor a2, then action a3 must have second-lowest distance to either action

a4 2 CS or action a5 2 CS for the person to be considered “competent” in this situation. If not,

action a3 must have lowest distance to a4 or a5. Otherwise the person would be deemed unable

to determine a correct follow-up action. For example, if a6 is closest to a3 in memory, i.e.

arg minaxðDa3 ;ax
Þ ¼ a6, the person would probably try to execute action a6 after action a3,

which would be wrong.

3.3 Algorithm II: Correct Action Selection Probability Analysis (CASPA)

In contrast to the AMPA algorithm, CASPA does not only output a plain binary assessment of

competence in a given situation, but a continuous measure of probability. This allows for a

much more fine-grained assessment of mental representation structures as well as task-, user-

and context-specific thresholds for when to provide assistance. For this purpose CASPA inher-

ited concepts used by the “Adaptive control of thought—rational” (ACT-R) cognitive architec-

ture [45, 46]. According to the ACT-R theory, human behavior is predominately controlled by

a central production rule system which is neurophysiologically associated to the basal ganglia.

Functionally it is related to procedural knowledge as it represents possible actions as produc-

tion rules, i.e. “IF—THEN” rules. These rules take current goals, sensory inputs and chunks

from declarative memory into account by matching the left side of rules (“IF”) with the con-

tents of buffers associated with the respective subsystems (called “modules”). The right sides of

rules (“THEN”) describe possible actions. Overall this symbolic level describes which actions

are in principle applicable in a given situation. ACT-R then draws on an additional subsym-

bolic layer to decide which of the applicable actions shall be executed. This subsymbolic layer

is a lower-level abstraction related to neural processes. A very similar mechanism is used for

selecting one of several chunks from declarative memory when a specific type of long-term

memory content is required. Therefore it does not matter for our purposes whether the actions

of a specific task covered by an SDA-M procedure are (in terms of ACT-R) more related to

contents of declarative memory or to executive functions associated with the production rule

system. In fact, the distinct behavior of the subsymbolic levels of these two processes is mod-

eled using the same basic mathematical approach: The ACT-R mechanisms for selecting pro-

duction rules and for selecting memory chunks both use the Boltzmann distribution as a

“softmax rule” for conflict resolution when more than one rule or chunk is applicable [47]. As

we will show now, this approach can be adapted to estimate the probability of a specific person

choosing a correct action in a given situation based on SDA-M data.

3.3.1 Calculations. Let A = {a1, . . ., an} be the set of all actions related to the considered

activity, and S� A the set of all actions the person has already executed in a given

situation, including action ai 2 S as the second-most recent and aj 2 S as the most recent one.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0212414 February 22, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0212414


Let CS� A\S be the set of all correct immediate follow-up actions in this situation, and IS� A
\CS be all actions which are applicable, but incorrect in the given situation with respect to suc-

cessful task execution. Then the probability that the person will know what to do after action aj
is estimated as follows:

PS ¼
X

ac2CS

erðaj ;acÞ=s
P

ax2ðCS[ISÞ fai ;ajg
erðaj;axÞ=s

ð3Þ

This calculation incorporates a constant s> 0 that reflects noise and for our application is

set at 0.4, which is a typical value concerning chunk activation in ACT-R [46]. This noise value

s plays an analogous role to the “temperature” value in Boltzmann machines or simulated

annealing [48]: The higher s, the less preference is given to actions with higher activation. Eq

(3) further requires a measure ρ(ax, ay) representing the strength of association between

actions ax and ay in users’ memory or, in this context equivalently, the activation level of an

action ay after action ax has been executed. Lander proposed such a measure, called π, as part

of the original SDA method [36], the predecessor of SDA-M:

pðax; ayÞ ¼ exp �
Dax ;ay

Dkrit

� �

¼ 1=exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � rax ;ay

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � rkrit

p

0

@

1

A; 0 < pðax; ayÞ � 1 ð4Þ

A drawback of this formula is that the value of π depends on the “incidental correlation value”

rkrit as defined by [5], which in turn depends on an arbitrarily chosen significance level α as

well as the total number of actions. Furthermore, uncorrelated and even negatively correlated

actions (i.e. rax ;ay � 0) still show association strength values π(ax, ay)>0, no matter which rkrit

value is determined (cf. Fig 2). Overall the slope of the function leads to insufficient

Fig 2. Relation of Lander’s association strength measure π to the SDA-M correlation analogon r. Green: rkrit = 0.

Orange: rkrit = 0.39. Red: rkrit = 0.8.

https://doi.org/10.1371/journal.pone.0212414.g002
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discrimination between negatively or weakly correlated items and moderately correlated ones.

To mitigate these issues, an alternative calculation based on the ACT-R formulas for produc-

tion strength and chunk activation can be used. These formulas reflect the log-odds that an

applicable chunk will be matched in the present context [45, 49, 50]. For our purposes, the

SDA-M correlation analogon r is used analogous to the respective probability values in ACT-R

(cf. Fig 3):

Activation rðax; ayÞ ≔ log
rax ;ay

1 � rax ;ay

 !

ð5Þ

Finally, Eq (3) is adjusted to take those actions into consideration which are positively corre-

lated to (i.e. associated with) the most recent action aj, such that CASPA regards these as appli-

cable to the given situation in terms of the ACT-R theory:

PS ¼
X

ac2CS ; raj ;ac>0

erðaj ;acÞ=s
P

ax2A fai ;ajg; raj ;ax>0
erðaj ;axÞ=s

ð6Þ

3.3.2 Default vs. informed threshold. In order to decide whether assistance should be

given, arbitrary thresholds for PS can be used. The most natural approach a priori would be to

choose a probability threshold of 0.5, i.e. whether it is supposedly more likely that assistance is

needed or dispensable. However, it may be beneficial to determine an informed threshold set-

ting using empirical data if available. To this end, a sufficiently large number of SDA-M data

sets for the respective task must be available so that the average probability estimated for differ-

ent situations by CASPA sufficiently converges. The threshold is then set to that average esti-

mated value of PS. The assumed benefit of this is the compensation of possible systematic

Fig 3. Relation of activation measure ρ to the SDA-M correlation analogon r.

https://doi.org/10.1371/journal.pone.0212414.g003
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biases of PS as determined by CASPA. Such systematic biases may occur when the SDA-M

split procedure is slightly easier or harder for subjects to perform than the real task due to arti-

facts of modeling the real actions in the form of visual and/or textual representations. This

approach also takes another potential issue into account: Theoretically, the value of PS should

to some degree be dependent on the total number of actions considered during the SDA-M

split procedure. Assuming purely random decisions on part of the subject, it holds that the

more actions are included in the split procedure, the lower the expected value of PS. In practice

subjects may induce such bias through random tie-breaking in case of doubt as well. Concern-

ing the final binary decision regarding competence or feedback, an empirically informed

threshold may mitigate these issues. In the following the binarized output of CASPA using the

default threshold (0.5) will be referred to as CASPAd while an informed threshold will be

denoted as CASPAi.

3.4 Relations between the algorithms

In the following, let the sets CS and IS contain only “applicable” actions which are positively

correlated with (i.e. associated to) the most recent action aj, i.e. exactly those considered by

CASPA (cf. Eq 6). In some special cases the output of CASPA is identical to that of AMPA:

• All applicable follow-up actions are correct:

|CS|� 1 ^ I = ;) output(AMPA) = output(CASPA) = 1.

• There is no correct applicable action:

CS = ;) output(AMPA) = output(CASPA) = 0.

• The noise value is set at s! 0 and among the applicable actions with maximum activation is

no incorrect action, but at least one correct:

ð8ai 2 IS : rðaj; aiÞ < maxax rðaj; axÞÞ ^ ð9ac 2 CS : maxax rðaj; axÞ ¼ rðaj; acÞÞ ) output

(AMPA) = output(CASPA) = 1

• The noise value is set at s! 0 and among the actions with maximum activation is no correct

one:

∄ac 2 CS : rðaj; acÞ ¼ maxax rðaj; axÞ ) output(AMPA) = output(CASPA) = 0

It should be remarked that since the regular noise value for CASPA is constant at s = 0.4 the

relations depending on zero noise are merely theoretical statements. Generally the following

relations hold:

• If there is a correct applicable action with maximum activation:

9ac 2 CS : rðaj; acÞ ¼ maxax rðaj; axÞ ) 0< output(CASPA)� output(AMPA) = 1.

• If there are correct applicable actions, but none of these has maximum activation:

CS 6¼ ; ^ 8ac 2 CS : rðaj; acÞ < maxax rðaj; axÞ ) 0 = output(AMPA) < output(CASPA)

<1.

Because of these relations it is not possible to tell in general which algorithm is “more opti-

mistic” or “more pessimistic”, or to derive the output of one algorithm from the other algo-

rithm’s output.

4 Evaluation material and methods

As mentioned before, previous studies have demonstrated that human experts (scholars) could

use specific visualizations of mental representation structures based on SDA-M data to detect

individual issues regarding action execution and derive helpful advice or training concepts for

Computational assessment of long-term memory structures

PLOS ONE | https://doi.org/10.1371/journal.pone.0212414 February 22, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0212414


performance optimization. This substantiates the assumption that feasible algorithms would

achieve the same if they interpreted SDA-M data in a way that conforms to interpretation by

humans. This study investigates to which degree the different computational approaches from

section 3 satisfy this criterion.

4.1 Data base

In order to establish a suitable test set of SDA-M data as a data pool for further analyses, we

cooperated with a local diaconal non-profit foundation working with people with various

mental disorders. In a first step, we identified the relevant working tasks related to preparing,

opening and cleaning a kiosk at the foundation by observing the operational procedure. These

tasks had been used by the foundation as part of an educational program for people with men-

tal disorders for several years. In the second step we interviewed two coaches to detect the

underlying working structure. In the third step the amount of working steps was reduced by

integrating similar and related steps. In the next step we tested the set of concepts in a pilot

study. At the end, the set of working tasks was adjusted and retested. Afterwards, these items

were applied to the SDA-M software. A total of 27 trainees with mental disorders, comprising

depression, schizophrenia, substance use disorders, autism spectrum disorders, attention defi-

cit hyperactivity disorder, anxiety and mood disorders, used the software to judge whether a

pair of actions belongs together during their work in the kiosk. All participants gave informed

consent in written form. Their capacity to do so was ensured by asking our contacts at the

foundation (trained professionals in coaching people with disabilities) to exclude all trainees

for whom this might be questionable. In the SDA-M splitting procedure, a total of 15 different

actions were covered, which could be divided into four independent activities:

Kiosk preparation:

• Refill cutlery cart

• Fill in coffee beans and cocoa

• Refill fridge with drinks

• Put plate for rolls in place

• Allocate cart for dirty dishes

Kiosk customer service:

1. Welcome the customer and take the order

2. Prepare coffee and cocoa

3. Serve drinks and food

4. Take the money

Kiosk wrap-up:

• Wash the dishes and start the dishwasher

• Clean the glass pane of the refrigerator

• Clean the coffee machine

• Wipe the surfaces

Laundry:
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1. Wash the laundry

2. Hang up and iron the laundry

The actions related to customer service and laundry naturally have to be executed in a

sequential order (as indicated by the numbering above). Therefore, ideally these actions should

pairwise be strongly associated in long-term memory structures to represent the correct

sequence. Actions related to the kiosk preparation and wrap-up activities can be executed in

arbitrary order (indicated by bullet points). Generally, actions related to different activities

should ideally not be associated to each other in long-term memory.

The trainees were familiar with these actions and activities to differing degrees, because

they were trained in these tasks at the diaconal organization for different lengths of time

(between a few weeks and several months). In line with previous studies, e.g. on actions in

judo [42], windsurfing [16], soccer [51] or manual actions in humans and robots [12, 13], we

assume that potential problems and deficits in action execution are reflected in the mental

structure of the tasks. Thus, unrelated or wrongly related actions on the cognitive level are

expected to lead to decreased real-life performance, e.g. forgetting of the next relevant action

or executing a wrong task. For example, a trainee might start cleaning a table instead of serving

a customer who is waiting in line.

4.2 Retrieval of experts’ manual assessments

The data pool was then used to compare assessment by human SDA-M experts with algorith-

mic interpretation. To this end, we created an assessment task consisting of 80 different hypo-

thetical situations related to the kiosk-servicing activities listed above. Each of these

“situations” was specified by

• SDA-M data visualization of a random subject, and

• a fictitious sequence of actions this subject was said to have executed up to now.

The fictitious action sequences had been created by selecting representative subsets from

the set of all correct sequences and applying a random cut-off length to each sequence. By defi-

nition, a “correct sequence” was a sequence containing actions from only one of the four activ-

ities and, where applicable, in correct temporal order. The first half of the final set of sequences

was initially chosen randomly. The resulting set was then manually revised to mitigate a bias

towards sequences from the larger, unordered activities caused by the disproportionate num-

ber of permutations of actions in these activities. The second half was determined by randomly

selecting from a set of sequences that was priorly adjusted by adding duplicates of some

sequences to compensate for over-/underrepresentation of activities. The resulting test

sequences are provided as S1 Table.

These “situations” or test cases were then presented (as shown in Fig 4), one after another,

to a group of N = 12 human scholars, along with a general overview of all correct sequences for

each of the four kiosk-service-related activities. The participating scholars were experts with

extensive education regarding the SDA-M method and personally experienced in using it for

scientific purposes before, but they were blind with respect to the algorithmic analyses that we

investigated in this study. Each scholar had to assess independently for each situation, based

on the given SDA-M data visualizations, whether or not the respective subject would more

likely need assistance or be able to determine a correct follow-up action in the given situation

(see S1 File for survey sheets). The same test cases were also fed into our AMPA and CASPA

algorithms. As both experts and algorithms pursued the same goal (predicting human errors),

their results could then be compared as described in the next section.
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5 Data analysis and results

The assessments by each of the human experts have been translated into binary vectors with

value 1 representing the assessment “the subject in this scenario is probably able to determine a
correct follow-up action in the given situation on their own, i.e. assistance is not required”, and

value 0 representing the opposite case. We found that the assessments from 11 out of 12

human SDA-M experts correlated positively with the group average, while those from one

expert correlated negatively. Presumably this was due to misunderstandings regarding the

assessment task. Therefore we excluded this expert’s ratings from further analyses. The

remaining assessments served as our ground truth for comparison with the respective

results from the AMPA and CASPA algorithms. As CASPA delivers estimated probability val-

ues PS 2 [0, 1], a direct comparison was possible with the portion of experts PE 2 [0, 1] who

supposed in each test case that the respective subjects were competent. We found a positive

correlation of r = .62 which, considering that the average correlation (determined using Fisher

z-transformation) of each individual expert’s assessments to the average assessments of the

remaining experts was almost identical (r¼ :59), indicates an adequate fit between manual

and algorithmic assessments.

In order to evaluate the (binary) output from AMPA and the influence of different thresh-

olds for CASPA, several common metrics for the evaluation of binary classifiers have been

employed. For this purpose the Median value of the experts’ assessments was used for each test

case. Due to an odd number of experts (N = 11) this equals majority decision. CASPA’s contin-

uous PS values were converted into binary decisions as described in section 3.3.2, i.e. using

either the default threshold of 0.5 (“CASPAd”) or an informed threshold of PS¼ 0:2396

(“CASPAi”), where PS was the average of all probability values output by CASPA for all 80 test

cases from the study. In the following, let Nab with a, b 2 {0, 1} be the total number of situa-

tions where the human experts’ assessment equals a and an algorithm’s prediction equals b.

Fig 4. Example of a test case representing a fictitious “situation” for assessment. The right side shows a

dendrogram visualizing a subject’s mental representation structure for the kiosk service activities. In this example

some actions from the “kiosk preparation” activity (IDs 2, 3 and 4) are clustered with actions from the “customer

service” activity (IDs 6, 7, 8 and 9), indicating a corresponding relation in memory.

https://doi.org/10.1371/journal.pone.0212414.g004
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The simple matching coefficient (SMC) for binary vectors yields the percentage of cases where

human and algorithmic assessments came to the same results, thus representing the accuracy

of matching the human experts’ assessments regarding expected action errors:

Accuracy ¼ SMC ¼
N00 þ N11

N00 þ N01 þ N10 þ N11

ð7Þ

One-tailed binomial tests with H1: P(success) > P(failure) were performed for each algorith-

mic approach to determine whether the degree of match between human and algorithmic

assessments, i.e. the accuracy, is significantly above chance level. Hereby each matching pair of

assessments counted as a successful Bernoulli trial and each deviating pair as a failure. Correla-

tions between the respective vectors of binary decisions were calculated and tested for signifi-

cance as well. Sensitivity, specificity, and positive/negative predictive values can be defined

analogously to accuracy (Eqs 8 to 11). In this context a “true positive” denotes cases of both

algorithm and human experts suspecting that assistance was required because the subject’s

mental representation structure is not suitable (N00).

Sensitivity ¼
N00

N00 þ N01

ð8Þ

Specificity ¼
N11

N11 þ N10

ð9Þ

Positive predictive value ðPPVÞ ¼
N00

N00 þ N10

ð10Þ

Negative predictive value ðNPVÞ ¼
N11

N11 þ N01

ð11Þ

In addition to these classic metrics the balanced accuracy should be considered, because this

measure safeguards against a biased classifier taking advantage of an imbalanced test set [52].

If an algorithm performs equally well regarding its positive and negative predictive values, its

balanced accuracy reduces to the conventional accuracy.

Balanced accuracy ¼
1

2

N11

N11 þ N01

þ
N00

N00 þ N10

� �

ð12Þ

Table 1 shows how AMPA, CASPAd (threshold = 0.5), and CASPAi (threshold = 0.2396) per-

formed with respect to these metrics. Balanced and conventional accuracy values were close to

each other with all algorithms ranging between 0.79 and 0.86 for these metrics (Fig 5). Bino-

mial tests showed that with all three algorithm variants the match with human experts’

Table 1. Full results of the evaluation study.

Algorithm Correlation Accuracy Sensitivity Specificity PPV NPV Balanced accuracy

AMPA 0.61��� 0.84��� 0.86 0.77 0.91 0.68 0.79

CASPAd 0.61��� 0.85��� 0.93 0.64 0.87 0.78 0.82

CASPAi 0.67��� 0.86��� 0.88 0.82 0.93 0.72 0.82

��� p< 0.0001.

https://doi.org/10.1371/journal.pone.0212414.t001

Computational assessment of long-term memory structures

PLOS ONE | https://doi.org/10.1371/journal.pone.0212414 February 22, 2019 14 / 19

https://doi.org/10.1371/journal.pone.0212414.t001
https://doi.org/10.1371/journal.pone.0212414


assessments was highly significant above chance level. Differences between the algorithms

were marginal, though CASPAi generally tended to score slightly better than AMPA.

6 Discussion

The analysis of mental representation structures using the SDA-M method is a well-established

approach (cf. e.g. [5, 6, 12, 13, 25, 27–32, 34, 35]) for gaining insight into the degree of individ-

ual expertise related to various activities, ranging from basic grasping actions to complex sys-

tem interactions. Traditionally this information was computationally pre-processed and

visualized to be interpreted by human SDA-M experts. As this requires human resources, spe-

cific training and is time-demanding, this approach is inefficient, nondeterministic and not

applicable in real-time systems. Therefore we investigated different approaches to algorithmi-

cally automatize the interpretation of SDA-M data. In order to enable suitable predictions

about error-prone steps during task execution, specific prerequisites must be satisfied. Most

notably, the considered activity must be divisible into a limited set of sequential actions or sub-

tasks which can be assumed to be executable without issues. When used as a component of a

technical assistance system, this approach is most advantageous if the expected benefits from

error predictions outweigh spending approximately 10-15 minutes for performing the SDA-M

split procedure before system usage. This may commonly apply when executing the assisted

actions in reality is relatively time-consuming and/or when errors have severe consequences,

e.g. when wrong actions are difficult to reverse. Presumably it might also help specific target

groups overcoming insecurity and hesitation to tackle unfamiliar activities. In order to take

learning processes into account and further reduce unneeded assistance, users may want to

update the data about their mental representation structures from time to time by repeating

the SDA-M split procedure.

In a first evaluation study, our proposed algorithms for SDA-M-based error prediction,

AMPA, CASPAd and CASPAi, showed a high degree of consistency with human experts’

Fig 5. Key results of the evaluation study. Accuracy and balanced accuracy (see Eq 12) measure the congruence of

algorithmic (AMPA, CASPAd, CASPAi) and human experts’ assessments.

https://doi.org/10.1371/journal.pone.0212414.g005
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assessments about probable action errors based on SDA-M visualizations of subjects’ mental

representation structures. The percentage of matches between algorithmic and experts’ assess-

ments was significantly higher than would be expected by chance, ranging from 84% to 86%.

The differences between the proposed algorithmic variants were insignificant, but the more

sophisticated CASPAi algorithm scored slightly higher regarding all metrics we considered

than the simpler AMPA algorithm. It should be noted that the existence of some non-match-

ing cases did not necessarily imply that the respective algorithmic predictions were wrong. On

the one hand, human experts also varied from one another in their judgments regarding error

predictions to some degree. On the other hand, some of the information contained in the raw

data is lost when visualizing mental representation structures via dendrograms for manual

interpretation. On this account the algorithmic interpretations may actually have been better

than those from human experts. However, due to a lack of definitive ground truth regarding

the actual mental structures of subjects from this study, this hypothesis can neither be con-

firmed nor rejected so far. Generally, the evaluation study reported in this article constitutes a

proper indication of suitability of the algorithmic interpretations of SDA-M data in compari-

son with the traditional approach of manual assessment for a specific task. Noteworthy limita-

tions of the study are the relatively small number of activities that were analyzed, as well as the

present empiric evidence in favor of our new algorithmic approaches being restricted to a

comparison with experts’ assessments.

7 Outlook

Further research is mandatory to reliably assess the degree of match between predicted errors

and human errors actually occurring during task execution in reality. Pertaining to categoriza-

tions of human errors [53, 54], we expect our approach to cover most (knowledge- and rule-

based) mistakes, and potentially also some types of slips, e.g. due to associative activation and

capture errors (excluding external event sources), loss of activation and faulty triggering. How-

ever, since many occurrences of slips are context-dependent and unreproducible, the SDA-M

split procedure certainly cannot be expected to capture all (and possibly not even most)

instances of slips. A promising extension may be to incorporate eyetracking and physiological

sensor measurements in addition to SDA-M data into a real-time error prediction component.

This data can be used to determine users’ current stress level, which in many situations influ-

ences the predetermined probability of making errors.

An interesting philosophical question is under which conditions assistance systems incorpo-

rating our prediction module may be considered anticipatory systems according to Rosen [55].

Following Rosen’s pertinent definition, this would be the case if the human user is regarded as

(part of) the system’s environment, and the system’s internal predictive model “provides an

alternate description of the entailment structure of the mapping representing the [biological]

process itself” [56]. With respect to the intended application this seems to be the case if (and

only if) the predictive model is grounded on neurocognitive actualities. Arguably, both Schack’s

theory (CAA-A) [24] underlying the SDA-M method and Anderson’s ACT-R, from which

CASPA’s calculations are derived, may be regarded as sufficiently well-grounded in this regard.

Furthermore, the predictive model M of an anticipatory system S should be “equipped with a

set E of effectors that operate either on S itself or on the environmental inputs to S, in such a

way as to change the dynamical properties of S” [56]. Such effectors could for example be the

visual or auditory displays of an assistance system which cause its user to behave in a different

way, i.e. “the effect of the model M creates a discrepancy—S would have behaved differently if

M were absent” [56]. According to Louie [56], such a “predictive or anticipatory mode” would

cause a system to “become more like an organism, and less like a machine”.
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25. Land W, Volchenkov D, Bläsing B, Schack T. From action representation to action execution: exploring

the links between cognitive and biomechanical levels of motor control. Frontiers in Computational Neu-

roscience. 2013; 7:127. https://doi.org/10.3389/fncom.2013.00127 PMID: 24065915

26. Frank C, Land WM, Schack T. Perceptual-cognitive changes during motor learning: The influence of

mental and physical practice on mental representation, gaze behavior, and performance of a complex

action. Frontiers in Psychology. 2016; 6. https://doi.org/10.3389/fpsyg.2015.01981 PMID: 26779089
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