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A B S T R A C T

Sheep is an important livestock in the world providing meat, milk and wool for human beings. With increasing
human population, the worldwide needs of production of sheep have elevated. To meet the needs, the assistant
reproductive technology including ovine in vitro embryo production (ovine IVP) is urgently required to enhance
the effective production of sheep in the world. To learn the status of ovine IVP, we collected some publications
related to ovine IVP through PubMed and analyzed the progress in ovine IVP made in the last five years
(2012–2017). We made comparisons of these data and found that the recent advances in ovine IVP has been
made slowly comparable to that of ovine IVP two decades ago. Therefore, we suggested two strategies or ap-
proaches to tackle the main problems in ovine IVP and expect that the efficiency of ovine IVP could be improved
significantly when the approaches would be implemented.

1. Introduction

Since the first success of sheep in vitro fertilization (IVF) was re-
ported in Cambridge, the UK in1986 [1], sheep reproductive tech-
nology entered a new era, the great efforts had been made in the field
by the scientists worldwide. Until the second half of 1980s, the IVF
became entirely in vitro systems, called “in vitro embryo production”
(IVP) including the three procedures, namely in vitro maturation (IVM),
in vitro fertilization (IVF) and in vitro embryo culture (IVC). Up to the
early1990s, the basic systems of ovine IVP including the three proce-
dures had been well established and have been utilized until now. IVP is
a valuable tool to aid the understanding of early mammalian develop-
ment with applications ranging from therapeutic treatment of human
reproductive failure to the preservation of gametes from animals of
high genetic merit [2] and speeding up genetic improvement in live-
stock. However, the process in sheep is still inefficient: approximately
70–90% of immature oocytes undergo maturation, from prophase I to
metaphase II; 50–80% undergo fertilization and cleave to at least the
two-cell stage at 24 to 48 h post-insemination; only 20% to 50% of
immature oocytes ever reach the blastocyst stage, on day 7 to 8 post
fertilization shown in Table 1, these results are similar to that reported
by Walker et al. [3] in 1996. Additionally, in vivo produced embryos
are, in general, of greater quality than in vitro-produced embryos, be-
cause of greater implantation rates, high birth rate and high survival
rate. The differences imply a great potential in improving ovine IVP.
According to the statistical data reported by the United Nation Food

and Agricultural Organization; production of sheep in the world has
increased from 1060 million in 2000 to 1196 million heads in 2014
(cited from FAOSTAT-DATA 2017 online) (Fig. 1). This tendency in-
dicates that the IVP systems as a new reproductive technology may play
an important role for production of sheep in the future to accelerate
sheep breeding and to improve the efficiency of production. However,
we are currently facing many technical challenges in improving the
efficiency of ovine IVP system such as low efficiency and poor quality of
embryos, the system remains important, especially in sheep genetic
breeding’s compared to natural reproduction and could be used to en-
sure the sustainable development of sheep production. Therefore, we
urgently need to find solutions to overcome the problems so that the
system could significantly be improved. Additionally, there are recently
many excellent reviews on IVP in sheep [4–9], which not only described
the advances in the field, but also pointed out the direction of the
technology in the future. Likewise, based on recent publication asso-
ciated with ovine IVP, in this review, we summarized the recent ad-
vances and challenges in sheep IVP including IVM, IVF and IVC pro-
cedures and suggested two possible approaches to tackle the problems.
At the end, we predict the prospects of applications of sheep IVP sys-
tems, particularly in biomedical research.

1.1. In vitro maturation of ovine oocytes

Immature oocytes to become fertilizable must undergo cytoplasmic
and nuclear maturation. Subsequently, oocytes extrude the first polar
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body and have entered metaphase II [4], waiting to be fertilized.
Therefore, in vitro maturation is a key step to provide good quality
oocytes for in vitro fertilization and determines the potential develop-
mental competence of the oocytes. In other word, the prerequisite of
obtaining a healthy embryo is to produce a good quality oocyte. For
example, the inappropriate in vitro maturation of oocytes is the main
reason of polyspermy after IVF when compared to developmental
competence between in vivo and in vitro produced oocytes [10]. To have
a glimpse at what progress in the field has been made over the last
5 years, we collected 25 papers on ovine IVM published by different
countries through PubMed and listed them in Table 1[11–35]. It should
be noticed that in the table, all blastocyst rates have been standardized,
which means that all blastocyst rates presented in Table 1 are calcu-
lated based on the number of cleaved embryos. Meanwhile, if many
experiments were simultaneously undertaken in a publication, we
chose only the highest blastocyst rate in the experiment and the cor-
respondent protocol from individual publications to fill in Table 1 and
made them comparable. From Table 1, the basic maturation medium
used by most laboratories is still the traditional medium - Tissue Culture
Medium 199 (TCM199), supplemented with various serum at 10% in-
cluding fetal cattle serum (13 of 25 laboratories), sheep serum (5 of 25),
BSA (5 of 25), follicular fluid (1 of 25), except, one [36] does not use
either serum or BSA. Moreover, hormones such as only FSH (5 of 25
laboratories) or a combination of FSH and LH or 17β - estradiol (20 of
25) are added into maturation medium. In addition to these, conditions
for ovine oocyte in vitro maturation are the standard, namely 38.5 °C-
39 °C, 5%CO2 for 20–24 h.

1.2. Effect of researchers working in ovine IVP

Compared to in vivo maturation oocytes, in vitro maturation of oo-
cytes is designed and performed by researchers. Therefore, the biggest
impact to the success of IVP must be the researchers themselves who
work with ovine IVP. In Table 1, whatever laboratories applied the
same or similar protocols or even the same laboratory carried out dif-
ferent experiments with the same protocol, the results showed some
differences. Although there could be many reasons to explain for them,
it cannot be denied that in the cases the most differences were made by
the different people with experiences. What contributions did the ex-
perienced researcher made to the successful IVP? There are at least two
major contributions: (1) oocytes selection, (2) a short time between
aspiration of oocytes from ovarian follicles and culturing the oocytes in
maturation medium. In fact, oocytes selected by experienced re-
searchers are more likely to have great developmental potential after in
vitro maturation. Furthermore, experienced researchers handle oocytes
more quickly than beginners do. Thus, the shorter time of handling
oocytes means that mammalian cumulus-oocyte complexes (COCs)
would be more synchronized as physical removal of mammalian COCs
from ovarian follicles results in spontaneous resumption of meiosis,
causing asynchrony between cytoplasmic and nuclear maturation and

decreases oocyte developmental competence. Therefore, a proper
training to any beginners working in the field is essential and important
for the success of ovine IVP meanwhile a team work is also critical in
speeding handling oocytes for IVM.

1.3. Effects of reproductive and non – Reproductive seasons

Sheep reproduction is seasonal dependent. Because of this, most
laboratories experience periodic reductions in embryo yield. Therefore,
it is understandable that the season is likely an impact on oocyte
quality. A study on this issue shown in Table 1 [25] was conducted to
assess the effect of season on cleavage, blastocyst and lambing rates
of in vitro produced ovine embryos during 3 years of data collection.
The maturation and embryo culture media were defined,
TCM199+BSA and SOFaa+BSA, respectively. Matured oocytes were
fertilized with fresh semen in synthetic oviductal fluid (SOF) with 20%
heat inactivated oestrous sheep serum. The results show that there were
no significant differences in cleavage rates between seasons in any of
the 3 years examined although the blastocyst rate varied significantly
between seasons in 2005 and 2007 (P < 0.05), and in 2006
(P < 0.001). Also, there were no differences in pregnancy and lambing
rates between embryos during anoestrous versus during the breeding
season. Finally, the authors concluded that only the blastocyst rate
appeared to have been affected by season [25]. Likewise, an in vivo
experiment was carried out to investigate the effects of season on the
superovulation in Black Suffolk ewes, particularly the ovulation rate
and embryo quality [37]. The ewes were superovulated in reproductive
and non-reproductive seasons, respectively, followed by laparoscopic
intrauterine artificial insemination. The viable morula and blastocysts
were recovered and immediately transferred to recipients. The results
showed that the ewe's ovulation rate was higher in non-reproductive
season, whereas the viability rate of embryo was higher in reproductive
season. Additionally, although no significant difference in the survival
rate of the transferred viable embryos and the number of offspring per
donor ewe was observed between the two seasons, in contrast, the
offspring/ova ratio of the donor ewes superovulated in non- re-
productive season was lower (P < 0.01). Indeed, these results directly
prove a seasonal effect on oocyte quality in sheep, which could partially
explain the reasons for the variation of the efficacy in ovine IVP during
seasons.

1.4. Effects of age of oocyte donor

In Table 1, for ovine IVP the most labs used oocytes collected from
local slaughter house, age of oocyte donors is normally unknown.
However, four reports used oocytes harvested from younger than
6months old lambs shown. For example, a report only achieved blas-
tocyst rate of 13.3%, the lowest in Table 1 regardless of conditions for
ovine IVP [29]. The quality from lamb oocytes may partially consider
for the poor rate. Like seasonal effect, many publications on the effect of
maternal age of oocytes on developmental competence have shown
that, age of oocyte donor is a significant factor influencing develop-
mental competence of the oocyte although oocytes collected from
lambs are able to develop healthy offspring after IVP embryo transfer.
For example, Kochhar, et al. [38] observed that lamb oocytes reached
second meiotic metaphase (MII) at lower numbers at 24 h (60.0%) and
26 h (28.6%), whereas, 85.7% of adult-derived oocytes attained MII
status by 24 h of maturation. Radiolabeling of oocyte proteins revealed
higher incorporation of [(35) S-]-methionine and [(35) S]-cysteine
in adult-derived oocytes compared to lamb oocytes. Although the clea-
vage rate of lamb oocytes was similar to that of ewe oocytes, the pro-
portion reaching blastocyst stage was significantly lower (P < 0.05) in
the lamb-derived oocytes. Furthermore, Armstrong [39] pointed out
that age-related abnormalities of oocytes of lambs include a) meiotic
incompetence or inability to complete meiotic maturation resulting
in oocytes incapable of fertilization; b) errors in meiosis that can be

Fig. 1. Production of sheep in the world (dated from 2000 to 2014 cited at online from
UN FAOSTAT-DATA 2017).
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compatible with fertilization but lead to genetic abnormalities that
compromise embryo viability; and c) cytoplasmic deficiencies that are
expressed at several stages of development before or after fertilization.
The evidence suggests that in general, oocytes from juvenile donors and
the embryos derived therefrom appear less robust and may be less
tolerant to suboptimal handling and in vitro culture conditions than
are adult oocytes. In addition to less tolerance to inappropriate condi-
tions, it is interesting that a significantly lower rate (P < 0.01) of
cleaved prepubertal oocytes was observed at 22 and 26 h after fertili-
zation while it was higher (P < 0.01) at 32 h than in the adult ones.
Similarly, this trend was also found in blastocyst formation of in vitro
fertilized oocytes from prepubertal sheep [40]. The results may imply
that the current protocol of ovine oocyte IVM may not be adaptive for
lamb oocytes and suggest that the duration of lamb oocyte IVM may
need to be longer compared with adult oocyte IVM.

1.5. Effect of serum and bovine serum albumin (BSA)

In Table 1, almost all maturation media used for ovine IVM were
added with either 10% serum including cattle serum (FCS, FBS), sheep
serum (SS, OSS or ESS) and follicular fluid (FF) or BSA (as a defined
medium). Despite the undefined and variable nature of serum compo-
sition, serum and BSA are among the most common components of the
media in mammalian oocyte and embryo culture systems. Shirazi, et al.
[41] evaluated the effects of protein source (FBS, and BSA) in matura-
tion medium on developmental competence of ovine oocyte. The results
show that FBS supplemented in maturation medium could significantly
improve the proportions of cleavage and total blastocysts compared to
BSA supplemented. However, the cryotolerance of blastocysts was ne-
gatively influenced by the presence of FBS rather than BSA during IVM.
Noticeably, not all sera are adaptive for ovine oocyte IVM, serum to be
used for IVM should be normally tested among several samples of sera
through the IVP process and only the best one is selected for ovine IVP.

1.6. Effects of Roscovitine, a-linolenic acid, cerium oxide nanoparticles
(CeO2 NPs) and sericin

In Table 1, there were several experiments attempting to improve
ovine oocyte IVM.

1.7. Roscovitine

Roscovitine was added into maturation medium to test the meiotic
inhibition strategy. In the experiment, ovine COCs were cultured for 6 h
in the presence of (Rosco) or absence (Control) of 75 μm roscovitine
and, subsequently, they were subjected to IVM for 18 h in the presence
of gonadotropins and followed by IVF and IVC. The results showed that,
a high and similar proportion of oocytes from Rosco (93.6%) and
Control (88.4%) reached the MII stage after IVM. In both treatments,
approximately 70% of oocytes cleaved and 50% of them developed to
blastocysts. The authors concluded that roscovitine, was efficient to
reversibly inhibit the meiosis of adult sheep oocytes without detri-
mental effect on development and quality of the in vitro produced
embryos [12].

1.8. α-linoleic acid

α-linoleic acid is a polyunsaturated fatty acid present in high con-
centrations in follicular fluid. The compound was supplemented into
maturation medium; unfortunately, the compound did not exert any
positive effect on maturation and development of ovine oocytes.
However, a low concentration of the α-linoleic acid did not harm the
developmental competence of the oocytes [14]. In contrast, similar
experiment was performed with oocytes collected from ovaries of pre-
pubertal lambs [34]. The different concentrations of α-linoleic acid
were added into maturation medium to optimize the concentration.

After IVM the oocytes were subjected to IVF and IVC. The conclusion
was that the addition of 200 μM of α-linoleic acid to the IVM medium of
prepubertal sheep oocytes had negative effects on nuclear maturation
and cumulus cell expansion. These negative effects were not the case at
50 and 100 μM concentrations. Although the compound could improve
male pronuclear formation and blastocyst quality, no effects were found
on cleavage and blastocyst rates. Therefore, a question would be that, if
a high concentration of this compound in maturation medium de-
creased the maturation rate and subsequently developmental compe-
tence of ovine oocytes, what is its function at a high concentration in
follicular fluid? Perhaps, more work needs to be done to answer this
question.

1.9. Cerium oxide nanoparticles (CeO2 NPs) [10]

The objective of the experiment was to investigate whether cerium
dioxide nanoparticles (CeO2 NPs) during in vitro maturation (IVM) of
prepubertal ovine oocytes influenced their embryonic development in
vitro. In this experiment, COCs derived from the ovaries of slaughtered
prepubertal sheep underwent IVM with CeO2NPs (0, 44, 88 or
220 µgmL−1). Matured oocytes were then fertilized in vitro and zygotes
were cultured for 7 days. The results showed that a concentration of
44 µgmL−1 CeO2NPs significantly increased the blastocyst yield and
their total, inner cell mass and trophectoderm cell numbers [20]. The
authors concluded that a low concentration of CeO2NPs in the ma-
turation medium enhanced in vitro embryo production of prepubertal
ovine oocytes. Despite the use of prepubertal sheep oocytes, the blas-
tocyst rate in the experiment was comparable to those of adult ones.

1.10. Sericin [25]

Sericin is one of the major components of silks of mulberry as well
as non-mulberry silkworms. It has proven that sericin, particularly
sericin S, could improve serum-free mammalian cell culture [42]. 0.1%
and 0.5% sericin were supplemented into IVM medium. Mature oocytes
were fertilized with fresh semen and zygotes were cultured in vitro. The
results demonstrated that supplementation of 0.1% and 0.5% sericin
during IVM had a significant effect on the nuclear and cytoplasmic
maturation and enhanced preimplantation development of in vi-
tro–cultured ovine embryos [35]. This conclusion is also supported by
another report [43]. Taken together, this protein may be utilized po-
tentially for ovine oocyte IVM.

Additionally, an attempt listed in Table 1 was to in improve ovine
oocyte maturation through addition of insulin–transferrin–selenium
and ascorbic acid into maturation medium. Unfortunately, the attempt
[29] was not successful. Obviously, the progress in ovine oocyte IVM
has been made over the last 5 years. However, compared to the effi-
ciency of ovine oocyte IVM achieved by Walker [3] two decades ago,
the current efficiency, in general, is almost the same if it is measured by
blastocyst rate. Therefore, we will discuss the problems and possible
solutions in ovine IVM in the late section of this review.

1.11. In vitro fertilization of ovine oocytes

Unlike IVM, oocytes and spermatozoa both are involved in IVF
process. Whereas oocyte and spermatozoa are also timing dependent, in
other words, both have the ability of being fertilized or fertilizing oo-
cytes with the limited time. This limited time of oocytes or sperm is
called “fertile span”. A long or short fertile span greatly depends on
many factors such as breeds, season, donor's age, donor nutrition statue,
gamete quality, culture or preservation conditions including pH value,
osmolarity, compounds, gases and so on. The fertile span of gametes is
variable, even in the same individuals. Therefore, for a successful IVF,
timing is very critical. Oocytes and spermatozoa must be co-incubated
together within their fertile spans to ensure that the maximum number
of mature oocytes can be fertilized by capacitated and appropriate
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spermatozoa. In Table 1, in general, IVF takes place after 20–24 h of
IVM when the majority oocytes in maturation medium are considered
to have already reached at the metaphase of the second meiotic division
(MII). The procedures of ovine IVF shown in Table 1 are similar among
these laboratories. Also, frozen/thawed spermatozoa are utilized in
majority of laboratories, nonetheless, some laboratories still prefer to
use fresh semen if available. The most common fertilization medium for
ovine oocytes is SOF medium supplemented with 1–2 μg/mL heparin
+ 2–20% either fetal bovine serum or sheep serum, respectively. Re-
gardless of other conditions, the blastocyst rate of oocytes IVF with 2%
serum ranges from 20% to 59.2%, whereas with 20% serum it ranges
from 24.1% to 42% (see Table 1). It is relevant that ovine oocytes
fertilized in SOF medium+2% serum develop to higher blastocyst
rates than those develop in SOF medium supplemented with 20%
serum. In goat IVF, the similar results showed that the presence of 2%
estrous sheep serum (ESS) achieves better results than the use of no
serum or the standard 20% concentration as the percentage of zygotes
with 2PN was higher in the SOF+2% serum than in the SOF+20%
serum treatment group (27.7% versus 2.9% P < 0.05) [44]. Therefore,
a high concentration of serum seems to contribute to more polyspermy
in fertilized oocytes and reduces the number of normal embryo devel-
opment. It should be noted again that like serum used in IVM, not all
sera would be suitable for ovine oocyte IVF and that the appropriate
serum should be tested and selected for successful ovine IVF.

1.12. In vitro culture of ovine embryos

Compared to IVM and IVF, duration of embryo culture is much
longer, needs 6–8 days. Therefore, culture medium is extremely im-
portant for embryo development in vitro. Like ovine oocyte IVM and
IVF, the procedures of ovine embryo in vitro culture have not been
significantly altered in majority of laboratories in the world for more
than two decades. Ovine zygotes are cultured in synthetic oviduct fluid
(SOF) supplemented with amino-acids and BSA. This combination is the
standard or conventional basic culture medium for sheep embryos. To
reduce incidence of oxidation, oxygen concentration is kept at 5% (5%
O2, 5% CO2, 90% N2) (Table 1). The blastocyst formation occurs on
days 6–8 of culture. During embryo culture, the culture medium is
usually changed every 48 h, or applied with two- step culture, namely,
on the first three days embryos are cultured in SOF+AA+ BSA and on
day 4, they were transferred in SOF+AA+ glucose+ bovine/ovine
serum or BSA and cultured in the medium up to day 8. Apparently, due
to embryos kept in culture for a long period of time, inappropriate
culture conditions for some mammalian embryos may cause epigenetic
changes in genomic imprinting, thus leading to developmental
anomalies. For example, Schwarzer et al. [45] found that 13 different
embryo culture protocols resulted in distinct cellular and molecular
phenotypes in mouse embryos, suggesting that certain culture medium
components can interfere with the epigenetic regulation of genes. Stu-
dies on the embryonic genome indicate that currently used in vitro
embryo development conditions cannot fully mimic in vivo conditions
about mRNA expression [46]. Additionally, the most impressive ex-
ample is “large offspring syndrome” observed in cattle and sheep
caused by aberrant effects on fetal growth since serum complemented
the pre-implantation culture medium [47]. Furthermore, Fernández-
Gonzalez et al. [48] observed that the mRNA expression of some im-
printing genes was significantly affected in blastocysts cultured in the
presence of FCS. The collective evidence postulates that certain culture
medium components can interfere with the epigenetic regulation of
genes. Although addition of serum into ovine embryo culture medium
could result in “large offspring syndrome” at a high risk if the embryos
are transferred into recipients, many laboratories still prefer to use it as
the cell numbers/blastocyst would be increased. However, an early
experiment performed by Gardner, et al. [49] showed that sheep blas-
tocysts after culture in the presence of amino acids based on serum free
-SOF medium was significantly greater and that the cell number per

blastocyst significantly increased when the medium was renewed every
48 h to alleviate ammonium toxicity. Yet, non-essential amino acids and
glutamine also significantly decreased the number of arrested embryos
(P < 0.05). Interestingly, they also observed that culturing embryos
singly or in groups in SOF medium with all Eagle's amino acids that was
renewed every 48 h resulted in significant increases in blastocyst
hatching and mean cell number. They also found that after culture in
groups of blastocysts, cell numbers were equivalent to in vivo-developed
controls and significantly greater than those developed in serum (103
cells; P < 0.01). Until now this protocol of ovine IVC has still been
utilized successfully by many laboratories (Table 1). However, studies
on embryo developmental potential and the embryonic genome in both
ovine in vitro and in vivo embryos, indicate that either developmental
competence or the expression pattern of genes in the former is largely
different from that in the latter. Therefore, the ovine IVP embryos
cannot fully mimic in vivo those in many ways [50]. Taken together, it is
relevant that inappropriate in vitro culture conditions currently used
affect not only cleavage rate, blastocyst rate and mean cell numbers per
blastocyst during the culture of embryos, but also pregnancy rate, fetal
development and birth weight, even healthy state of offspring after
embryo transfer. Thus, optimizing culture media for ovine embryos
should be continuing so that the quality of ovine IVP embryos would
eventually be closer to that of in vivo ones.

2. Possible solutions to improve ovine embryo IVP

After in vitro maturation, the population of oocytes can be divided
into three subpopulations, namely degenerated oocytes, immature oo-
cytes including nuclear mature but cytoplasmic immature oocytes,
mature oocytes including fertilizable oocytes and aged oocytes.
Degenerated oocytes can be easily identified and removed whereas the
others are difficult to be separated from each other before IVF takes
place. Therefore, to maximize the population of fertilizable oocytes and
to minimize the others will be the key for improving the efficiency of
ovine IVP. In other words, the success of IVP may largely depend on the
proportions of the subpopulations of oocytes except degenerated oo-
cytes. It is very likely that the proportions of the three subpopulations
of oocytes may have been decided in the first place in term of devel-
opmental potential when in vitro maturation begins as asynchrony
among oocytes exist at that time. If oocytes could be synchronized at
the beginning of in vitro maturation, it means that the population of
fertilizable oocytes would be significantly increased so that the effi-
ciency of IVP should be improved. Noticeably, physical removal of
mammalian COCs from ovarian follicles results in spontaneous re-
sumption of meiosis, largely because of a decrease in cyclic adenosine
monophosphate (cAMP) concentrations, causing asynchrony between
cytoplasmic and nuclear maturation and a reduction in oocyte devel-
opmental competence [36]. Therefore, controlling the delay of meiotic
progress by means of adenylate cyclase activators, cAMP analogues, or
phosphodiesterase inhibitors is very critical during IVM [51]. Ob-
viously, two asynchronies could highly affect the efficiency of ovine
IVP, (1) asynchrony between cytoplasmic and nuclear maturation in
individual oocytes, (2) asynchrony among oocytes at developmental
stages. The first asynchrony can be improved by optimizing the system
of ovine in vitro maturation. For example, the most experiments of IVM
in Table 1 were carried out for this purpose whereas the second is likely
ignored. Based on these considerations we discuss the first strategy or
approach to tackle the asynchrony among oocytes.

2.1. 1.“Synchronization” of cumulus-oocyte complexes

The asynchrony among oocytes at the beginning of oocytes affects
not only maturation rate, but also subsequently developmental com-
petence of oocytes. Fig. 2 shows a curve of ovine oocyte in vitro ma-
turation observed in our laboratory. The curve in black reveals that the
first MII oocytes appear at 16 h of maturation and that the maturation

J. Zhu et al. International Journal of Veterinary Science and Medicine 6 (2018) S15–S26

S21



curve gradually increases from 16 to 24 h of in vitro maturation and
reaches the maximal maturation rates (over 80% of oocytes at MII
stage) at approximately 24–26 h of maturation. However, not all MII
oocytes have the same developmental competence. For example, those
MII oocytes are present at the early stage, presumably from 16 to 20 h
post maturation may have been aged whereas their fertile span is
normally estimated to be approximate 2–4 h. Sometimes, fertile span
may vary depending on the quality of oocytes, poor quality or aged
oocytes may have shorter fertile span. In other words, some MII oocytes
may have already lose their capability of being fertilized at IVF. Perhaps
this phenomenon appears to be more significant when oocytes are
collected from sheep at non-breeding season or from lambs. This sug-
gests that “synchronization” of oocytes at the beginning of in vitro
maturation might be the key to improve the efficiency of ovine IVP. The
strategy or approach will be to “synchronize” oocytes at the germinal
vesicle (GV stage) to stop or control “spontaneous resumption of
meiosis” so that all oocytes could stand at the same developmental
stage or called “same start line” for maturation. Thus, all oocytes would
be synchronized at the metaphase of the second meiotic division by the
end of in vitro maturation; the presumably ideal curve in red is shown in
Fig. 2. Obviously, we expect that this synchronization could bring two
significant changes (see the ideal curve in red) compared to the normal
one in black: (1) the first presence of MII oocytes should delay; (2)
meanwhile the whole population of oocytes should develop to the MII
at the highest rate earlier, maybe at 22 h of maturation. This means that
more MII oocytes at the best time, namely within their fertile span - the
period of appropriate time for IVF or parthenogenetic activation.
However, how we can turn the strategy to the reality? In fact, this
approach has been suggested by several reviews [52–54]. There are
currently many inhibitors available for the purpose, such as cyclohex-
imide (CHX) [55], a protein synthesis inhibitor, roscovitine, a potent
inhibitor of M-phase Promoting Factor (MPF) kinase activity [56], 6-
dimethylaminopurine (6-DMAP) a phosphorylation inhibitor [57–60]
vanadate (NaV03), an inhibitor of protein tyrosine phosphatases [57],
an invasive extracellular adenylate cyclase (iAC) [53], phosphodies-
terase (PDE) inhibitor (IBMX) [61,62] butyrolactone I, a nuclear ma-
turation inhibitor [53,63]. All these inhibitors can be reversible. There

have been a number of publications [53,62,64,65] attempting to
“synchronize” oocytes with these inhibitors in different species since
1990 s. However, the results revealed controversy effects of these in-
hibitors on meiotic cell cycle arrest, maturation rate and subsequently
developmental potential. Nonetheless, agents that modulate oocyte
cAMP during IVM showed greater potential, possibly as these com-
pounds could extend oocyte-cumulus cells gap- junctional commu-
nication [36,66]. Additionally, some inhibitors such as CHX seem to
have a positive effect on meiotic cell cycle arrest within 24 h and on
developmental potential in some species including porcine and bovine
[67,68]. Therefore, use of the inhibitors might pave not only the way
for improving ovine IVP, but also would benefit researchers with a
flexible alternative in working practice without compromising devel-
opmental competence of oocytes, such as oocyte transportation for a
long distance and a flexible starting time for oocyte IVM in 24 h.
Nevertheless, the similar reports on ovine IVM are few compared to
those in bovine. For example, Rose et al. [36] reported that slaugh-
terhouse-derived sheep COCs were cultured for 2 h (pre-IVM) in
100mM forskolin (FSK) plus 500mM 3-isobutyl-1-methylxanthine
(IBMX). Pre-IVM (100mM FSK and 500mM IBMX) culture increased
COCs cAMP concentrations by 10- fold compared with controls
(P < 0.05) and concluded that regulation of ovine oocyte cAMP con-
centrations during IVM improved embryo quality compared with em-
bryos produced by standard IVM methods. Moreover, milrinone, a
specific inhibitor of type 3 phosphodiesterases (expressed in the oocyte
only) and rolipram, a specific inhibitor of type 4 phosphodiesterases
(expressed in cumulus cells only) were supplemented into maturation
medium together, increase embryo production post-IVM [36]. There-
fore, with such treatments, we expect that the ideal curve of ovine IVM
in Fig. 2 could be achieved, which should significantly contribute to the
successful ovine IVP. Additionally, in our laboratory CHX was used to
test this idea with ovine oocyte IVM and the preliminary data were
encouraging (unpublished data), implying that the idea could poten-
tially benefit ovine IVP. Perhaps, the pre-treatment of an inhibitor to
stop spontaneous resumption of meiosis in ovine oocyte IVM might
become a routine procedure of the ovine IVM protocol in near future.
As the expected, adding the cAMP-modulating or other agents to IVM
media often improves oocyte maturation [62,69–71] or has at least no
detrimental effect [53,72,73] on subsequent oocyte developmental
potential. Nevertheless, to screen effective inhibitors with less toxicity
and to optimize concentrations of the selected inhibitors for ovine oo-
cyte IVM are certainly necessary.

3. Extension of fertile span of ovine oocytes matured in vitro

The “synchronization” of ovine oocytes at IVM maturation could
improve oocyte quality and increases the number of MII oocytes cap-
able of being fertilized or activated at a similar period of IVM. However,
the fertile span for individual MII oocytes may vary, likely depending
on many different factors such breeds, ages, seasons, locations, nutri-
tion, body weight, management, reproductive performance, climate
(light, temperature, humidity) as well as the protocol used for IVM and
conditions such as medium, technical skills, gases, temperature and
humidity and so on. In addition to these, fertilization must take place at
the right time when most MII oocytes have reached at the beginning of
their fertile span so that spermatozoa could penetrate and fertilize oo-
cytes before they become aged. In other words, the timing of fertiliza-
tion to the MII oocytes is extremely important to ensure the subsequent
embryo development However, individual oocytes may have different
fertile spans and fertile span could be variable from lot to lot of oocytes,
likely depending on the oocyte quality. Understandably, compared to in
vivo oocytes, in vitro matured oocytes may have a shorter fertile span.
Apparently, the different and shorter fertile spans in IVM oocytes would
reduce the efficiency of subsequent IVF because IVM oocytes only have
“a variable and shorter window” to be fertilized. This may at least
partially explain why IVF oocytes could have a high cleavage rate but

Fig. 2. Curves of sheep oocyte in vitro maturation. The black line shows a normal curve of
ovine oocyte IVM during IVM based on observation at our laboratory. The red line shows
an ideal curve of ovine oocyte IVM presumably during maturation after synchronization
of oocytes at the beginning of in vitro maturation. Maturation rate: the number of MII
oocytes/the number of cultured oocytes x100% (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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suffering a low blastocyst rate. Based on these considerations we raise
the second strategy or a question, whether fertile span in IVM oocytes
could be extended to ensure that spermatozoa would have enough time
to penetrate and fertilize quality oocytes?

Spontaneous activation in rat oocytes is a big obstacle for somatic cell
nuclear transfer (SCNT). Rat oocytes cultured in a culture medium for
about 1.5 h will rapidly enter a cell cycle stage of the second meiotic
division called MIII. Shortly after in vitro culture, the oocyte extrudes the
second polar body without pronuclear formation. Such MIII oocyte will
completely lose the developmental competence. Obviously, rat oocytes
cultured in vitro have a short fertile span. However, if rat oocytes har-
vested from in vivo are treated with demecolcine for 6 h, the develop-
mental competence of the oocytes will not be compromised [74]. The
result clearly shows that it is possible to extend fertile span in rat oocytes
treated with demecolcine. Also, similar experiments were conducted in
ovine oocytes. For example, Choi, et al. [75] treated ovine oocytes with
10mM caffeine for 6 h and subsequently used oocytes as enucleated re-
cipient cytoplasm for somatic cell nuclear transfer, the results elucidate
that the enucleated cytoplasts treated with caffeine for 6 h could improve
reprogramming of a somatic cell after SCNT, resulting in a birth of SCNT
healthy lamb. In addition, in vitro aged then fertilized oocytes exhibit an
increased frequency of polyspermy and fragmentation, a decrease in the
frequency of cleavage and a decrease in frequency of development to the
blastocyst stage. Interestingly, treatment of ovine oocytes with 10mM
caffeine from 18 to 24 h post maturation can increase the activities of
both MPF and MAPK in MII oocytes, whereas treatment of MII oocytes
from 24 to 30 h post maturation with 10mM caffeine can prevent the
decline in MPF and MAPK activities associated with aging and prevent
the acquisition of activation competence [76]. In other words, MII ovine
oocytes treated with caffeine can have a prolonged fertile span. More-
over, Maalouf et al. [10] found that ovine denuded oocytes treated with
10mM caffeine had an improved rate of development to blastocyst, but
there were no effects on the quality of blastocysts produced in terms of

mean cell number or (inner cell mass) ICM: trophectoderm (TE) ratios.
Notably, caffeine treatment of aged COCs had no significant effect on the
frequency of development; however, in aged and denuded oocytes (DO’s)
caffeine treatment significantly increased development to blastocyst and
decreased the frequency of polyspermy. Additionally, the level of MPF
activity at MII is lower in oocytes obtained from prepubertal sheep than
mature ewes [77], indicating that treatment of caffeine to IVM oocytes
collected from prepubertal sheep may benefit the extension of their
fertile span more effectively compared to mature ewes as caffeine
treatment could not only maintain, but also increase the MPF level [75].
Maturation promoting factor (MPF) is responsible for governing meiotic
cell cycle arrest of MII oocytes. Therefore, maintaining MPF in ovine MII
oocytes at a high level is essential for this purpose. For example, caffeine
induced dephosphorylation of the catalytic subunit of MPF, p34cdc2, to
elevate the activity of MPF [78]. There are several inhibitors available
such as caffeine, demecolcine, nocodazon and MG-132, all these in-
hibitors have been proven to effectively block resumption of meiotic
oocytes in different species [75]. In addition to this they all are reversible
and ideal for this propose. In Fig. 3, we presume that after implementing
the first approach, the more ovine oocytes at 22–26 h of in vitro ma-
turation reach at the MII stage ideally for IVF. IVF must take place within
this “2–4 h window” to obtain the maximal fertilization rate as pene-
tration of spermatozoon into an oocyte would normally take approximate
1.5–3 h. If missed “the window”, the fertilization rate would dramatically
drop shown in black line in Fig. 3 as aged oocytes will lose the capability
of being fertilized rapidly or even could be fertilized but would have the
poor developmental competence. If the window could be widened dou-
bled from 20 to 28 h or even wider like the ideal curve shown in red in
Fig. 3, it means that such the “strong” oocytes treated with an inhibitor
would have more time to meet suitable spermatozoa to be fertilized
compared to untreated oocytes. The fertilization and subsequent devel-
opment should be improved.

All the results elucidate that the “window” for optimal fertilization

Fig. 3. Fertilization rate of in vitro matured sheep oocytes
The black line shows a curve of fertilization rate of normal
IVM oocytes;The red line shows presumably an ideal curve
of fertilization of IVM oocytes with extended fertile span
treated by an inhibitor. The fertilization rate (%) is defined
with the number of cleaved oocytes/the number of cultured
oocytes ×100%. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of this article.)
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can be extended. Meanwhile, it should be noted that caffeine treatment
to mouse oocytes could cause zona pellucida hardened which reduced
blastocyst rate [79], the result clearly indicates that caffeine treatment
may cause some side-effects on the developmental potential in certain
species. Therefore, further investigation to the effects of the inhibitors
on ovine oocytes is required. Indeed, we currently face many challenges
in ovine IVP meanwhile less progress in ovine IVP has been made in
recent years. Therefore, we need to consider new ideas or strategies to
tackle the most important issues in ovine IVP so that the efficiency of
ovine IVP could be improved significantly in near future.

4. Prospect of ovine IVP in biomedical research

In last decade, it seems to be that sheep is not only as a valuable
livestock producing meats, wool and skin for human beings, but also
becomes an important large animal model for use in biomedical re-
search to mimic human diseases as many mouse or rat models do not
always show the same syndromes as which in humans sometimes. We
are also difficult to observe small organs or tissues in a mouse or rat
model. However, compared to cattle, sheep are more suitable as an
animal model with a reasonable size, handling easiness, a short re-
production cycle, and cost-efficiency. Moreover, sheep have a similar
pattern of diseases to humans, including allergic rhinitis, sinusitis, and
nasal polyposis. Other advantages include their tolerance to long sur-
gical procedures and their large nasal cavity that renders them suitable
or repeated endoscopic sinus surgery (ESS) [80]. In fact, until now
sheep have been used as animal models in biomedical research for os-
teoarthritis [81,82], Chondral Defects [83], a far-lateral disc herniation
[84], microdiscectomy [85], antibiotic-eluting orthopedic device to
prevent early implant associated infections [86], meniscus tissue en-
gineering [87], transvaginal mesh insertion [88], altered hemostasis
[89]. Therefore, the tendency to be an animal model may become a new
force to drive the development of ovine IVP as such sheep models need
ovine IVP as a technical platform. We expect that the development of
ovine IVP could catch up the needs of both production of sheep and
biomedical research. In summary, the improvement of ovine IVP system
has been slow over the last 5 years, the efficiency remains low and no
any significant progress has been made yet. On the other hand, the
needs of production of sheep in the world and sheep models for use in
biomedical research both have been increased rapidly, which could
create an opportunity for improvement of ovine IVP. Also, the two
strategies or approaches raised in the review may provide the possible
solutions or considerations to the main problems in ovine IVP system.
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