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Abstract
Pharmacogenetics enables personalised therapy based on genetic profiling and is increasingly applied in drug dis-

covery. Medicines are developed and used together with pharmacodiagnostic tools to achieve desired drug effi-

cacy and safety margins. Genetic polymorphism of drug-metabolising enzymes such as cytochrome P450s (CYPs)

and N-acetyltransferases (NATs) has been widely studied in Caucasian and Asian populations, yet studies on

African variants have been less extensive. The aim of the present study was to search for novel variants of

CYP2C9, CYP2C19, CYP2D6 and NAT2 genes in Africans, with a particular focus on their prevalence in different

populations, their relevance to enzyme functionality and their potential for personalised therapy. Blood samples

from various ethnic groups were obtained from the AiBST Biobank of African Populations. The nine exons and

exon–intron junctions of the CYP genes and exon 2 of NAT2 were analysed by direct DNA sequencing.

Computational tools were used for the identification, haplotype analysis and prediction of functional effects of

novel single nucleotide polymorphisms (SNPs). Novel SNPs were discovered in all four genes, grouped to existing

haplotypes or assigned new allele names, if possible. The functional effects of non-synonymous SNPs were

predicted and known African-specific variants were confirmed, but no significant differences were found in the

frequencies of SNPs between African ethnicities. The low prevalence of our novel variants and most known

functional alleles is consistent with the generally high level of diversity in gene loci of African populations. This

indicates that profiles of rare variants reflecting interindividual variability might become the most relevant

pharmacodiagnostic tools explaining Africans’ diversity in drug response.

Keywords: pharmacogenetics, cytochrome P450, N-acetyltransferase, single nucleotide polymorphisms,

African populations

Introduction

Pharmacogenetics describes patients’ variation in

response to therapy due to genetic factors.

Pharmacogenetics-based therapy is of special interest

for drugs with narrow therapeutic indices, where

impairment in metabolic activity might cause
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difficulties in dose adjustment, resulting in increased

susceptibility to adverse drug reactions (ADRs). The

cytochrome P450 enzymes (CYPs) metabolise

more than 80 per cent of clinically used drugs and

most of them exhibit functionally significant genetic

polymorphisms. The genes encoding CYP2C9,

CYP2C19 and CYP2D6, as well as N- acetyltransfer-

ase 2 (NAT2), have been most extensively studied

across various populations.1,2 The presence of novel

variants remains to be ascertained in African popu-

lations, however, particularly rare (,1 per cent fre-

quency) single nucleotide polymorphisms (SNPs),

which may contribute to a better understanding of

interindividual variation in the metabolism of drugs.

The human CYP2C subfamily contains four

highly homologous genes — 2C8, 2C9, 2C18 and

2C19 — which are located in a cluster on chromo-

some 10.3 CYP2C9 is the main CYP2C enzyme,

constituting 20 per cent of total human liver micro-

somal P450 content.4

CYP2C9 and CYP2C19 genes each contain nine

exons and encode proteins of 490 amino acids in

length. Although these genes are highly homologous

(92 per cent), the enzymes differ in terms of substrate

specificities.5 Major variations in the occurrence of

polymorphisms in both CYP2C9 and CYP2C19

genes have been reported in various populations.

CYP2C9 variants CYP2C9*2 and CYP2C9*3
are the most common and occur at frequencies

of 0.11 and 0.08, respectively, in Caucasians.6

Population-based pharmacokinetics–pharmacody-

namics modelling of their effects has been explored

for revising labels of CYP2C9 substrate drugs.7

Testing for CYP2C9 genotypes can be used to

predict the starting dose of the anticoagulant drug

warfarin to avoid excessive bleeding episodes.8 Other

drugs affected by CYP2C9 polymorphism are the

antidiabetic agents glipizide and tolbutamide, the anti-

epileptic agent phenytoin, the antihypertensive drug

losartan and non-steroidal anti-inflammatory drugs

(NSAIDs) such as ibuprofen and diclofenac.9

CYP2C19 metabolises omeprazole, diazepam and

proguanil to a major extent. The common allelic var-

iants, such as CYP2C19*2 and CYP2C19*3, cause

reduced enzyme activity and contribute to the poor

metabolism of substrate drugs.10 A polymorphism in

the promoter region has, however, been associated

with increased enzyme activity.11 Individuals carrying

this variant may therefore require a higher dosage in

order to achieve the therapeutic effect.

CYP2D6 metabolises a wide range of drugs, such

as antiarrhythmic agents, tricyclic antidepressants,

neuroleptics and anti-cancer agents.12 CYP2D6 is the

most polymorphic CYP, with alleles causing a spec-

trum of phenotypic responses. The presence of mul-

tiple copies of the gene results in individuals

described as ultra-rapid metabolisers. For example,

individuals carrying duplicated or multi-duplicated

active CYP2D6 genes are very common among

Ethiopians, compared with Caucasian, Oriental and

other Black populations.13 By contrast, whole gene

deletions causing poor metaboliser phenotypes, have

been observed across all populations. The African-

specific alleles CYP2D6*17 and CYP2D6*29 cause

reduced enzyme activity; individuals homozygous for

these alleles are classified as intermediate metabolisers.

Overall, Africans metabolise CYP2D6 substrates at a

slower rate than Caucasians owing to the higher

prevalence of these reduced-function alleles.14

So far, NAT2 has been found to comprise 19

major known haplotypes. Important drugs metab-

olised by this enzyme include the anti-tuberculosis

drug isoniazid and the antibiotic co-trimoxazole.

Some polymorphisms of NAT2 have been shown

to affect the acetylation of these drugs and this may

result in toxic side effects.15,16 The most commonly

known alleles are NAT2*5, NAT2*6, NAT2*7 and

the African-specific NAT2*14. In addition, other

SNPs have been discovered and are awaiting charac-

terisation of their phenotypic effects.

In clinical pharmacogenetics, we aim to optimise

therapeutic outcome by prescribing drugs to patients

at doses that are predicted to be efficacious and safe.

Knowledge of the types of genetic variants of major

drug-metabolising enzymes and their frequency in

the population is therefore important for the design

and deployment of pharmacodiagnostic tools to guide

drug prescription. Only a few studies on genotype–

phenotype relationships of drug effects have been

carried out in African populations.16–20 Therefore,

limited knowledge of polymorphisms and their

impact in Africans may underestimate the importance
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of clinical applications of pharmacogenetics. Here, we

report novel variants of the CYP2C9, CYP2C19,

CYP2D6 and NAT2 genes found in African popu-

lations and their predicted functional effects.

Materials and methods

DNA samples

The study was carried out according to the

Declaration of Helsinki (2000) of the World Medical

Association and was approved by the Ethical Review

Boards of Kenya, Nigeria, Tanzania and Zimbabwe.

Informed consent was obtained from volunteers of

the following ethnic groups: Hausa (20), Ibo (20),

Luo (30), Maasai (13), San (40), Shona (23), Venda

(9), Yoruba (20) and Tanzanian Mixed Bantu (12).

Ethnicity was assigned based on the submission that

parents and grandparents of the volunteers were of the

same self-identified ethnic group. The exact numbers

of samples analysed per gene are shown in Tables S1–

S4 in the Appendix. DNA was extracted from whole

blood samples stored in the AiBST Biobank of

African Populations21 using the QIAamp DNA

Blood Mini Kit (Qiagen, KJ Venlo, The Netherlands).

PCR and sequencing

Primers were designed using SNPBox and Primer3

software.22,23 Their specificity for each gene studied

was confirmed by a BLAST analysis search and com-

parison of genomic sequences in the National Center

for Biotechnology Information (NCBI) databases

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Identical

primers were used for the polymerase chain reaction

(PCR) and sequencing, except where otherwise

stated (Table S5). First-step exon amplification mix-

tures (20 ml) contained 1x TiTaq buffer, 0.25 mM

deoxyribonucleotide triphosphates, 0.5 mM of each

primer and 0.25 units of TiTaq and DNA template

(5 ng/ml). For PCR, an initial denaturation at 94oC

for two minutes was followed by 35 cycles at 94oC

for 30 seconds, 59oC for 30 seconds and 72oC for 60

seconds. Sequencing reactions were started at 96oC

for one minute followed by 25 cycles at 96oC for ten

seconds, 50oC for five seconds and 60oC for four

minutes, and resolved on an ABI 3730 DNA

Analyzer (Applied Biosystems, Brussels, Belgium).

Data analysis

Identification of SNPs was carried out using

the novoSNP v2.1.9 software package.24 Reference

sequences were NC_000010.9 for CYP2C9,

NC_000010.9 for CYP2C19, M33388 for CYP2D6

and NC_000008.9 for NAT2. All identified SNPs

were compared with the NCBI Single Nucleotide

Polymorphism database (dbSNP).25 As SNPs can

cause the introduction of pre-microRNA (miRNA)

sites, this was included as part of the annotation in

the novoSNP analysis procedure. Frequencies of

SNPs were calculated using Genepop.26

HaploView v3.3127 was used to determine hap-

lotypes from sequence genotype data. Linkage dise-

quilibrium plots were generated to assess the extent

to which SNPs were likely to be linked and hence

likely to occur on the same haplotype with logar-

ithm of odds (LOD) score .3. The HaploView

Tagger tool was used to estimate which SNPs were

likely to be tagged by a single SNP in a predicted

haplotype (threshold r2.0.8).

Prediction of functional effects of
non-synonymous SNPs

Functional effects of non-synonymous SNPs were

predicted using the Polyphen prediction pro-

gramme28 based on position-specific independent

counts (PSIC) scores of multiple sequence align-

ments, as well as structural information, if available.

The programme predicts the functional effects of

SNPs based on occurrence in active/binding sites or

in transmembrane regions, interference with disul-

phide or other bonds, compatibility with homolo-

gous sequences at that position, as well as mapping to

known three-dimensional protein structures or vali-

dated homology models. Protein sequence accession

numbers were obtained from Swiss-Prot29 as

CYP2C9: P11712; CYP2C19: P33261; CYP2D6:

P10635; NAT2: P11245.

Allele nomenclature

Allele nomenclature is assigned according to the

Human Cytochrome P450 (CYP) Allele

Nomenclature Committee30 and the Arylamine N-

acetyltransferase Gene Nomenclature Committee.31
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Alleles, as borne by specific SNPs, are assigned

numbers — for example, CYP2C9*9 to define the

10535A . G mutation, the presence of which

results in the amino acid change H251R.

Results

In our African populations, novel and known SNPs

were found in all drug-metabolising enzyme genes

studied (Tables S1–S4). Novel SNPs for CYP2C9,

CYP2C19 and CYP2D6 were grouped and

assigned to haplotypes or groups of other known

mutations if possible (Table 1). We mainly looked

at the non-synonymous SNPs, since these are used

to determine the eventual assignment of new func-

tional alleles. CYP2C9 42519T . C (I327T) and

50341G . T (V490F) were assigned the new allele

names CYP2C9*31 and CYP2C9*32, respectively.

For CYP2C19, the 17869G . C/80161A . G

(R186P/I331V) combination was assigned the new

allele name CYP2C19*22. It was not possible to

assign new haplotypes/alleles for CYP2C9

50294A . G (N474S) and CYP2C19 12690G . A

(V113I) because their linkage with other alleles

such as CYP2C9*9 (10535A . G; H251R) and

CYP2C19*2 (19154G . A; P227P), respectively,

could not be excluded. Known mutations also

had some synonymous SNPs, as well as non-coding

SNPs, grouped to them (eg CYP2C9*9,

CYP2C19*12 and CYP2C19*13). It appears that

the novel CYP2D61608 G . A (V119M) SNP is

found on the known CYP2D6*29 allele, which is

defined by 1659G . A (V136M) and 3183G . A

(V338M). This haplotype group was therefore

assigned the new name CYP2D6*70. New alleles

were not assigned for CYP2D6 1621G . T

(R123L) and 4057G . A (G445E), since further

work is required fully to establish the haplotypes.

The novel NAT2 SNPs did not appear to be linked

to any other SNPs. HaploView-determined tag

SNPs for NAT2 were used to determine the major

haplotype frequencies (Figure 1).

In CYP2C9 (Table S1), three out of six non-

synonymous SNPs — 42519T . C (I327T),

50294A . G (N474S) and 50341G . T (V490F) —

were novel. Of these, I327T and V490F changes are

predicted to have a functional effect (Table 1);

however, further inference of these amino acid

changes with crystal structure information32 and

Gotoh’s sequence alignments33 indicates that they

may not influence substrate recognition and binding.

The most common non-synonymous CYP2C9

allele in this study was CYP2C9*9 (10535A . G;

H251R), which is predicted to be damaging to

enzyme function, although phenotypic studies in

African individuals have shown no effect on the

metabolism of the antiepileptic drug phenytoin. By

contrast, the other known non-synonymous SNPs,

such as CYP2C9*5 (42619C . G; D360E) and

CYP2C9*6 (10601delA; K273fs) (Table S1), did

cause reduced enzyme activity.17

The two novel non-synonymous SNPs discovered

in CYP2C19 (Table S1), 12690G . A (V113I) in

exon 3 and 17869G . C (R186P) in exon 4, seem

to cause very different effects on enzyme function,

according to the physicochemical character of their

amino acid changes (Table 1). Whereas the effect of

V113I may be negligible, the change from the basic

arginine to proline at position 186 seems to be

functionally damaging, as predicted (PSIC score ¼

3.159).

Three novel non-synonymous SNPs were found

in CYP2D6: 1608G . A (V119M), 1621G . T

(R123L) and 4057G . A (G445E) (Table S3).

Whereas the V119M and the R123L changes were

predicted to have no effect on enzyme function

(Table 1), they are located in the substrate recognition

site SRS1. The G445E substitution may be function-

ally important (PSIC score ¼ 3.063) owing to its

close proximity to the 443 site, which is critical for

the heme ligand binding in this enzyme according to

the crystal structure.34 Consistent with other African

data,35,36 the most common CYP2D6 haplotypes

contributing to the variability of drug response were

CYP2D6*2 (2850C . T; R296C and 4180G . C;

S486T), CYP2D6*17 (1023C . T; T107I) and

CYP2D6*29 (1659G . A; V136M and 3183G .

A; V338M) (Table S3).

Four novel amino acid-changing SNPs were

detected in NAT2 (Table S4). The 641C . T

(T214I) was predicted to have an effect on enzyme

function (Table 1) because the amino acid at this
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Table 1. Grouping of novel SNPs and functional effect prediction

Gene SNP grouping† cDNA

position

Amino acid

change

Functional effect prediction (PSIC score)

CYP2C9 42519T > C (*31) 980 I327T Possible functional damage (2.761)

50294A > G 1421 N474S No functional damage (0.162)

47545A .T

50298A .T

50341G > T (*32) 1468 V490F Possible functional damage (1.806)

10535A . G (*9) 752 H251R Possible functional damage (2.239)

50196C . T 1323 A441A

CYP2C19 12122G . A

12690G > A 337 V113I No functional damage (0.198)

57453G > C

90533C > T

57575T > C

87290C . T (*13) 1228 R410C

90209A . C (*12) 1473 X491C 26 extra amino acids

90302C > T

17869G > C (*22) 557 R186P Possible functional damage (3.159)

80161G . A 991 I331V

CYP2D6 -175G . A

310G . T

843T . G

1608G > A (*70) V119M No functional damage (0.054)

1659G . A V136M Functional damage – reduced enzyme activity

1661G . C

3183G . A V338M Functional damage – reduced enzyme activity

3384A . C

4180G . C S486T No functional damage (0.267)

4722T . G

214G . C

223C . G

227T . C

843T . G

1621G > T R123L No functional damage (1.236)

Continued
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position was predicted to be involved in coenzyme A

ligand binding as part of the acetylation process. The

589C . T (R197X) results in a stop codon being

introduced and hence no protein is expressed. The

most common alleles of NAT2 in this study were

NAT2*5 (341T . C; I114T) and NAT2*6 (590G .

A; R197Q) (Table S4), which contribute largely to

the slow acetylator phenotype in African populations.

Figure 1 shows NAT2 haplotypes and their frequen-

cies in the total population studied. The most

common sub-haplotypes were NAT2*6A and

NAT2*5B, which affect enzyme function, followed

by the wild type NAT2*4 and NAT2*12A, which do

not impair acetylation.

In addition to non-synonymous SNPs, numerous

novel synonymous SNPs, SNPs in introns and at

splice site junctions, were identified. SNPs at splice

site junctions were investigated, but none of the

novel SNPs were located within the most critical

–1 to –2 positions of the acceptor sites or the –2

to þ4 positions of the donor sites.

Discussion

Major genetic variability in drug-metabolising

enzymes has been reported in Caucasian and Asian

populations.37 The aim of this study was to search

for novel variants of the highly polymorphic cyto-

chrome P450 (CYP2C9, CYP2C19, CYP2D6)

and N-acetyltransferase 2 (NAT2) genes in

Africans, using representative samples from our

newly established Biobank.21 This analysis was

focused on the occurrence of alleles in African

populations, their potential effects on enzyme func-

tion and the applicability of such data to personali-

sed therapy.

Table 1. Continued

Gene SNP grouping† cDNA

position

Amino acid

change

Functional effect prediction (PSIC score)

1661G . C

2850C . T R296C No functional damage (0.254)

3384A . C

3584G . A

3790C . T

4180G . C S486T No functional damage (0.267)

843T . G

1661G . C

2850C . T R296C No functional damage (0.254)

3384A . C

4057G > A G445E Possible functional damage, contact with

functional site (3.063)

4180G . C S486T No functional damage (0.267)

NAT2 10542A > C 472 I158L No functional damage (0.615)

10659C > T 589 R197X No protein expressed

10711C > T 641 T214I Possible functional damage, involved in

ligand binding (1.257)

10879T > C 809 I270T No functional damage (0.526)
Abbreviations: PSIC, position-specific independent counts; SNP, single nucleotide polymorphism.
†Bold: novel non-synonymous SNPs; italic bold: novel intronic SNPs; italics: known non-synonymous SNPs; (*) ¼ described alleles carrying that particular mutation; SNP
positions are according to reference sequences (Tables S2–S5).
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African populations

Certain SNPs or haplotypes that have been reported

as prevalent and functionally important in other

populations are rare or have not yet been detected

in African populations. For example, CYP2C9*2
(R144C) and CYP2C9*3 (I359L), while extensively

studied in Asian and Caucasian populations and

identified as rare alleles in African Americans (fre-

quency �1 per cent), were not found in Africans,

neither in this study nor in a Beninese population.38

By contrast, CYP2C9*5 (D360E) and CYP2C9*6
(K273fs) have been identified in African populations,

although at low frequency (frequency¼ 0.01;

Table S1). CYP2C9*5 causes impaired enzyme

activity,6 and CYP2C9*6, first found in African

Americans, is associated with phenytoin toxicity.39

The importance of CYP2C9*8 (R150H),

CYP2C9*9 (H251R) and CYP2C9*11 (R335W),

which were detected in limited studies in Africans17

(partly including the present study), and the distri-

bution of poor metabolisers in African populations

remain unclear.

The US Food and Drug Administration (FDA)

has recommended genotyping for CYP2C9*2 and

CYP2C9*3 with the aim of better use of war-

farin.40 Since these variants are practically absent in

populations of African origin, their use in current

pharmacodiagnostic kits that identify individuals

Figure 1. N-acetyltransferase 2 haplotypes constructed from sequence and genotype data from the total population studied

(n ¼ 127). (a) Linkage disequilibrium plot with the genomic positions indicated at the top. In yellow are the tag single nucleotide

polymorphisms (SNPs) which define the major known haplotypes and are able to capture other SNPs within the same haplotype.

The amino acid changes at the various positions are shown. (b) Haplotype frequencies. Haplotypes and phenotypes (acetylators) were

assigned according to Consensus Arylamine N-Acetyltransferase (NAT) Gene Nomenclature.31
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carrying CYP2C9*2 and CYP2C9*3 may not be

applicable in these populations. Test kits that detect

CYP2C9*5, CYP2C9*6, CYP2C9*8, CYP2C9*9
and CYP2C9*11, as well as our novel SNPs,

should be more predictive of the clinical response

to CYP2C9 substrate drugs in Africans. Before

such tools can be developed and deployed for clini-

cal use, however, further studies are required to

establish the frequencies of these alleles in larger

African populations, in addition to genotype–phe-

notype studies to establish their functional

relevance.

CYP2C19*2 (splicing defect) and CYP2C19*3
(W212X) have been recommended as biomarkers

for the administration of certain CYP2C19 sub-

strates.41 The CYP2C19 poor-metaboliser pheno-

type is detected in two to four per cent of

Caucasians and in about 20 per cent of Asians, and

these two variants account for 99 per cent of these

poor metaboliser phenotypes.42,43 Whereas

CYP2C19*2 was the most frequent known defec-

tive variant in our study (frequency ¼ 0.15;

Table S2), we and various genotype–phenotype

correlation studies have found CYP2C19*3 to be

rare in most African populations (frequency ¼

0.01; Table S244). We also identified one individual

in the Maasai ethnic group who was heterozygous

for this allele, and a few heterozygous individuals

have previously been reported in a Tanzanian

population.20 Earlier data show that CYP2C19*2
accounts for over 70 per cent of slow metabolisers

of S-mephenytoin.45 The missing 30 per cent

might be made up by CYP2C19*3 and other var-

iants such as CYP2C19*12, CYP2C19*13 and

CYP2C19*15, which would make these SNPs

important contenders to include in genotyping

panels for diagnostic purposes in Africans.

Our analysis of diverse African populations con-

firmed that CYP2D6*17 (T107I) and CYP2D6*29

(V136M, V338M) remain the most important

functional SNPs in the metabolism of CYP2D6

substrate drugs. Together with other less prevalent

haplotypes, they explain why African populations

generally have a larger number of intermediate

metabolisers (�40 per cent) compared with

Caucasian populations (�15 per cent).46

Based on the highly polymorphic CYP2D6, we

used principal component analysis to investigate

inter-ethnic variability. The fact that no significant

differences were detected across ethnicities (data

not shown) could be due to our small sample sizes;

however, our data are consistent with a recent study

illustrating that CYP2D6 shows a high frequency of

altered activity variants but no clear population

structure.47 It may also imply that the phenotype

status of those populations is not significantly

different either.

It has been speculated that the variation in acetyla-

tor (NAT2) status across major world populations

reflects differences in dietary habits or the environ-

ment. There is a high prevalence of slow and inter-

mediate acetylators in African populations, however,

due to the common NAT2*5 (I114T), NAT2*6
(R197Q) and NAT2*14 (R64Q) alleles, which con-

tribute largely to the slow acetylator phenotype. This

is consistent with our data (Figure 1) and with a

recent study of sub-Saharan populations which also

indicates that the NAT2*5B and NAT2*6A haplo-

types are more common than the wild-type haplotype

NAT2*4.1,48

Enzyme function

Some mutations in coding regions cause amino acid

changes that result in alterations of enzyme activity,

substrate selectivity and, sometimes, protein stability.

Ensuing functional differences cause different meta-

boliser phenotypes. So far, over 30 such variants have

been reported for CYP2C9, approximately 20 for

CYP2C19 and over 60 for CYP2D6.30

We have predicted functional effects of novel non-

synonymous SNPs discovered in this study (Table 1).

These predictions were based on amino acid chem-

istry, conservation in the alignment of known

sequences from the same protein families, and solved

structures or homology modelling. Crystal structures

of CYP2C9 and CYP2D6 have been reported32,34

and structures of the other enzymes have been

approximated by homology modelling.49,50 It is

assumed that such approximation is sufficiently accu-

rate to predict functional effects in substrate recog-

nition, binding and catalysis of reactions.51
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Amino acid changes with a PSIC score of less than

1 are assumed not to be involved in any functional

sites and are predicted not to affect enzyme function

(eg N474S in CYP2C9, V113I in CYP2C19,

V119M in CYP2D6, and I158L and I270T in

NAT2). Some changes with PSIC scores slightly

above 1 may still have modest effects on enzyme func-

tion — for example, R123L in CYP2D6 (PSIC

score ¼ 1.236). As shown in a previous study, in

which the CYP2D6 sequence was aligned with

Gotoh’s sequence,33 however, this residue is involved

in the substrate recognition site SRS1.52 The T214I

change in NAT2 (PSIC score ¼ 1.257) seems to

interfere with enzyme function because this residue is

important for the interaction with the co-enzyme A

ligand, according to homology model prediction.

The effect of the R186P change in CYP2C19

leads to a change in electrostatic charge and poss-

ibly geometry; hence, it is predicted to affect the

protein dramatically, giving a high PSIC score. The

high score observed for G445E in CYP2D6 might

be due to its interaction with position 443, which

is important for heme-ligand binding,34 and there-

fore has a high probability of affecting enzyme

function.

Whereas some defective splice site variants are

well understood — for example, CYP2D6*4
(1846G . A), which occurs at the zero acceptor

position of exon 4 — functional indications are less

clear if mutations lie further away from splice site

junctions. Rogan et al.53 have used information

theory analysis to show how other intronic and

synonymous mutations may contribute to splice

site effects in CYP genes.53 For example, the defec-

tive allele CYP2C19*2 (19154G . A) results in a

synonymous mutation (P227P), yet it has been

associated with reduced enzyme activity. Further

investigations showed that this mutation introduces

a cryptic splice site 40 nucleotides downstream,

resulting in a truncated protein. We used infor-

mation theory to analyse novel synonymous SNPs

and intronic SNPs within the splice sites (–25 to

þ2 for exon acceptor sites and –3 to þ6 for exon

donor sites) of CYP2C9, CYP2C19 and CYP2D6

but did not find any significant effects on splice site

recognition (data not shown).

Pre-miRNA sequences are involved in the regu-

lation of protein expression. Mutations in these

sequences, as well as insertions of new pre-miRNA

sequences, could affect enzyme expression, yet

CYP1B1 is the only CYP that has been found to be

miRNA regulated so far.54 In the present study, we

did not find any pre-miRNA sequences introduced

in the 30 untranslated region (UTR) regions, yet in

CYP2C19, 18818T . C in intron 4 and 19332G .

A in intron 5 introduce miRNA binding sites for

has-mir-139 and has-mir-448, respectively (Table S2).

Since miRNA binding sites mostly act within the 30

UTR, however, these mutations would not be

expected to have any effects.

In summary, our data, in conjunction with

other studies of sub-Saharan Africans and African

Americans,17,19,55,56 indicate low heterogeneity in

the frequency of functional mutations. In the genes

studied, most functionally important SNPs have been

found. What remains is to determine their prevalence

across populations and to evaluate the functional

effects of the novel SNPs. Expressing variant proteins

and analysing their substrate turnover to show

impaired enzymatic activity was beyond the scope of

this study. We envisage that such analyses will

strengthen our findings, however, and might become

essential for the pharmacokinetic assessment of indi-

vidual variants in order to meet regulatory require-

ments for diagnostic use.

Personalised therapy

Our data indicate the importance of CYP2C9,

CYP2C19, CYP2D6 and NAT2 for genotype

assessment, including the identified novel SNPs, so

that optimisation of drug use in African populations

can be considered under appropriate clinical scen-

arios. This could enable correct dose adjustment

for individuals who are likely to experience ADRs

owing to poor metabolism or an inadequate thera-

peutic effect owing to ultra-rapid metabolism. It is

noteworthy, however, that other factors, which are

not related to the newly identified SNPs but affect

the clinical pharmacology of prescribed medi-

cations, may play a role in clinical ADRs or thera-

peutic failure.
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The incorporation of CYP2C9 genotyping as part

of pre-prescription diagnosis for individuals being

treated with drugs metabolised by this enzyme57 indi-

cates the immediate utility of pharmacogenetics.

Likewise, pre-prescription genotyping has been rec-

ommended for CYP2D6-metabolised drugs with a

narrow therapeutic window, such as some antipsycho-

tic agents.58 NAT2 genotype information can be used

to predict the phenotypic status of individuals to

enable dose adjustment of anti-tuberculosis drugs

such as isoniazid.

Conclusions

We have started to identify and catalogue novel var-

iants (SNPs) of genes that are important in drug

metabolism. We have confirmed African-specific

variants but found modest variation between differ-

ent African ethnicities, indicating similar metabolic

profiles for most drugs, yet stressing inter-individual

variability. The low frequency of our new

CYP2C9, CYP2C19, CYP2D6 and NAT2 alleles

seems to have reduced their impact at the popu-

lation level. The generally high level of diversity in

gene loci of African populations, however, indicates

that rare variants (incidence of less than 1 per cent)

and inter-individual variability might bear extra

weight in explaining Africans’ phenotypic diversity.

As genome-wide association studies turn up new

variants at high pace, the character of molecular

diagnostics shifts from single genes to profiles,

encompassing low frequency variants as their main

constituents.

We have predicted the functional effects of non-

synonymous SNPs and suggest genotype–phenotype

studies to investigate the effects of these SNPs in indi-

viduals. Eventually, we recommend the genotyping of

African populations to establish the prevalence of

functionally important haplotypes towards the devel-

opment of relevant pharmacodiagnostic tools for

these populations.
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Table S1. CYP2C9 single nucleotide polymorphism (SNP) frequencies

NC_000010.9 mRNA

position

SNP mRNA

feature

Effect dbSNP Hausa

(13)

Luo

(12)

Maasai

(11)

San

(13)

Shona

(23)

Venda

(9)

TZ Bantu

(12)

Total

(93)

96829291 2375 T . C 50 UTR rs9332103 0.04 nd 0 0 0 nd nd 0.01

96829916 251 T . C Intron rs9332104 0.08 0.10 0.27 0.12 0.22 0.17 0.11 0.16

96833076 3411 T . C Intron rs9332120 0 0.10 0 0.04 0.13 0.17 0.14 0.08

96833152 3487 A . G Intron splice site rs12769205 0 0.04 0 0.17 0.11 0.06 0.09 0.07

96833165 3499 T .A Intron splice site rs9332121 0 0 0 0 0.03 0 0 0.01

96838628 8963 T . C Intron nrs 0 0.05 0 0 0 0 0 0.01

96838697 9032 G . C Intron nrs 0 0.10 0.14 0.15 0.15 0.13 0.14 0.12

96838734 9069 G . A Intron Novel 0 0.05 0.05 0 0 0 0.05 0.02

96839116 9451 T . C Intron rs17443251 0 0.05 0 0 0 0 0.06 0.01

96839976 10311 A . G Intron rs9332129 0 0.17 0.15 0.15 0.14 0.13 0.19 0.13

96840012 10347 T . C Intron Novel 0 0 0 0 0.03 0 0 0.01

96840200 10535 A . G Exon 5 H251R (*9) rs2256871 0.18 0.17 0.05 0.15 0.11 0.06 0 0.11

96840266 10601 wt . delA Exon 5 K273 fs (*6) nrs 0.04 0 0 0 0 0.07 0 0.01

96863014 33349 A . G Intron rs9332172 0.17 0.23 0.23 0.15 0.28 0.25 0.50 0.26

96863323 33658 A . G Intron rs9332174 0.13 0.14 0.27 0.12 0.20 0.19 0.10 0.17

96872080 42415 C . T Intron Novel 0 0 0.06 0 0 0 0 0.01

96872134 42469 T . C Intron rs9332197 0 0 0.05 0 0 0 0 0.01

96872184 42519 T . C Exon 7 I327T (*31) Novel 0.04 0 0 0 0 0 0 0.01

96872284 42619 G . C Exon 7 D360E (*5) rs28371686 0 0 0 0 0.02 0.06 0 0.01

96877210 47545 A .T Intron rs9332230 0 0 0 0 0 0 0.05 0.01

96877258 47593 T . C Intron rs9332232 0.07 0.14 0.05 0.04 0.18 0.17 0.05 0.11

96877304 47639 C . T Intron rs2298037 0 0 0 0 0.03 0.06 0 0.01

96879721 50056 A .T Intron rs1934969 0.67 0.50 0.50 0.40 0.24 0.13 0.32 0.38
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Table S1. Continued

NC_000010.9 mRNA

position

SNP mRNA

feature

Effect dbSNP Hausa

(13)

Luo

(12)

Maasai

(11)

San

(13)

Shona

(23)

Venda

(9)

TZ Bantu

(12)

Total

(93)

96879790 50125 C . T Intron Novel 0 0 0 0 0 0 0.05 0.01

96879861 50196 C . T Exon 9 A441A rs2017319 0.04 0.14 0.05 0.04 0.20 0.17 0.05 0.10

96879959 50294 A . G Exon 9 N474S Novel 0 0.05 0 0 0 0 0.00 0.01

96879963 50298 A .T Exon 9 G475G rs1057911 0 0 0 0 0 0 0.05 0.01

96880006 50341 G . T Exon 9 V490F (*32) Novel 0 0 0 0 0 0 0.05 0.01

96880078 50413 C . T 30 UTR rs9332240 0 0.05 0 0 0.03 0 0.00 0.01

96880099 50434 C . T 30 UTR rs9332241 0.08 0.05 0 0 0.02 0.13 0.14 0.05

96880166 50501 C . T 30 UTR rs9332243 0 0.05 0 0 0.03 0.00 0.00 0.01

mRNA position ¼ relative to A of ATG start codon; wt ¼ wild type; del ¼ deletion; UTR ¼ untranslated region; fs ¼ frameshift; (*) ¼ described alleles carrying that particular mutation; nrs ¼ rs number not yet assigned;
nd ¼ not determined. Number of individual samples studied per population is indicated in bold in parenthesis.
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Table S2. CYP2C19 single nucleotide polymorphism (SNP) frequencies

NC_000010.9 mRNA

position

SNP mRNA

feature

Effect dbSNP Hausa

(20)

Yoruba

(20)

Ibo

(20)

Luo

(30)

Maasai

(13)

Shona

(15)

Venda

(9)

TZ Bantu

(10)

Total

(137)

96653591 297 T . C 50 UTR rs4986894 0.13 0.18 0.33 0.07 0.08 0.2 0.11 0.15 0.15

96653743 55 A . C Exon 1 I19L (*15) rs17882687 0 0 0 0.05 0 0 0 0.05 0.02

96653787 99 T . C Exon 1 P33P rs17885098 0.05 0.08 0.15 0.18 0.15 0.17 0.17 0.30 0.15

96653871 183 T . C Intron rs17882201 0 0 0 0 0 0 0.06 0 ,0.01

96653876 188 G . A Intron rs17881883 0 0 0.03 0 0 0.07 0.11 0.05 0.02

96653919 231 A . C Intron Novel 0 0 0 0.01 0 0 0 0 ,0.01

96665810 12122 A . G Intron rs7916649 0.5 0.37 0.29 0.58 0.50 0.25 0.28 0.33 0.41

96665994 12306 G . A Intron rs17878649 0 0 0.03 0.08 0.04 0.10 0.06 0.10 0.05

96666148 12460 G . C Exon 2 E92D rs17878459 0 0 0 0 0 0.03 0 0 ,0.01

96666295 12607 wt . insC Intron Novel 0 0 0 0.03 0.04 0 0 0 0.01

96666325 12637 C . T Intron Novel 0.03 0.1 0 0 0.04 0 0.06 0 0.03

96666350 12662 A . G Intron Splice site rs12769205 0.16 0.2 0.33 0.09 0.12 0.27 0.22 0.2 0.18

96666378 12690 G . A Exon 3 V113I Novel 0 0 0 0 0 0 0.06 0 ,0.01

96666472 12784 G . A Exon 3 R144H (*9) rs17884712 0 0 0 0 0 0 0.06 0 ,0.01

96671557 17869 G . T Exon 4 R186P (*22) Novel 0 0 0 0 0 0 0 0.06 ,0.01

96671636 17948 G . A Exon 4 W212X (*3) rs4986893 0 0 0 0 0.04 0 0 0 ,0.01

96671895 18207 G . A Intron Novel 0 0 0 0.02 0 0 0 0.06 ,0.01

96671917 18229 T .A Intron rs17884938 0.06 0.03 0.05 0.07 0.00 0.10 0 0 0.05

96671942 18254 T . C Intron Novel 0.03 0.03 0 0 0 0 0 0 0.01

96672506 18818 T . C Intron Pre-miRNA

(has-mir-139)

Novel 0 0.03 0 0 0 0 0 0 ,0.01
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Table S2. Continued

NC_000010.9 mRNA

position

SNP mRNA

feature

Effect dbSNP Hausa

(20)

Yoruba

(20)

Ibo

(20)

Luo

(30)

Maasai

(13)

Shona

(15)

Venda

(9)

TZ Bantu

(10)

Total

(137)

96672599 18911 A . G Intron rs7088784 0.05 0.08 0.15 0.14 0.15 0.17 0.17 0.25 0.13

96672764 19076 T . C Intron Splice site Novel 0 0 0 0 0 0.03 0 0 ,0.01

96672842 19154 G . A Exon 5 P227P (*2) rs4244285 0.13 0.15 0.33 0.07 0.08 0.23 0.17 0.15 0.15

96673020 19332 G . A Intron Pre-miRNA

(has-mir-448)

Novel 0 0 0 0 0.08 0 0 0 ,0.01

96711141 57453 G . C Intron Novel 0 0 0.04 0.03 0 0.03 0 0 0.02

96711200 57512 A . G Intron Novel 0.03 0.05 0.08 0.03 0.04 0 0 0.05 0.04

96711255 57567 A .T Intron Novel 0 0 0.04 0.03 0 0.07 0.11 0.10 0.04

96711263 57575 T . C Intron Novel 0 0 0.04 0.03 0 0.03 0 0 0.02

96711325 57637 wt . delGIntron Novel 0.03 0.05 0.08 0.07 0.08 0.10 0.00 0.10 0.06

96711366 57678 T . G Intron rs28399511 0 0 0 0 0.04 0 0 0 ,0.01

96711428 57740 G . C Intron rs4417205 0.14 0.15 0.21 0.09 0.13 0.23 0.22 0.20 0.15

96711677 57989 G . C Intron Novel 0 0 0 0.02 0 0.1 0 0 0.02

96733848 80160 C . T Exon 7 V330V rs3758580 0.12 0.18 0.25 0.07 0.08 0.17 0.17 0.15 0.13

96733849 80161 G . A Exon 7 V331I rs3758581 0.03 0.03 0 0 0.04 0 0 0 0.01

96734317 80629 T .A Intron Novel 0.03 0.05 0 0 0.05 0 0 0 0.01

96740794 87106 T . C Intron rs4917623 0.38 0.13 0.21 0.31 0.23 0.03 0.06 0.15 0.22

96740978 87290 T . C Exon 8 R410C (*13) rs17879685 0 0 0.04 0.03 0 0.03 0 0 0.02

96741001 87313 A . C Exon 8 G417G rs17886522 0.03 0.05 0.08 0.07 0.04 0.10 0 0 0.06

96741110 87422 A . G Intron Novel 0.03 0 0 0 0.08 0 0 0 0.02

96741163 87475 G . C Intron rs17880188 0.08 0.13 0 0.07 0.04 0.11 0.06 0 0.07
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Table S2. Continued

NC_000010.9 mRNA

position

SNP mRNA

feature

Effect dbSNP Hausa

(20)

Yoruba

(20)

Ibo

(20)

Luo

(30)

Maasai

(13)

Shona

(15)

Venda

(9)

TZ Bantu

(10)

Total

(137)

96741210 87522 C . T Intron rs17885567 0.05 0.08 0.21 0.10 0.08 0.13 0.11 0.10 0.1

96743266 89578 T .A Intron rs12779363 0 0 0.06 0.04 0 0.03 0 0 0.01

96743597 89909 C . T Intron rs12268020 0.22 0.31 0.17 0.09 0.17 0.20 0.17 0.20 0.19

96741001 90011 A . G Intron Splice site rs4451645 0.13 0.14 0 0.07 0.04 0.13 0.11 0 0.08

96743897 90209 A . C Exon 9 X491C; 26

extra aa (*12)

nrs 0 0 0 0.04 0 0.03 0 0 0.01

96743989 90301 C . T 30 UTR Novel 0.01 0 0 0 0 0 0 0 ,0.01

96743990 90302 C . T 30 UTR Novel 0 0 0 0.04 0 0.03 0 0 0.01

96744221 90533 C . T 30 UTR Novel 0 0 0.05 0.04 0 0.04 0 0 0.02

mRNA position ¼ relative to A of ATG start codon; wt ¼ wild type; del ¼ deletion; ins ¼ insertion; UTR ¼ untranslated region; pre-miRNA ¼ introduction of a pre-miRNA sequence; X ¼ stop codon; aa ¼ amino acid; (*) ¼
described alleles carrying that particular mutation; nrs ¼ rs number not yet assigned; nd ¼ not determined. Number of individual samples studied per population is indicated in bold in parenthesis.
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Table S3. CYP2D6 single nucleotide polymorphism (SNP) frequencies

M33388 mRNA
position

SNP mRNA
feature

Effect dbSNP Hausa
(20)

Yoruba
(20)

Ibo
(20)

Luo
(29)

Maasai
(13)

Shona
(15)

Venda
(9)

TZ
Bantu
(10)

Total
(136)

1444 2175 G . A 50 UTR rs1080993 0.05 0.12 0.31 0.22 0.05 0.11 0.06 0.30 0.17

1469 2150 C . T 50 UTR nrs 0.09 0.03 0 0 0 0 0 0 0.01

1534 285 T . C 50 UTR nrs 0.04 0 0 0 0 0.03 0 0 0.01

1577 242 wt . insG 50 UTR rs28371695 0.19 0.35 0.13 0.21 0.05 0.20 0.13 0.10 0.19

1696 77 G . A Exon 1 R26H (*43) rs28371696 0.04 0 0.03 0 0 0.03 0 0.05 0.02

1701 82 C . T Exon 1 R28C (*22) nrs 0 0 0 0 0 0 0 0.05 ,0.01

1719 100 C . T Exon 1 P34S (*10) rs1065852 0.15 0.12 0.10 0.09 0.05 0 0.19 0.10 0.10

1833 214 G . C Intron rs1080995 0.50 0.41 0.27 0.36 0.45 0.57 0.17 0.43 0.38

1840 221 C . A Intron rs1080996 0.50 0.41 0.27 0.38 0.45 0.64 0.30 0.43 0.40

1842 223 C . G Intron rs1080997 0.50 0.41 0.27 0.36 0.45 0.56 0.20 0.38 0.38

1846 227 T . C Intron rs1080998 0.50 0.41 0.27 0.36 0.45 0.50 0.25 0.50 0.38

1851 232 G . C Intron rs1080999 0.50 0.41 0.30 0.36 0.50 0.70 0.25 0.75 0.42

1852 233 A . C Intron rs1080999 0.50 0.41 0.27 0.38 0.45 0.67 0.25 0.50 0.40

1864 245 A . G Intron rs1081000 0.50 0.41 0.27 0.31 0.45 0.70 0.25 0.67 0.39

1929 310 G . T Intron rs28371699 0 0.27 0.07 0.25 0.31 0.25 0 nd 0.18

2273 654 C . T Intron Novel nd 0 0 0.07 nd 0.08 0.07 0.07 0.07

2365 746 C . G Intron nrs nd nd nd 0.36 nd 0.40 0.31 0.50 0.40

2462 843 T . G Intron rs28371702 0.14 0.40 0.20 0.33 0.38 0.33 0.13 0.20 0.29

2625 1006 C . T Exon 2 R101R Novel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01

2642 1023 C . T Exon 2 T107I (*17) rs28371706 0.20 0.20 0.22 0.22 0.17 0.20 0.19 0.15 0.20

2658 1039 C . T Exon 2 F112F rs1081003 0.00 0.13 0.13 0.04 0.00 0.00 0.13 0.05 0.06

2686 1067 T . G Intron Novel 0.13 0.13 0.19 0.04 0.08 0.07 0.19 0.10 0.11

3227 1608 G . A Exon 3 V119M (*70) Novel 0 0 0 0.02 0 0 0 0 ,0.01

3240 1621 G . T Exon 3 R123L Novel 0 0 0 0 0 0 0 0.05 ,0.01

3278 1659 G . A Exon 3 V136M (*29) rs1058164 0.11 0.10 0.28 0.24 0.04 0.17 0.06 0.25 0.17

3280 1661 G . C Exon 3 V136V rs28371708 0.29 0.43 0.35 0.32 0.46 0.37 0.33 0.30 0.35

3335 1716 G . A Exon 3 E155K (*45) rs28371710 0.08 0 0 0.09 0.04 0 0.17 0 0.05

3465 1846 G . A Intron Splicing defect (*4) nrs 0.03 0.08 0.08 0.04 0.04 0.00 0.00 0.05 0.04

3483 1863_1864 ins
(TTTCGC
CCC)X2

Exon 4 174_175ins(FRP)X2 nrs 0 0 0 0.04 0.08 0 0 0 0.02
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Table S3. Continued
M33388 mRNA

position
SNP mRNA

feature
Effect dbSNP Hausa

(20)
Yoruba
(20)

Ibo
(20)

Luo
(29)

Maasai
(13)

Shona
(15)

Venda
(9)

TZ
Bantu
(10)

Total
(136)

3485 1866 C . T Exon 4 N175N nrs 0 0 0 0.02 0.00 0 0 0 ,0.01

3488 1869 T . C Exon 4 G176G nrs 0 0.03 0 0.00 0.00 0 0 0 ,0.01

3617 1998 T . C Exon 4 F219F novel nd nd 0 0.00 nd 0.03 0 0.05 0.02

4194 2575 C . A Exon 5 P267P nrs nd nd nd 0.05 nd 0.03 0.22 0 0.07

4221 2602 G . T Exon 5 L276L novel nd nd nd 0.05 nd 0 0.06 0 0.02

4280 2661 G . A Intron nrs nd nd nd 0.05 nd 0.03 0.11 0.05 0.06

4379 2760 T .A Intron Novel nd nd nd 0.00 nd 0.10 0.06 0 0.04

4469 2850 C . T Exon 6 R296C (*2) nrs nd nd nd 0.55 nd 0.63 0.44 0.65 0.58

4607 2988 G . A Intron nrs nd nd nd 0.00 nd 0.03 0 0 0.01

4802 3183 G . A Exon 7 V338M (*29) nrs 0.13 0.10 0.29 0.20 0.04 0.17 0.06 0.13 0.16

4873 3254 T . C Exon 7 H361H rs2743457 0.09 0.00 0.00 0.07 0.08 0 0.13 0 0.04

4880 3259_3260 wt . insTG Exon 7 375 fs (*42) nrs 0 0 0 0 0 0.03 0 0 ,0.01

5003 3384 A . C Intron nrs 0.30 0.45 0.34 0.28 0.42 0.37 0.25 0.38 0.65

5016 3397 C . A Intron novel 0 0 0 0 0 0 0.06 0 ,0.01

5180 3561 G . C Intron novel 0 0 0 0.02 0 0 0.06 0.06 0.01

5201 3582 A . G Intron nrs 0.08 0.11 0.11 0.09 0.04 0.00 0.13 0.00 0.08

5203 3584 G . A Intron nrs 0.54 0.34 0.26 0.43 0.46 0.47 0.44 0.44 0.41

5326 3707 G . A Intron nrs 0 0 0.03 0 0 0.03 0 0 0.01

5349 3721 wt . delGT Intron nrs 0 0.03 0 0 0 0 0 0 ,0.01

5409 3790 C . T Intron Splice site nrs 0.53 0.34 0.26 0.44 0.54 0.47 0.44 0.44 0.42

5472 3853 G . A Exon 8 E410K (*27) nrs 0 0 0 0.06 0.04 0 0 0.06 0.02

5652 4033 C . T Intron Splice site Novel 0 0 0 0.02 0 0 0.06 0.06 0.01

5676 4057 G . A Exon 9 G445E Novel 0 0 0 0.04 0 0 0 0 0.01

5799 4180 G . C Exon 9 S486T rs1135850 0.68 0.55 0.66 0.72 0.63 0.63 0.75 0.67 0.66

6013 4394 wt . delAG 30 UTR Novel 0 0 0 0 0 0.10 0.06 0 0.02

6020 4401 C . T 30 UTR nrs 0.09 0.10 0.11 0.07 0.04 0 0.25 0.06 0.08

6100 4481 G . A 30 UTR nrs 0.12 0.08 0.03 0.11 0.21 0.23 0.07 0.19 0.12

6275 4656 wt . delACA 30 UTR nrs 0.44 0.09 0.03 0.23 0.31 0.08 0.33 0.33 0.20

6341 4722 T . G 30 UTR nrs 0.63 0.57 0.73 0.57 nd nd nd 0.25 0.58

mRNA position ¼ relative to A of ATG start codon; wt ¼ wild type; del ¼ deletion; ins ¼ insertion; UTR ¼ untranslated region; s ¼ stop codon; (*) ¼ described alleles carrying that particular mutation; fs ¼ frame shift;
aa ¼ amino acid; nrs ¼ rs number not yet assigned; nd ¼ not determined. Number of individual samples studied per population is indicated in bold in parenthesis.
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Table S4. N-acetyltransferase 2 single nucleotide polymorphism (SNP) frequencies

NC_000008.9 mRNA

position

SNP Effect dbSNP Hausa

(20)

Yoruba

(20)

Ibo

(19)

Luo

(16)

Maasai

(12)

San

(40)

Total

(127)

8950 191 G . A R64Q (*14) rs1801279 0.03 0.08 0.13 0.20 0.08 0.09 0.10

9041 282 C . T Y94Y rs1041983 0.4 0.44 0.55 0.44 0.38 0.29 0.39

9100 341 T . C I114T (*5) rs1801280 0.33 0.14 0.34 0.27 0.5 0.2 0.27

9162 403 C . G L135V nrs 0 0.03 0 0.03 0 0 ,0.01

9231 472 A . C I158L Novel 0 0 0 0.03 0 0 ,0.01

9240 481 C . T L161L rs1799929 0.25 0.14 0.34 0.27 0.46 0.14 0.24

9348 589 C . T R197X Novel 0 0 0 0 0 0.01 ,0.01

9349 590 G . A R197Q (*6) rs1799930 0.32 0.33 0.29 0.30 0.25 0.20 0.27

9400 641 C . T T214I Novel 0 0 0 0.03 0 0 ,0.01

9442 683 C . T P228L nrs 0 0 0 0.03 0 0 ,0.01

9525 766 A . G K256E nrs 0 0 0 0 0 0.03 0.01

9562 803 A . G K268R rs1208 0.37 0.39 0.40 0.44 0.54 0.43 0.42

9568 809 T . C I270T Novel 0 0 0 0 0 0.13 0.04

9597 838 G . A V280M nrs 0.06 0.03 0.05 0.03 0 0 0.02

9616 857 G . A G286E (*7) rs1799931 0.03 0.03 0.03 0.03 0.04 0.01 0.02

mRNA position ¼ relative to A of ATG start codon; X ¼ stop codon; (*) ¼ described alleles carrying that particular mutation; nrs ¼ rs number not yet assigned.
Number of individual samples studied per population is indicated in bold in parenthesis.

Table S5. Polymerase chain reaction and sequencing primers

Gene Exon First PCR primers Sequencing primers

CYP2C9 50 UTR cyp2C9-50FLF ATCCTCAACTCAGTATGTCAGC

cyp2C9-50FLR ATCACCTAGGTCCACTATATGC

cyp2C9-50FLSF1 ATCCTCAACTCAGTATGTCAGC

cyp2C9-50FLSR1 ACCTTTACCATTAAACCCCC

cyp2C9-50FLSF2 CAATTCCTGCCTTCAGGA

cyp2C9-50FLSR2 AAGGACTTTGACCCACTGAT

1 cyp2C9-1F GGAATGTACAGAGTGGACAATGG

cyp2C9-1R GATCCCACAATACCTTACCATTTAC

2&3 cyp2C9-2&3F

GACCTGCTGAATATGTTGATGTG

cyp2C9-2&3R CCCGCTTCACATGAGCTAAC

cyp2C9-2SF TCTTGAACTCCTGACCTTGT

cyp2C9-2SR GGAGCTCTGTAAGTCTCTGT

cyp2C9-3SF AGGAGTTTTCTGGAAGAGG

cyp2C9-3SR GGAAAAACACTGCTCTTTAACTC

4* cyp2C9-4F CAGCTAGGTTGTAATGGTCAACTC

cyp2C9-4R GCTAATGGGCTTAGAAATCAGG

***

5* cyp2C9-5F TCATCTGGTTAGAATTGATCCTCTG

cyp2C9-5R GCTATTAACTACCGCCTCAACTTC

***

Continued
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Table S5. Continued

Gene Exon First PCR primers Sequencing primers

6* cyp2C9-6F GAGGAAATGGACCTAGAGACCTTC

cyp2C9-6R CCCATTGTAATCACCATTAGTTTG

***

7* cyp2C9-7F GTGCATCTGTAACCATCCTCTCT

cyp2C9-7R

CAGACACTAGGACCTGTTACAAACC

***

8* cyp2C9-8F AGAAGGTTGCATCCAAGTATCC

cyp2C9-8R GAGTTCTTGGGTACCTCACTGGT

***

9 cyp2c9-9F CTCATCCATCCATTCATTCATG

cyp2c9-9R CTCTAACACTCACCCAAAATAGC

cyp2c9-9SF CTCATCCATCCATTCATTCATG

cyp2c9-9SR CGAATGTTCACTAGATCTTCAG

cyp2c9-9S2F CTGCAGCTCTCTTTCCTC

cyp2c9-9S2FR CTCTAACACTCACCCAAAATAGC

CYP2C19

1 cyp2C19-1F CAATTATGACGGTGCATTGG

cyp2C19-1R CACTTCCCTTACTGTTTACCCTCA

***

2&3 cyp2C19-2&3F

GTTCTTGAAGCTGGGTATTTGTC

cyp2C19-2&3R

AGCAAAGTTCAGGAGAACATAGG

cyp2C19-2SF AATTCAGAAATATTTGAGCCTGTGTG

cyp2C19-2SR GGTTTTTCTCAACTCCTCCACAA

cyp2C19-3SF GCCTGGGATCTCCCTCCTAGTTT

cyp2C19-2&3R AAGCAAAGTTCAGGAGAACATAGG

4 cyp2C19-4F

CAGCTAGGCTGTAATTGTTAATTCG

cyp2C19-4R

GAGTAATGGAAGACTCCAAAGTGC

***

5 cyp2C19-5F TTCAATTTCAGAGGCTGCTTG

cyp2C19-5R

CTATGATGCTTACTGGATATTCATGC

***

6 cyp2C19-6F

CAGCATATAAACAGAGCCAAAGAC

cyp2C19-6R

ACACCATTAAATTGGGACAGATTAC

***

7 cyp2C19-7F

CCTAGCTTAAGGCACAGTTACACA

cyp2C19-7R

GAAAGACTCAAGGTGTCAAGATGTC

***

8 cyp2C19-8F

GCCTTAAGCTCATGCCTCTTATTAC

cyp2C19-8R

GGCAGAATTCAACCAACCTATACTT

***

9 cyp2C19-9F TCATTGTTTAGTTGCCTATCCATC

cyp2C19-9R CCATCTTCACCTTTGTCCTTTC

***

Continued
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Table S5. Continued

Gene Exon First PCR primers Sequencing primers

CYP2D6

1&2 cyp2D6ex1_2F ACCAGGCCCCTCCACCGG

cyp2D6ex1_2R CTCTCTGCCCAGCTCGG

CYP2D6ex1_2F ACCAGGCCCCTCCACCGG

cyp2D6ex1SR

GTTTCACCCACCACCCATGTTT

cyp2D6ex2SF

CTTCCACCTGCTCACTCCTGGTA

cyp2D6ex2SR

CCTCCCTAGTGCAGGTGGTTTCT

3&4 cyp2D6ex3_4F ATTTCCCAGCTGGAATCC

cyp2D6ex3_4R GAGACTCCTCGGTCTCTC

cyp2D6ex3_4SF

GAGCATAGGGTTGGAGTGGGTG

cyp2D6ex3_4R GAGACTCCTCGGTCTCTC

5&6 cyp2D6ex5_6F GCCTGAGACTTGTCCAGG

cyp2D6ex5_6R CCGGCCCTGACACTCCTTCT

cyp2D6ex5_6F GCCTGAGACTTGTCCAGG

cyp2D6ex5_6R CCGGCCCTGACACTCCTTCT

7,8,9 cyp2D6ex7_9F GGATCCTGTAAGCCTGACCTC

cyp2D6ex7_9R

ACTGAGCCCTGGGAGGTAGGTAG

cyp2D6ex7_9F GGATCCTGTAAGCCTGACCTC

cyp2D6ex7SR

GTGGTGGCATTGAGGACTAGGTG

cyp2D6ex8SF

GTCCAGAGTATAGGCAGGGCTGG

cyp2D6ex8SR

AGCACAAAGCTCATAGGGGGATG

cyp2D6ex9SF

CTTCCTCTTCTTCACCTCCCTGC

cyp2D6ex9SR

AATATGGGCCTCCAGGCTGAGT

NAT2 2 NAT2ex2F GAAGCATATTTTGAAAGAATTGG

NAT2ex2R GCATTTTAAGGATGGCCTGT

NAT2ex2F GAAGCATATTTTGAAAGAATTGG

NAT2SF1 TGCCAAAGAAGAAACACCAA

NAT2SR2 ACCTCGAACAATTGAAGATTTTGA

NAT2ex2R GCATTTTAAGGATGGCCTGT

***same set of primers used for sequencing.
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