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Study Need and Importance: Targeted biopsy im-
proves prostate cancer diagnosis. Accurately out-
lining the prostate on magnetic resonance imaging
(MRI) is critical for accurate biopsy, yet manual gland
segmentation is tedious and time-consuming. To
address this clinical problem, we sought to develop a
deep learning model to rapidly and accurately
segment the prostate on MRI and to implement it as
part of routine magnetic resonance-ultrasonography
(MR-US) fusion biopsy in the clinic.

What We Found: We trained a deep learning model,
ProGNet, on 805 T2-weighted MRI scans and retro-
spectively tested it on 100 independent internal cases
and 56 external cases. Segmentations from a urologic
oncology expert were used as ground-truth labels. We
compared ProGNet performance to two deep learning
networks (U-Net and HED) and radiology technicians
using the Dice similarity coefficient (DSC). We then
prospectively implemented ProGNet as part of the
fusion biopsy workflow for 11 patients. ProGNet (DSC
[0.92�0.02) significantly outperformed radiology
technicians (DSC[0.89�0.05) and 2 other deep
learning models, U-Net (DSC[0.85�0.06) and HED
(DSC[0.80�0.08). ProGNet took just 35 seconds per
case (vs 10 minutes for radiology technicians) to yield
a clinically usable segmentation file.

Limitations: We compared ProGNet model outputs
to nonphysician trained radiology technicians
(our institution’s workflow). The findings remain
relevant to other institutions where physicians

perform segmentations because the model provides
quick and precise segmentations very similar to the
urologic oncology expert. Also, the approach is not
immediately accessible for widespread clinical use.
Work is ongoing to integrate the model into routine
clinical workflow for all cases at our institution and
then expand elsewhere to improve speed and accu-
racy of prostate segmentation for targeted biopsy (see
figure).

Interpretation for Patient Care: Our deep learning
model segmented the prostate more accurately and 17
times faster than humans. With the successful imple-
mentation of ourmodel into clinical practice, we reduced
error in one critical step of the targeted biopsy process.

Figure. Automated real-world deep learning segmentation for

targeted biopsy.
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Purpose: Targeted biopsy improves prostate cancer diagnosis. Accurate prostate
segmentation on magnetic resonance imaging (MRI) is critical for accurate bi-
opsy. Manual gland segmentation is tedious and time-consuming. We sought to
develop a deep learning model to rapidly and accurately segment the prostate on
MRI and to implement it as part of routine magnetic resonance-ultrasound
fusion biopsy in the clinic.

Materials and Methods: A total of 905 subjects underwent multiparametric MRI
at 29 institutions, followed by magnetic resonance-ultrasound fusion biopsy at 1
institution. A urologic oncology expert segmented the prostate on axial T2-
weighted MRI scans. We trained a deep learning model, ProGNet, on 805
cases. We retrospectively tested ProGNet on 100 independent internal and 56
external cases. We prospectively implemented ProGNet as part of the fusion
biopsy procedure for 11 patients. We compared ProGNet performance to 2 deep
learning networks (U-Net and holistically-nested edge detector) and radiology
technicians. The Dice similarity coefficient (DSC) was used to measure overlap
with expert segmentations. DSCs were compared using paired t-tests.

Results: ProGNet (DSC[0.92) outperformed U-Net (DSC[0.85, p <0.0001),
holistically-nested edge detector (DSC[0.80, p <0.0001), and radiology techni-
cians (DSC[0.89, p <0.0001) in the retrospective internal test set. In the pro-
spective cohort, ProGNet (DSC[0.93) outperformed radiology technicians (DSC
[0.90, p <0.0001). ProGNet took just 35 seconds per case (vs 10 minutes for
radiology technicians) to yield a clinically utilizable segmentation file.

Conclusions: This is the first study to employ a deep learning model for prostate
gland segmentation for targeted biopsy in routine urological clinical practice,
while reporting results and releasing the code online. Prospective and retro-
spective evaluations revealed increased speed and accuracy.

Key Words: deep learning, magnetic resonance imaging, imaging-guided

biopsy, ultrasonography

MAGNETIC resonance imaging (MRI)-
guided prostate biopsy utilization has
dramatically increased,1 driven by tri-
als demonstrating its superiority over

systematic transrectal ultrasound
biopsy.2e5 Fusion targeted biopsy per-
formance relies heavily upon accurate
prostate gland segmentation on T2-
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2D [ 2-dimensional

3D [ 3-dimensional
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weighted MRI (T2-MRI).6 Providing prostate seg-
mentations on T2-MRI is both tedious and time-
consuming. Clinical implementation of an automated
method to accurately segment the prostate on T2-MRI
will save substantial time for urologists and radiolo-
gists while potentially improving biopsy accuracy.

Recent advancements in deep learning have enabled
deep neural networks to rapidly perform medical im-
aging analysis tasks.7 Achieving generalizable results
requires large amounts of training data from multiple
institutions.8,9 Different methods have been proposed
to automate prostate gland segmentation10e21 but
have often used small data sets (usually 40e250
cases),10e18 did not use volumetric context from adja-
cent T2-MRI slices to make predictions,15,16 failed to
evaluate on external cohorts,11,18,19 solely used single-
institution training sets,11,18e20 did not release code
for comparison10e12,14,15,17e21 or did not publish model
accuracy.21

Deep learning for medical applications has
rarelydand never for the essential prostate seg-
mentation taskdbeen integrated into clinical prac-
tice, while reporting results and releasing the code
online. Our objective was to develop a deep learning
model, ProGNet, to segment the prostate rapidly
and accurately on T2-MRI prior to magnetic
resonance-ultrasound (MR-US) fusion targeted bi-
opsy. To promote clinical utilization, we aimed to
integrate the deep learning model into our clinical
workflow as part of fusion biopsy and share our code
online.

MATERIALS AND METHODS

Patient Selection
A total of 916 men underwent multiparametric MRI at 29
academic or private practice institutions in the U.S. in
2013e2019, followed by fusion targeted biopsy at Stanford
University. Consent for data collection prior to biopsy was
obtained under IRB-approved protocols (IRB No. IRB-
57842), and the data registry was Health Insurance
Portability and Accountability Act (HIPAA) compliant.
Subjects included for real-time biopsy in the prospective
cohort consented as part of an additional IRB-protocol
that enabled the use of ProGNet in their clinical care.

Magnetic Resonance Imaging
We collected axial T2-MRI for all men in the study. Of
the men in the study 85% underwent multiparametric
MRI at Stanford University (vs 15% elsewhere) on GE
(GE Healthcare, Waukesha, Wisconsin, 88%), Siemens
(Siemens Healthineers, Erlangen, Germany, 10%), or Phi-
lips (Philips Healthcare, Amsterdam, Netherlands, 2%)
scanners. Scans were performed at 1.5 Tesla (2%) or 3
Tesla (98%) using multichannel external body array coils.
Most scans included both 2D and 3D T2 sequences. Pro-
tocol features relevant to 2D T2-MRI can be found in table
1, as that was the sequence we used for training and
testing the deep learning segmentation model.

Classical Pre-Fusion Biopsy Procedure
Fusion biopsy was performed at Stanford University using
the Artemis device (Eigen, Grass Valley, California).6

Following our institutional protocol, 7 trained radiology
technicians, with a mean experience of 9 years, segmented
the prostate on axial T2-MRI using ProFuse software
(Eigen, Grass Valley, California). Body MRI radiolo-
gists and fellows provided feedback to help improve
segmentations. Immediately prior to biopsy, a urologic
oncology expert (GAS) with 7 years of experience with
MR-US fusion targeted biopsy refined the gland seg-
mentations in ProFuse.

Data Sets
We randomly split T2-MRI from the 905 subjects who
underwent MR-US fusion biopsy at Stanford University
into a training set (805) and an independent internal
retrospective test set (100). Eleven additional cases
were evaluated prospectively. Segmentations from a
urologic oncology expert (GAS) were used as ground-
truth labels for training and testing. To obtain more
diverse testing data, we included T2-MRI acquired on
Siemens scanners at 1.5 or 3 Tesla from 2 publicly
available data sets, PROMISE1222 (26) and NCI-ISBI23

(30). Both data sets included expert segmentations of
the prostate.

Deep Learning

Pre-Processing. All axial T2-MRI were automatically
cropped to a 256�256 matrix, as this invariably included
the entire prostate and is the input utilized by our model.
All individual scans had the same pixel resolution right-
to-left and anterior-posterior. A histogram-based intensity
standardization method was automatically applied to
normalize pixel intensities, which vary in T2-MRI from

Table 1. Data summary of 2D T2-MRI in internal training and

test sets

Internal Data SetdMRI Characteristics

Total No. 916
No. data set composition:
Training 805
Retrospective testing 100
Prospective testing 11

% Institution:
Stanford University 85
28 other institutions 15

% Scanner:
GE 93
Siemens 4
Philips 3

Weighting T2
Direction Axial
% MRI sequence:
Spin-echo 99.7
Research mode 0.2
Echo planar spin echo 0.1

% Magnetic field strength:
3T 98
1.5T 2

Median slice thickness in mm (IQR) 3.6 (3.55e4.2)
In-plane resolution in mm (range) 0.27�0.27e0.94�0.94
Median No. slices (IQR) 25 (25e30)
Matrix size in pixels�pixels (range) 256�256e640�640
Median echo time (IQR) 126 (122e128)
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various institutions.24,25 The training set was then
augmented by flipping the T2-MRI scans left-to-right.26

ProGNet Architecture. Our deep learning model, ProG-
Net, is a novel convolutional neural network for prostate
segmentation on T2-MRI based on the U-Net architecture
(fig. 1).27 ProGNet integrates information from 3 consecutive
T2-MRI slices and predicts segmentations on the middle slice,
thereby learning the “2.5D” volumetric continuity of the
prostate on MRI. This approach of considering adjacent
slices together, rather than in isolation, is much more
analogous to how experts interpret images in the clinical
setting.

Unlike existing methods,17,19,20 ProGNet automatically
refines predicted segmentations to ensure spatial and
volumetric continuity using robust post-processing steps.
First, predictions that are not connected to the prostate
are removed. Second, a Gaussian filter (sigma[1)
smoothens segmentation borders. Third, the most apical
predictions are removed if they are �15 mm in diameter
(a sign of the model segmenting into the membranous
urethra or penis).

Deep Learning Experiments. We compared ProGNet
prostate segmentation performance to 2 common deep
learning networks: the U-Net and the holistically-nested
edge detector (HED).10,27 All models were trained for
150 epochs using an NVIDIA V100 graphics card and
the TensorFlow 2.0 deep learning framework. We
trained and tested the U-Net and HED on the same
internal retrospective cases as the ProGNet model.

Clinical Implementation
We prospectively used ProGNet for 11 consecutive targeted
biopsy cases to demonstrate our approach’s clinical
utility. The expert urologist (GAS) modified the ProGNet

segmentations prior to biopsy in a real-world setting as part
of the usual standard of care. The ProGNet code can be
downloaded at http://med.stanford.edu/ucil/GlandSegmenta
tion.html.

The ProGNet code is easily run by users without coding
experience on as many MRI cases as desired without any
manual processing. It outputs T2-DICOM (Digital Imag-
ing and Communications in Medicine) folders with both
the T2-MRI and a segmentation file that users load into
the biopsy software.

Statistical Analysis
We compared ProGNet and radiology technicians’ per-
formances in the prospective and retrospective cohorts by
comparing segmentation overlap with the expert using
the Dice similarity coefficient (DSC). The DSC is widely
used to evaluate overlap in segmentation tasks, and its
value ranges from 0 to 1; 1 indicates perfect overlap be-
tween segmentations, while 0 indicates no overlap. We
compared our model’s performance in the internal test
sets to 2 deep learning networks, the U-Net and HED. In
each test set, DSCs for radiology technicians, U-Net, &
HED were compared to DSCs for ProGNet using
Bonferroni-corrected paired t-tests. In an attempt to
determine how gland segmentation accuracy may impact
the location of the target, we also applied the Hausdorff
distance metric to compare ProGNet and radiology tech-
nician segmentation errors. We defined a 2-sided p <0.05
as the threshold for statistical significance. Results were
expressed as mean�standard deviation. We calculated
speed of ProGNet (time spent opening & running the
automatic ProGNet code) and radiology technicians (time
spent segmenting in the ProFuse software) in the retro-
spective internal test set.

Figure 1. ProGNet deep learning model architecture. ProGNet deep learning model inputs 3 consecutive MRI slices, passes through

U-Net convolutional neural network architecture, and yields segmentation prediction.

DEEP LEARNING FOR PROSTATE GLAND SEGMENTATION 607

http://med.stanford.edu/ucil/GlandSegmentation.html
http://med.stanford.edu/ucil/GlandSegmentation.html


RESULTS

Retrospective Internal Test Set

In the retrospective multisite internal test set,
ProGNet (mean DSC[0.92�0.02) outperformed the
U-Net (mean DSC[0.85�0.06, p <0.0001) and
HED (mean DSC[0.80�0.08, p <0.0001) deep
learning models. ProGNet exceeded the segmenta-
tion performance of experienced radiology techni-
cians (mean DSC[0.92�0.02 vs DSC[0.89�0.05,
p <0.0001; table 2 and fig. 2). Comparing gland
segmentation error, the ProGNet model reduced the
mean Hausdorff distance by 2.8 mm compared to
the radiology technicians.

ProGNet also delivered the highest level of pre-
cision in segmentation as defined by a narrow range
in DSC (fig. 3) and the proportion of cases with a
DSC �0.90. The DSC was �0.90 in 88% of ProGNet
cases, compared to 27% for U-Net, 8% for HED, and
61% for radiology technicians.

In a sensitivity analysis, we split the retrospec-
tive internal test set into scans obtained at Stanford
University (88) vs elsewhere (12) and observed that
ProGNet outperformed U-Net, HED, and radiology
technicians both on scans obtained at Stanford and
elsewhere (table 3).

External Test Sets

Given most T2-MRI scans in our training and test
sets came from 1 institution and were acquired on
GE scanners, to further evaluate generalizability,
we assessed ProGNet performance on 2 publicly
available data sets consisting solely of Siemens
scans. ProGNet achieved a mean DSC of 0.87�0.05
on MRI scans from the PROMISE12 data set (26,
fig. 4). In the NCI-ISBI data set (30), ProGNet
achieved a mean DSC of 0.89�0.05. As shown in
table 2, ProGNet’s performance on external data is
consistent with results acquired on the internal
data and outperforms both HED and U-Net.

Segmentation Time

After a single 20-hour training session, it took
ProGNet approximately 35 seconds to segment each
case in the 100-case retrospective internal test set
(w1 hour in total). Conversely, radiology technicians

averaged 10 minutes per case (w17 hours in total).
This does not account for the additional time
involved in adjusting the segmentations by the
expert urologist (range: 3e7 minutes per case).

Prospective Evaluation

To demonstrate this approach’s feasibility in clin-
ical practice, we successfully integrated ProGNet
into our clinical workflow. ProGNet (mean DSC[
0.93�0.03) significantly outperformed radiology
technicians (mean DSC[0.90�0.03, p <0.0001) in
the 11-case prospective fusion biopsy test set.

DISCUSSION
In this study, we developed a robust deep learning
model, ProGNet, to automatically segment the
prostate on T2-MRI and clinically implemented it as
part of real-time fusion targeted biopsy in a pro-
spective cohort. Targeted biopsy involves multiple
potential sources of error, such as MRI and ultra-
sound segmentation, MRI lesion segmentation, MR-
US alignment, and patient motion during biopsy.
The primary goals of utilizing a deep learning model
to segment the prostate are to improve accuracy and
speed, and to reduce error in 1 critical step of the
biopsy process.

Our study has 4 key findings. First, ProGNet
performed significantly better than trained radi-
ology technicians and 2 state-of-the-art prostate
segmentation networks in multiple independent
testing cohorts. Importantly, ProGNet had far fewer
poorly performing outlier cases (1 in 8 cases with
DSC <0.90) than radiology technicians (1 in 3
cases). Having fewer poorly performing cases
translates into less time spent by a urologist
refining the segmentation prior to biopsy.

Second, the speed of segmentation was approxi-
mately 17 times faster for ProGNet than radiology
technicians; ProGNet saved w16 hours of segmen-
tation time in the 100-case test set alone. This does
not even account for the additional time the expert
urologist spends adjusting inaccurate segmenta-
tions before biopsy.

Third, ProGNet performed better than or equal to
other prostate segmentation models.10e14,16e20 The
generalizability of ProGNet results from the large

Table 2.Deep learning and radiology technician prostateMRI segmentation performances (meanDSC�SD) in internal and external test

sets

Prospective Internal Test Set Retrospective Internal Test Set PROMISE12 External Test Set NCI-ISBI External Test Set

No. cases 11 100 26 30
ProGNet 0.93 (±0.03) 0.92 (±0.02) 0.87 (±0.05) 0.89 (±0.05)
U-Net 0.83 (�0.01) 0.85 (�0.06) 0.85 (�0.08) 0.86 (�0.07)
HED 0.78 (�0.10) 0.80 (�0.08) 0.78 (�0.13) 0.80 (�0.11)
Radiology technicians 0.90 (�0.04) 0.89 (�0.05)

DSCs of U-Net and HED deep learning models, as well as radiology technicians, were compared with DSCs of ProGNet in each test set using Bonferroni-corrected paired t-tests.
All tests showed statistical significance (p <0.0001). Bolded entries represent highest mean dice score in each test set.
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training (805) and testing (167) cohorts. Prior pub-
lications typically included only 40e250 cases.
ProGNet performed well on internal and external
cohorts comprised of scans from GE, Siemens, and
Philips acquired at multiple institutions with
different magnet strengths. It is important to note
that lack of access to code prevented us from directly
comparing prior methods to ProGNet in our inde-
pendent test sets. Instead, we compared ProGNet
to the U-Net and HED deep learning models
commonly used for prostate gland segmentation and
trained those models ourselves.10,11

Fourth, to our knowledge, this is the first study to
clinically implement a deep learning model to
segment the prostate on MRI prior to fusion biopsy
in a live setting, while reporting results and
releasing the code online. Commercial vendors such
as Philips DynaCAD automate segmentation for
clinical use, but this is only available to those who
purchase that software. It is unclear how well
DynaCAD performs due to its use of proprietary
software and lack of description of its performance
using metrics such as the Dice score.21 We have also
released our code publicly so that researchers,

Figure 2.Representative segmentations for urology expert, ProGNet, and radiology technicians. Comparisonbetweenurologic oncology

expert (blue outline), ProGNet (yellow outline; DSC[0.93), and radiology technicians (purple outline; DSC[0.89) on representative MRI

scan in retrospective internal test set.MRI slices are seen fromapex to base. Figure reveals human segmentation errors such as inclusion

of anterior pre-prostatic fascia by radiology technician (column 4) and omission of anterior left benign prostatic hyperplasia nodule by

urologic oncologist (column 2). DSCs were computed for entire gland in 3D in regard to expert segmentation.
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companies, or clinicians can easily test or imple-
ment our model. Finally, we put great effort into
enabling our model outputs to be implemented
using Eigen’s ProFuse software; we envision future
integration with other targeted biopsy vendors.

Our study has 5 noteworthy limitations. First,
while ProGNet statistically significantly outperformed
2 deep learning models and radiology technicians
using the Dice score metric, it is unclear if this
translates into clinically significantly better target-
ing of suspicious lesions. Our analysis indicates that
use of ProGNet rather than technicians translates
into a mean 2.8 mm reduction in error, which may
be important in targeting smaller lesions. Second,
only 1 experienced urologist (GAS) provided the
clinical reference standard using the ProFuse soft-
ware. While the software does not produce 100%
accurate segmentations due to automatic smooth-
ing of the borders, the urologist meticulously cor-
rected each case prior to biopsy as accurately as the

software allowed. The model learned to be very ac-
curate due to the extensive training data set, even
when it was not provided with perfect segmenta-
tions. Using the data available from urologist seg-
mentations during targeted biopsy as ground truth
was a pragmatic decision given the difficulty of
getting an additional expert to segment almost
1,000 cases. Our methods considered the urologist
as the gold standard, which prevented us from
determining if the ProGNet segmentations were
more accurate than the urologist’s. Third, rather
than comparing model outputs to urologists or ra-
diologists, we compared them to nonphysician
trained radiology technicians (the workflow at our
institution). The findings remain relevant to other
institutions where physicians perform segmenta-
tions because of the much greater speed of the
ProGNet model and the similarity between the
urologic oncology expert’s segmentations and the
ProGNet model. Fourth, our data set did not include
cases with an endorectal coil, and most of our scans
in the training set were performed at 1 institution
on scans from 1 manufacturer (GE). However, we
found that the deep learning model still performed
well on MRIs acquired outside our institution on
different scanners. Fifth, our current MRI segmen-
tation approach optimizes only 1 step of the targeted
biopsy process. Work is ongoing to automate and
optimize other steps in the biopsy process.

Notwithstanding these limitations, our study
describes the development and external validation
of a deep learning prostate segmentation model
whose average accuracy and speed exceed radiology
technicians. Furthermore, we demonstrate clinical

Figure 3. DSC distribution in multi-institutional retrospective internal test set (100). ProGNet (mean DSC[0.92) statistically significantly

outperformed U-Net (mean DSC[0.85, p <0.0001), HED (mean DSC[0.80, p <0.0001), and radiology technicians (mean DSC[0.89,

p <0.0001). ProGNet approach yielded fewest cases with suboptimal accuracy (DSC <0.90).

Table 3. Sensitivity analysis of deep learning and radiology

technician prostate MRI segmentation performances (mean

DSC�SD) when splitting internal retrospective test set into

scans acquired at Stanford and elsewhere

Scans Acquired at
Stanford University

Scans Acquired
Elsewhere

No. cases 88 12
ProGNet 0.92 (±0.03) 0.93 (±0.02)
U-Net 0.84 (�0.07) 0.89 (�0.04)
HED 0.80 (�0.08) 0.84 (�0.06)
Radiology technicians 0.89 (�0.05) 0.91 (�0.03)

DSCs of U-Net and HED deep learning models, as well as radiology technicians,
were compared with DSCs of ProGNet in each test set using Bonferroni-corrected
paired t-tests. All tests showed statistical significance (p <0.0001).
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utilization of the model in a prospective clinical
setting. In the future, we expect to expand our
model’s use within our institution and elsewhere to
improve the speed and accuracy of prostate seg-
mentations for targeted biopsy.

CONCLUSIONS
Despite the enormous potential of deep learning to
perform image analysis tasks, clinical implementa-
tion has been minimal to date. To our knowledge,

deep learning has not been used clinically for the
important and time-consuming prostate segmenta-
tion task, while having the code released online. We
developed a deep learning model to segment the
prostate gland on T2-MRI and proved that it out-
performed common deep learning networks as well
as trained radiology technicians. The model saved
almost 16 hours in segmentation time in a 100-pa-
tient test set alone. Most importantly, we success-
fully integrated it with biopsy software to allow

Figure 4. Representative segmentations for expert and deep learning models. Comparison between expert (blue outline) and deep

learning models on representative MRI scan in PROMISE12 external test set: ProGNet (yellow outline; DSC[0.89), U-Net (green

outline; DSC[0.86), and HED (purple outline; DSC[0.83). MRI slices are seen from apex to base. DSCs were computed for entire

gland in 3D in regard to expert segmentation.
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clinical use in a urological clinic in a proof-of-principle
fashion.
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EDITORIAL COMMENT

The application of artificial intelligence to health care
promises to address many inefficiencies, from imaging
diagnosis to treatment optimization and even sched-
uling and billing, but likely no field is better poised to
exploit its advantages than radiology.
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