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TRP channels are expressed in various cells in skin. As an 
organ system to border the host and environment, many 
nonneuronal cells, including epidermal keratinocytes 
and melanocytes, express several TRP channels function-
ally distinct from sensory processing. TRPV1 and TRPV3 
in keratinocytes of the epidermis and hair apparatus 
inhibit proliferation, induce terminal differentiation, 
induce apoptosis, and promote inflammation. Activation 
of TRPV4, 6, and TRPA1 promotes regeneration of the 
severed skin barriers. TRPA1 also enhances responses in 
contact hypersensitivity. TRPCs in keratinocytes regu-
late epidermal differentiation. In human diseases with 
pertubered epidermal differentiation, the expression of 
TRPCs are altered. TRPMs, which contribute to melanin 
production in melanocytes, serve as significant prognosis 
markers in patients with metastatic melanoma. In sum-
mary, not only act in sensory processing, TRP channels 
also contribute to epidermal differentiation, prolifera-
tion, barrier integration, skin regeneration, and immune 
responses. In diseases with aberrant TRP channels, TRP 
channels might be good therapeutic targets.
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Skin is the largest organ in the human body. It is com-
posed of three major components (Fig. 1). The superficial 
component is the epidermis, which includes several layers of 
keratinocytes. Basal keratinocytes in epidermis proliferate to 

generate suprabasal keratinocytes, which undergo further 
differentiation, eventually to the cells devoid of nuclei in the 
corneal layer. These corneal keratinocytes, also termed ter-
minal differentiated cells, together with the dense intercellu-
lar structures, make up the delicate and solid skin bar riers. 
The intact skin barrier prevents noxious substance and 
patho gens enter into human body and prevents water vapor-
ization from inside. Melanocytes reside near basal kera-
tinocytes. Melanocytes produce melanins and transfer the 
melanins to adjacent keratinocytes. Langerhans cells, the 
professional antigen presenting cells in the epidermis, cap-
ture foreign or endogenous antigens, migrate to regional 
lymph nodes to prime specific clones of T cells. The middle 
component of skin is the dermis. The dermis includes extra-
cellular matrix, collagens, as well as endothelial cells, mast 
cells, and fibroblasts. The dermis provides the nutritional 
and vascular network and contributes mainly to the physical 
property of the skin. Abnormal wound healing may occur 
with excess deposition of extracellular matrix and/or colla-
gens as well as fibroblast and vessels. The dermis also pro-
vides a transit for the peripheral nerve endings from the epi-
dermis to the deep skin. The deep component of skin is the 
subcutaneous tissue, which provides adequate heat insula-
tion and serve as energy storage.

As an integrative system, skin mediates the sensory func-
tion, provides an immunological barrier, maintains skin 
homeostasis, and produces melanin pigments. Based on the 
available evidences, the TRP channels might play a role in 
mediating or regulating these physiological functions. Fur-
thermore, the perturbance in the function and/or in the 
expressions of TRP channels can contribute to skin inflam-
mation, abnormal differentiation, pigmentary diseases, and 
perhaps carcinogenesis.



18 BIOPHYSICS Vol. 11

increased in the epidermal keratinocytes [3].
Interestingly, certain endogenous molecules that promote 

TRPV1 activity (including ATP, prostaglandins and hista-
mine) are also potent pruritogens [2,4]. In humans, histamine- 
induced itch is mediated, at least in part, by TRPV1 [5]. In 
line with the data, TRPV1 knockout mice have impaired 
scratching behavior induced by histamine [6]. Intriguingly, 
depletion of TRPV1 expressing neurons by capsaicin is 
associated with intense itch, scratching, and ulcers [7]. These 
data suggest that TPRV1 might be involved in the perception 
of itch, however, more neurological and physiological data 
is warranted.

Role of TRPV1 in the control of skin growth, skin 
cell survival and cutaneous inflammation

TRPV1 is expressed in a variety of skin cells, including 
epidermal keratinocytes, mast cells, Langerhans cells, and 
sebocytes. TRPV1 mostly shows primarily growth-inhibitory 
functions in the epidermis. TRPV1 is known to regulate 
keratinocytes growth and differentiation. In cultured kera-
tinocytes, TRPV1-mediated calcium entry inhibits cell pro-
liferation and enhances apoptosis [8,9]. TRPV1 activation 
by capsaicin regulates the epidermal permeability barrier in 
vivo [10].

TRP channels in skin
Besides the sensory function of TPR channels (such as 

itch) in nerve endings in skin, this review focuses on the role 
of TRP channels in the non-neuron cells, such as epidermal 
keratinocytes and melanocytes. In fact, populations of non- 
neuronal cells within the skin express many different types 
of TRP channels, which contribute to various key cutaneous 
functions including skin-derived pruritus, proliferation, dif-
ferentiation, cancer and inflammatory processes. The pos
sible functions of TRP channels in skin are summarized in 
Table 1. In the following section, we focus on TRPV1, 
TRPV3, TRPA1, TRPCs, and TRPM (Fig. 2).

Regulation of TRPV1 in itch perception
Itch is defined as an unpleasant sensation to provoke 

scratching [1]. Itch signals are sensed in the skin and relayed 
to dorsal root ganglion, contralateral spinothalamic tract, 
thalamus and brain cortex. A subset of TRPV1 expressing 
sensory neurons, also known as pruritoceptive neurons [2], 
play an important role in the development of itch. In fact, not 
only neuron cells but also non neuron epidermal keratino-
cytes express TRPV1. In patients with prurigo nodularis, a 
skin disease with intense pruritus, TRPV1 expression is 

Figure 1　A brief schematic figure for skin structure. Skin is made of epidermis, dermis, and subcutaneous tissue. In epidermis, keratinocytes 
are the major population of the cells. Keratinocytes undergo terminal differentiation to form anuclear corneal layer as major skin barriers. Melano-
cytes produce melanins and transfer them to the adjacent keratinocytes. Langerhans cells are professional antigen presenting cells in epidermis. 
They uptake antigens and present them to corresponding T cells. In dermis, there are vascular channels providing the oxygen and nutrient to the 
overlying epidermis and the hair papilla, adjacent to hair matrix, the lowest part of the hair apparatus. Hair apparatus is made of several layers of 
keratinocytes. Melanocytes in hair matrix provide melanins for hair apparatus. Subcutanous tissue is mainly made of fat tissues and supplying ves-
sels. Free nerve endings from dorsal root ganglion radiate to dermis and penetrate into the epidermis.
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TRPV1 defected mice have impaired hair cycles due to 
 delayed catagen phase [13]. In vitro, TRPV1 activation in 
 human SZ95 sebocytes inhibits sebum production through 
alternation of genes of lipid homeostasis [14].

TRPV3
TRPV3 is highly expressed in cutaneous keratinocytes 

[15]. In mice, TRPV3 enhances regeneration of epidermal 
barrier formation and promotes morphogenesis of hair 
 apparatus. This may occur through the formation of a sig-
naling complex between TRPV3 and the EGFR [16]. Con-
sistent with this concept, TRPV3 knockout mice demon-
strated hair abnormalities, including wavy hair coat and curly 
whiskers [16,17]. On the other hand, constitutively active 

In terms of inflammation, TRPV1 activation by capsaicin 
in human epidermal keratinocytes causes release of several 
proinflammatory cytokines [8]. UV irradiation increases 
TRPV1 expression in human skin [11]. TRPV1 in keratino-
cytes mediates the UV-induced production of MMP1 [12], 
an enzyme that is implicated in skin inflammation and wound 
repair. These findings in TRPV1 suggest that TRPV1 modu-
lators may be beneficial in the treatment of several diseases, 
including photodermatosis, acne vulgaris, and hair disorders.

Regarding to hair morphogenesis, capsaicin induces 
TRPV1 activation, inhibiting hair shaft elongation and in-
ducing catagen regression. In vivo study showed that TRPV1 
activation was associated with differential gene expressions 
and differential production of cytokines and growth factors, 
many of which control hair growth in human [9]. In mice, 

Table 1　Expression and function of TRP channels in nonneuronal cells of skin

Keratinocytes Outer root sheath cells in hair follicle Implications

TRPV1 Activation:
• Calcium entry, antiproliferation, 

proapoptosis [52,53]
• Delayed barrier recovery [10]
• Proinflammation (IL1, 8, PGE2, 

TGFb2, MMP-1) [8,54,55]
Induced by UV [11]
TRPV1 KO is impaired in skin 
inflammation [56]

Activation:
• Antiproliferation, proapoptosis [8]
• Impaired hair shaft elongation [8]
• Proinflammation (IL1, 8, PGE2, 

TGFβ2, MMP1) [8]
Induced by UV [12]

Increased expressions in prurigo 
nodularis [3] and aged skin [57].
PAC-14028 TRPV1 antagonist 
improves atopic-like skin in mice [58]
TPRV1 KO are tumor-prone [59]

TRPV3 Antiproliferation and proapoptosis 
[19]
Release of NO [60], cytokines, PGE2 
[8]
Promotion of cell migration and 
wound healing [50]
TRPV3 KO have impaired skin 
barrier; wavy hair coat, curly whiskers 
[16]

Antiproliferation and proapoptosis
Impaired hair shaft elongation [19,61]

TRPV1 “Gain-of-function” mutation 
results in pruritic AD like skin [18,21]

Human Olmsted syndrome by 
 Gly573Ser mutation manifestes as 
mutilating palmoplantar keratoderma 
[62]

TRPV4 Enhancing barrier regeneration [10]
TRPV4 KO have impaired skin 
barrier, poor differentiation [63]

TRPV6 Calcium entry, terminal differentia-
tion, and wound repair [64]
TRPV6 KO have impaired skin 
barrier, decreased calcium content 
[65]

TRPA1 Increased barrier regeneration [25]
Increased calcium entry [24]
Modulate differentiation [66]
Proinflammation and enhanced 
contact hypersensitivity [27]
TRPA1 KO have decreased response 
to urushiol [28]

TRPCs  
(TRPC1, 4, 5, 6, 7)

Expressed majorly in differentiated 
keratinocytes [42,67]
TRPC1/4: keratinocyte differentiation 
[44]
TRPC6: antiproliferation and induces 
differentiation [45]
Darier’s disease: TRPC1-mediated 
calcium entry is impaired [26,46]

Myofibroblast transformation: TRPC6 
[68]
Impaired calcium entry in keratino-
cytes from patients with psoriasis [69]
TPRC6-induced calcium in keratino-
cytes from actinic keratosis inhibits 
cell proliferation and induces differen-
tiation [70]
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allel, TRPA1-defected mice showed an diminished skin in-
flammation and contact dermatitis caused by oxazolone and 
urushiol [27,28].

TRPMs
Melanocytes play an important role in the production of 

 melanin, which is important in the intrinsic defense of skin 
against UV. Furthermore, the most notorious skin cancer 
with awful prognosis, is the malignant melanoma developed 
from abnormal clones of melanocytes. TRPM (melastatin 
TRP) channels control several physiological functions in 
melanocytes. Human melanocytes express TRPM1, which 
mediates the production of melanins [29,30]. In melanoma 
cells, TRPM1 channels are pro-apoptotic [31]. In tissues, 
TRPM1 expressions are decreased in the samples from 
 metastatic melanoma [32,33]. The miRNA211, coded by an 
intron of TRPM1, may mediate its tumour-promoting effect 
[34]. Because of its pro-apoptotic effects, many of the re-
searchers and studies suggested that TRPM1 may serve as 
a good prognostic marker for metastatic melanoma. For 
TRPM2, overexpression of wild-type TRPM2 in melanoma 
cell cultures induces apoptosis [35]. For TRPM7, decreased 
and/or faulty TRPM7 production leads to impaired melano-
cytic differentiation [36], which can result in vitiligo, a de-
pigmented skin disease with spontaneous loss of epidermal 
melanocytes.

gain-of-function mutation Trpv3Gly573Ser causes loss of 
hair and atopic-like dermatitis [18]. TRPV3 activation in 
organotypic cultures of human hair follicles impairs hair 
sheath prolongation [19], suggesting the potential pharma-
ceutical targeting of TRPV3 in the treatment of hypertricho-
sis and alopecia.

In terms of skin inflammation. TRPV3 activation in kera
tinocytes induces the release of several proinflammatory medi-
ators [20]. The gain-of-function mutation  Trpv3Gly573Ser 
mice develop atopic-like skin disease [18,21]. Furthermore, 
conditional Trpv3Gly573Ser transgenic mice also demon-
strate intense scratching. These evidences suggest that TRPV3 
channels may contribute to the different kinds of dermatitis 
through release of several proinflammatory mediators [22].

TRPA1
Skin irritants such as mustard oil, nicotine, and cinnamal-

dehye, could activate TRPA1 [23]. Analogous to TRPVs, 
TRPA1 activation by cold or chemicals enhances the regen-
eration of skin barrier, along with an increase in intracellular 
calcium [24]. On the other hand, TRPA1 inhibition markedly 
impairs the recovery of skin barrier [25]. In terms of skin 
inflammation, TRPA1 activation by cinnamaldehyde appli-
cation induces skin inflammation through release of Sub-
stance P [26]. Contact hypersensitivity reaction is impaired 
when a TRPA1 antagonist, HC030031, is given [27]. In par-

Figure 2　Skin is comprised of epidermis, dermis, and subcutaneous tissue. In addition to the expression in neurons and nerve endings, TRP 
channels are also expressed in non-neuron cells in skin. TRPV1 and TRPV3 are expressed in keratinocytes of epidermis and hair apparatus. TRPV1 
and TRPV3 inhibit proliferation, induce terminal differentiation, induce apoptosis, and promote inflammation. Activation of TRPV4, 6, and TRPA1 
promotes regeneration of the severed skin barriers. TRPA1 also enhances responses in contact hypersensitivity. TRPCs in keratinocytes involve in 
epidermal differentiation. TRPMs are involved in the pigment production from melanocytes. Not only act in sensory processing, TRP channels also 
contribute to epidermal differentiation, proliferation, barrier integration, skin regeneration, and cutaneous immune responses.
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tinocytes of epidermis and hair apparatus. TRPV1 and TRPV3 
inhibit proliferation, induce terminal differentiation, induce 
apoptosis, and promote inflammation. Activation of TRPV4, 
6, and TRPA1 promotes regeneration of the severed skin 
barriers. Besides, TRPA1 activation enhances responses in 
contact hypersensitivity. TRPCs in keratinocytes involve in 
epidermal differentiation. In diseases with pertubered differ-
entiation such as actinic keratosis, psoriasis, and Darier’s 
disease, the expression of TRPCs are altered. TRPMs are 
involved in the pigment production from melanocytes and 
they might provide significant prognosis markers in patients 
with metastatic melanoma. Not only act in sensory process-
ing, TRP channels also contribute to epidermal differen-
tiation, proliferation, barrier integration, skin regeneration, 
and cutaneous immune responses. In diseases with abnormal 
functions and expressions of TRP channels, TRP channels 
might be good therapeutic targets.
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