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Anticipatory Control of Momentum 
for Bipedal Walking on Uneven 
Terrain
Osman Darici1,2*, Hakan Temeltas2 & Arthur D. Kuo1,3

Humans and other walking bipeds often encounter and compensate for uneven terrain. They might, 
for example, regulate the body’s momentum when stepping on stones to cross a stream. We examined 
what to do and how far to look, as a simple optimal control problem, where forward momentum is 
controlled to compensate for a step change in terrain height, and steady gait regained with no loss of 
time relative to nominal walking. We modeled planar, human-like walking with pendulum-like legs, 
and found the most economical control to be quite stereotypical. It starts by gaining momentum 
several footfalls ahead of an upward step, in anticipation of the momentum lost atop that step, and 
then ends with another speed-up to regain momentum thereafter. A similar pattern can be scaled to 
a variety of conditions, including both upward or downward steps, yet allow for considerably reduced 
overall energy and peak power demands, compared to compensation without anticipation. We 
define a “persistence time” metric from the transient decay response after a disturbance, to describe 
how momentum is retained between steps, and how far ahead a disturbance should be planned for. 
Anticipatory control of momentum can help to economically negotiate uneven terrain.

Humans and other bipeds often encounter uneven terrain in walking environments. Even the act of stepping 
between curb and sidewalk can perturb otherwise steady walking and cause a loss of stability and forward speed. 
Although gait may be restored with feedback control, there may be advantages to anticipating the upcoming 
disturbance, for example through vision or other imaging, and performing compensations before stepping on 
it. Although it may seem advantageous to anticipate ahead of time, it is unknown how far ahead to look, what 
actions to take, and at what cost to restore nominal gait. A simple modeling analysis can yield insight on how best 
to anticipate and compensate for a terrain disturbance.

Anticipation offers a potential advantage in time. Whereas a feedback response cannot be initiated until a 
disturbance has been physically encountered, anticipatory control can be initiated immediately upon its (visual) 
detection. It can thus distribute control actions both before and after the disturbance, and potentially compensate 
more economically or with less actuator effort. A simple example is the running long jump, which builds up more 
momentum and yields a longer jump than can be gained from a static, standing position. Similar benefits might 
apply to traversal of a minor terrain disturbance, with appropriate anticipation and planning.

We will address anticipation and integration as a simple optimization problem (Fig. 1). One simplification is 
to consider only a single disturbance in terrain height (“up-step” or “down-step”). Many a person has experienced 
a stumble or fall from a small, unexpected disturbance, as has many a bipedal robot. In fact, an up- or down-step 
is often used as a test of a robot’s robustness to uneven terrain1,2. An additional simplification is to consider a 
minimal, sagittal plane model of bipedal walking, in which momentum is carried by a pendulum-like stance leg, 
and additional degrees of freedom for the swing leg or lateral motions are ignored (or controlled by lower-level 
feedback loops). Pendulum-like, underactuated locomotion describes some aspects of human walking e.g.3,4, and 
that of a number of robot models5–7 and physical machines8–12. Underactuation implies that energy change occurs 
little during stance, but substantially with a relatively rigid swing leg’s collision with ground13–15, as part of the 
“step-to-step transition”16. The energy and momentum losses from collision, and the positive work done to offset 
these losses, are key to the optimization solutions.

The proposed optimization modulates forward momentum to mitigate the effects of a single terrain height dis-
turbance (an “up-step” or “down-step”). The goals will be to regain a nominal walking gait without falling down, 
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and without loss of time, so that the biped will eventually be at an appointed time and position, as if had always 
been on level terrain. Of course, there may be some demands on overall or peak work of muscles or actuators, 
and so these will be minimized or evaluated as part of the optimization. Here we present the dynamics of a simple 
model (Fig. 1), followed by an optimization formulation to address these questions. This is then followed by a 
series of simple observations regarding how to anticipate and recover from a terrain disturbance.

Results
We found substantial advantages to anticipating and compensating for an up-step. We first found that without 
compensation, an up-step causes a considerable loss of time. The lost time may then be regained by speeding 
up from nominal walking, but even the optimal speed-up places considerable demands on overall work and 
peak actuator power. We then found that the optimal compensation is instead to anticipate and adjust forward 
momentum or speed in a transient period starting before and ending after the up-step. Results show that a single 

Figure 1.  Simple model of walking over a single up- (or down-) step. (a) Body center of mass (COM) is a point 
mass carried atop stance leg acting as an inverted pendulum, encountering step of height b. (b) Model has mass 
m at pelvis, massless legs of length L, gravitational acceleration g , and fixed step length S, with inter-leg angle α2 . 
Stance leg angle is measured with angle θ as shown. (c) Level nominal walking has step-to-step transition where 
COM velocity is redirected from forward-and-downward −vi  to forward-and-upward +vi , with active, impulsive 
trailing leg push-off (PO), followed by inelastic, impulsive, leading leg collision (CO). (d) Up-step occurs on 
step =i 0, with two cases: pre-emptive and late push-off, which both perform positive work (u0 and +u0 , 
respectively) but earlier or later than collision. (e) Optimization is to modulate N  push-offs to minimize their 
total work while accommodating the up-step in the same time as level walking at speed V. The N steps are 
nominally centered on the up-step for equal anticipation and recovery, but may be shifted by m steps relative to 
obstacle. Up-step heights have positive b; down-steps negative b.
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compensation pattern can be scaled to characterize optimal strategies for different walking speeds and step 
heights, including down-steps.

Uncompensated transient response resembles exponential decay and is described by persis-
tence time.  The benchmark for optimal compensation strategies is the effect of a completely uncompensated 
up-step. Uncompensated control means that only the nominal, pre-emptive push-off is applied17 ( =u Ui ), with-
out any modulation. The transient response resembles an exponential decay, starting with an immediate loss of 
speed at the up-step, followed by an approximately exponential response over subsequent discrete steps (step 
index i; Eq. 2). We defined the time constant of the exponential decay as a persistence time (see Methods), to char-
acterize how compensations scale over a wide range of walking speeds and disturbances.

There is considerable advantage to pushing off onto the up-step pre-emptively. If the up-step can be antici-
pated only enough to allow push-off to occur before the collision, it can greatly reduce the immediate loss of speed 
compared to a late push-off17. For a sample up-step of modest height = .b L( 0 025 ), loss of speed is about 80% less 
and time loss is 82.7% less (see Fig. 2a,b). Continuing with nominal push-offs after the up-step, both cases expe-
rience a similar type of exponential decay in speed error, and therefore an asymptotic return to nominal walking 
(Fig. 2b). But pre-emptive push-off reduces the total time loss by 82% compared to late push-off (for b = 0.025 L), 
even if push-off magnitude is not actively modulated. Thus, even a short-range ability to detect an upcoming 
obstacle can be helpful, if it allows for an unmodulated but still pre-emptive push-off.

The eventual total time loss also increases sharply with up-step height (Fig. 2c). This is because the potential 
energy of the up-step comes at the expense of (and must not exceed) the model’s kinetic energy, and therefore 
speed (see velocity +v0 ; Eqs. 2 and 7). As a result, a faster nominal walking speed is relatively less sensitive to 
up-step (compare different speeds in Fig. 2c).

The transient response’s decay (Fig. 2a) is well characterized by persistence time. For the nominal gait, the 
persistence time is about 2.61 steps, equivalent to about 1.39 seconds or 2.06 m for nominal, human-like walking. 
This is equivalent to a 90% settling time of about 5.7 steps.

Time may be gained from steady-state walking with a (costly) burst of speed.  Given the total 
time lost from a disturbance, a naïve compensation is simply to regain that time with an isolated time gain, mean-
ing a separate burst of speed from nominal, level walking. The appropriate amount of time tgain could be gained 
either well before or well after nominal speed is disrupted. In either case, the time is to be gained within a burst of 
N  fast steps, starting and ending at the nominal steady-state speed V , while minimizing total push-off work.

The optimal burst of speed rises smoothly to a single peak, and then decreases back to nominal, with a roughly 
time-symmetric profile (Fig. 3 top). The corresponding push-off sequence (Fig. 3 top) is neither smooth nor sym-
metric. The peak push-off work occurs on the initial compensation step, with considerably greater magnitude 
than nominal, about 1.78 times greater for a sample up-step ( = . =b L N0 075 ; 9). The succeeding push-offs—
save the final one—decrease rapidly and then level off above normal, as time is recouped. The final compensatory 

Figure 2.  Effect of an uncompensated up-step. (a) Speed fluctuations vs. time, for an up-step at time 0 with 
constant push-off. Model experiences transient disturbance from nominal speed due to up-step, with smaller 
effect if push-off occurs pre-emptively as opposed to late. Each dot (filled symbol) indicates a discrete step, with 
speed vi sampled at mid-stance (see Fig. 1e). (b) Cumulative time gain vs. time shows accumulating effect of 
speed loss, with asymptote towards a total time loss (negative time gain). (c) Total time gain vs. up-step height b 
for various nominal walking speeds, with greater bumps causing greater loss of time, and smaller effect for faster 
nominal speeds. Also shown are effects of late push-off (unfilled symbols). Up-step height = .b L0 025 , nominal 
mid-stance velocity = . − . .V g L0 44 0 5 0 5. Conditions are equivalent to a human walking at 1.5 m/s, encountering 
an up-step of 2.5 cm.
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push-off is actually below nominal, to enable speed-matching for the final conditions. This asymmetric push-off 
profile nonetheless contributes to a rather smooth accumulation of time gain, resembling a ramp function with 
rounded corners (Fig. 3 top).

These effects are amplified as more time is gained (Fig. 3 top). The greater the tgain (at fixed N), the greater both 
the peak speed and peak push-off. It is also easier to take more compensation steps N , which calls for a shallower 
peak in walking speed, a lower peak push-off, and a more gradual gain, with less time gained per step (Fig. 3 bot-
tom). Conversely, gaining time over very few steps entails a sharp peak in both speed and push-off (Fig. 3 bot-
tom). In terms of both overall and peak amount push-off work, there is great advantage to spreading a time gain 
over as many steps as possible (Fig. 3 bottom).

Another issue with gaining time is the limitations of a walking gait. A sufficiently large push-off may cause the 
model to lose ground contact (or leap) into a momentary aerial phase prior to collision (see Eq. 2), particularly for 
the first push-offs of the compensation (Fig. 3 top). This might resemble a straight-legged run for a few steps. If 
such leaping were disallowed, the maximum time that could be gained would be equivalent to about 2.86 nominal 
step times (T). In addition, large enough time gains can call for running, when speed is too high for pendulum-like 
walking3, ≥ . .v g L1i

0 5 0 5. We did not explicitly model running here, and instead noted which steps or time gains 
would exceed the thresholds for maintaining a pure walking gait.

The primary issue is the number of steps over which time is to be gained. For fewer steps or more time gain, 
there are substantial penalties with regard to peaks in walking speed, peak and overall work, and the potential 
need for aerial phases. For relatively large N, the speed and push-off profiles become increasingly constant (Fig. 3 
bottom), so that the primary cost is dominated by the work for steady walking at an elevated speed. For large N, 

Figure 3.  Optimal strategies to gain time during level walking, separate from any disturbance, for (top row) 
varying amounts of time tgain, and (bottom row) varying number of steps N. Each row, from left to right: Speed 
fluctuations vs. time, push-off work vs. time, and cumulative time gain vs. time, relative to nominal (each step 
denoted by filled symbol). Parameter values are =N 9 steps for top row, = .t 0 5gain  for bottom row. Filled dots 
indicate steps. Unfilled dots denote large push-offs that entail momentary aerial phases or even running for 
several steps; maximum time gain thresholds to avoid such cases are shown in (top most right).
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the extra work needed to gain time is largely inversely proportional to N. If time needs to be gained, it should 
ideally be distributed across as many steps as possible.

Optimal strategy for an up-step: Speed up, lose speed, speed up.  Optimization reveals that the 
ideal compensation strategy should actually envelop the up-step. A near-optimum may be achieved with a rela-
tively small N, with little advantage to taking more steps. Moreover, these N steps should optimally be centered 
about the up-step, with =m 0. The best strategy is not to gain time separately from the disturbance, but to mod-
ulate push-offs in anticipation of it, and to continue doing so after encountering it. Here we describe the optimal 
strategies in terms of speed or momentum fluctuations, push-off modulation, and cumulative time gain.

The key to reducing overall work is to ramp up speed (momentum) in a few steps immediately preceding the 
disturbance (Fig. 4 top), pushing off hardest when stepping onto it. This anticipates a sharp loss in speed atop the 
up-step, followed by a gradual return to nominal speed, with approximately two-fold symmetric profile: symmet-
ric in time about the up-step, and in speed about nominal speed profile. The associated push-offs increase to a 
high peak centered on the up-step itself (u0), and otherwise remain close to nominal for all but a few steps sur-
rounding that step. The push-off profile is also approximately symmetric in time about the up-step, with the 
exception of the Nth push-off, which serves a special purpose of matching the final boundary conditions. In terms 
of cumulative time, the strategy reserves the few final steps to gain time in anticipation of the time lost on and 
after the up-step. We found little difference to using linearized vs. nonlinear dynamics (solid vs. dashed lines, 
respectively in Fig. 4 top), and therefore use linearized dynamics for following analyses.

The compensations increase in magnitude with fewer compensatory steps (Fig. 4 top) or larger up-step heights 
(Fig. 4 bottom). The extreme case is the minimum possible steps, =N 2, which generally call for a large speed-up 

Figure 4.  Optimal strategies to compensate for an up-step, for (top row) varying number of steps N , and 
(bottom row) varying step height b. Each row, from left to right: Speed vi vs. time, push-off work vs. time, and 
cumulative time gain vs. time. In top row, step height is fixed ( = .b L0 075 ), and optimal solutions shown are for 
linearized model, superimposed on nonlinear model solutions (dashed lines). In bottom row, both up- and 
down-step (positive and negative b, respectively) solutions are shown for linearized model; =N 9. Optimal 
strategies are all centered about the up-step ( =m 0).
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and a large peak push-off. Not surprisingly, the amplitudes of both speed and push-off profiles increase with 
bump height. Moreover, the profiles scale approximately linearly for small b. But regardless of the number of steps 
and the height to be gained, the optimal compensation largely occurs within ± T2 persist of the up-step.

The optimal strategy takes unique advantage of the dynamics of the up-step. There is a unique reduction of 
kinetic energy exchanged for the up-step’s potential energy, which accounts for a substantial loss of speed during 
the single upward step. That transient loss is compensated for by speeding up in two bouts, before and after the 
up-step. Speeding up is economical because the larger push-offs result in reduced collisions. It is optimal to 
mostly concentrate loss of speed into a single step, and to distribute the accelerations across many steps. This is 
illustrated by the case of many steps (e.g. see Fig. 4 top, =N 19), where there is slight advantage to first slowing 
down slightly, to extend the speed-up prior to the up-step.

We additionally observe that the optimal compensation for a down-step (Fig. 4 bottom), largely mirrors that 
for an up-step. The actions largely scale with step height, so that negative heights (down-steps, <b 0) entail slow-
ing down rather than speeding up ahead of the disturbance and reducing push-offs instead of increasing. 
Similarly, the cumulative time change is also nearly opposite to an up-step, except with time being deliberately lost 
instead of gained, in anticipation of the kinetic energy gained from stepping down. This scaling effect occurs 
about the nominal speed, push-off, or time gain, and is not quite linear, owing to the nonlinear dynamics (Eqs. 2 
and 9). Nevertheless, scaling of compensation with step height b serves to roughly describe the optimal solution 
for both up- and down-steps. Down-step strategies will be examined further in another section below.

Earlier or later compensations are more costly.  The optimality of centering the compensation about 
the up-step is illustrated by the costs of doing otherwise (Fig. 5). Shifting the compensation earlier or later ( <m 0 
or >m 0, respectively) and optimizing for each case, reveals increasing costs for total push-off work (Fig. 5a) and 
peak push-off work (Fig. 5b).

Figure 5.  Costs for optimal compensation strategies, as a function of compensation timing (shifting by m 
relative to up-step, see Fig. 1) and the number of compensation steps (N). (a) Total extra work vs. m, for N 
compensatory steps ( =N 9, = .b L0 075 ). Total extra work is defined as the work in excess of N nominal steps. 
Filled symbols indicate cost for each m, lighter horizontal lines indicate compensation range of N steps. (b) Peak 
push-off work vs. m. (c) Total extra work vs. N, and (d) Peak push-off work vs. N for optimal compensation 
centered about up-step ( =m 0). Also shown is the cost of an isolated time gain from nominal walking (Fig. 3), 
to regain time lost from an equivalent up-step ( = .b L0 075 , = . − . .t g L2 48gain

0 5 0 5) with no compensation. In (a 
and b), minima for both total and peak work occur at =m 0, where compensatory steps are distributed equally 
before and after the disturbance. Both costs also decrease for greater N. Also shown in (a) is the optimal strategy 
for recovering from an unanticipated up-step with a late push-off on the up-step.
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There is still more cost if the compensation occurs entirely before or after the disturbance. Compensating early 
with no overlap < − +( )m N( 1)

2
 is essentially equivalent to a completely separate time gain (Fig. 3), with an 

equivalent higher cost. Compensating later > +( )m N( 1)
2

 also tends toward the same higher cost, albeit with a 
longer transition. This is due to the transient response after the disturbance, in which the total time loss accumu-
lates over several persistence times τ. Beginning the compensation during the transient therefore means that less 
time is to be regained, and so the overall work cost only gradually increases towards an asymptote (Fig. 5a), 
namely the cost for gaining time separately. The peak push-off also tends toward its corresponding asymptote 
(Fig. 5b), albeit with elevated costs in some cases. These transition cases reinforce that the optimal compensation 
should envelop up-step symmetrically.

A large number of steps is not necessary to obtain near-optimal total work or peak push-off work. Although 
both costs (Fig. 5c,d) decrease with greater N , the returns diminish rapidly. For example, taking the minimum of 
two compensatory steps only takes about 12% more extra work than for nine ( = = .N b L9; 0 075 ). Beyond 
about two persistence times ( T2 persist), the costs are nearly indistinguishable. There is little to be gained from look-
ing more than a few steps ahead.

The optimal strategy has considerable advantages over an isolated time gain, separate from the up-step. For the 
sample comparison (Fig. 5), the optimum overall work is roughly half that for a completely separate time gain 
(compare minimum with asymptote in Fig. 5a). There is also a high cost penalty for failing to anticipate the 
up-step at all, and starting the compensation after a late push-off17. A similar but smaller advantage is observed in 
peak push-off. However, there is a special case of a compensation that ends just before the up-step 
( = − +m N( 1)/2 in Fig. 5b), where peak push-off is reduced, albeit at a slight cost in total work.

It is interesting to note that the optimal strategy is generally less costly than the potential energy of the up-step 
itself. One might expect a cost equal to the work for level nominal walking, plus the work needed to lift the body 
up the step. But here (Fig. 5), the overall added cost is about 58.5% of the potential energy gain, and the peak 
push-off is about 71.5%. As stated earlier, the optimal strategy actually gains advantage from the up-step.

Optimal strategies are self-similar despite parameter variations.  The optimal strategies have sim-
ilar speed profiles even for different parameter values for average speed and step length (Fig. 6). Taking greater 
(fixed) step lengths while keeping average walking speed fixed, the optimal compensations have similar shape but 
in fewer steps and less amplitude (Fig. 6a). The speed profiles are also similar to each other when increasing speed 
while keeping step length fixed (Fig. 6b), although the amplitudes decrease. Thus, for a wide range of parameter 
values, the compensation strategy always calls for speeding up ahead of an up-step, losing speed atop the up-step, 
and then recovering speed for several steps after it.

All of these effects may be summarized in terms of persistence time. Whether varying speed or step length, the 
optimal compensation maintains approximately the same profile (albeit varying amplitude) and takes place 
within about ± T2 persist. In fact, including all parameter variations considered thus far (e.g., number of steps, step 
height), the speed fluctuation profiles are nearly the same when normalized by persistence time (Fig. 6c). 
Persistence time is helpful for summarizing the combined effects of a discrete, once-per-step collision, and the 
continuous-time dynamics of the pendulum-like stance leg. It also plays a large role in the optimal compensation, 
whether stepping up or down, or walking at a range of speeds and step lengths.

Figure 6.  Effect of parameter variations on optimal strategies. (a) Optimal speed fluctuations for different 
values of step length parameter (via leg angle α; constant average speed). (b) Optimal speed fluctuations for 
different average speeds (via step frequency; constant leg angle α). In both (a and b), = .b L0 075  and =N 9. (c) 
Speed fluctuations for all parameter variations considered thus far, scaled by persistence time. Superimposed are 
variations in number of steps N (Fig. 4 top), step height b (Fig. 4 bottom), step length, and speed. All amplitudes 
are plotted relative to respective nominal speed, and have been normalized to unity positive peak. Speed 
fluctuations for negative step heights are shown negated to facilitate comparison.
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Up- and down-step strategies are related due to time-symmetry.  The optimal strategy to compen-
sate for a down-step is a simple time-reversal of the up-step strategy (Fig. 4 bottom). The speed profile for the 
down-step ( <b 0) is the same as for the up-step except with time running backwards. In fact, the push-off profile 
for a down-step is the same as the time-reversed up-step profile, except using the up-step collisions as the 
down-step push-offs. Similarly, the cumulative time gain is reversed in time, where down-step time loss is equiv-
alent to up-step time gain.

Time-reversal symmetry is explained by two basic principles. First, the walking dynamics have 
time-symmetry. The push-off and collision impulses act the same and differ only in which leg they apply to (trail-
ing and leading leg, respectively), and in the order of execution. As a result, the same dynamics may be played 
forward or backward in time, and the model walks in one direction or the other (to right or left of Fig. 1). For 
example, the push-off profile for a down-step (e.g., = − .b L0 05  in Fig. 4 bottom) may be flipped about the (ver-
tical) work axis (at =t 0) to yield the collision profile for an equivalent up-step ( = .b L0 05 ).

The second principle is that minimizing push-offs and minimizing collision magnitudes yield the same solu-
tion. This is because the boundary conditions enforced here call for nominal level walking at the same speed, and 
thus no difference in kinetic energy between start and end. The only energy difference is in the potential energy 
of the step (Mgb). The only energy sources and sinks are the push-offs and collisions, and so the sum of all 
push-offs and collisions must equal the potential energy, which is fixed for a given optimization problem. In addi-
tion, push-offs can only perform positive work, and collisions negative work. Any solution that minimizes total 
push-offs must therefore also minimize the total collision magnitudes.

Next is to apply time-symmetric dynamics to the optimization. The optimal strategy to traverse an up-step 
with minimal push-off work (e.g., Fig. 4 top) may be played in reverse, to yield the optimal strategy to traverse a 
down-step with minimal collision work magnitude. But minimizing collision magnitude is the same as minimiz-
ing push-off, and so the same strategy, whether played forward or backward in time, minimizes the respective 
push-offs for either direction.

Discussion
We explored the optimal strategy for anticipating and compensating for a single up- (or down-) step on otherwise 
flat terrain. The uncompensated effect of the disturbance was characterized in terms of a transient response with a 
loss of time and forward momentum, followed by an asymptotic return to nominal walking. For planned tasks, it 
may be desirable to regain the lost time, which was examined in two cases: one where time is regained by speeding 
up level walking, and the other, optimal case, where the compensatory steps are distributed both before and after 
the step. The analysis yields several conclusions regarding optimal compensations.

One conclusion is that there is a single, consistent pattern to optimally compensating for an up-step. That 
pattern consists of speeding up prior to the up-step, losing speed (and time) ascending that step, and then speed-
ing up again after it (Fig. 4). With appropriate scaling, that basic pattern applies regardless of the number of 
compensation steps, the up-step height, the walking speed, or the step length (see Fig. 6). For example, the pat-
tern’s timing scales largely in accordance with the persistence time, which is determined by the speed and step 
length (see Methods, Eq. 10). The pattern’s amplitude also scales, for different heights (including down-steps), 
speeds, or step lengths, but relatively little with the number of compensation steps. In fact, although there is 
always an advantage to taking more steps, there is rather little advantage beyond =N 3 steps. A general rule of 
thumb is that the optimal compensation should largely occur within ±2 persistence times of the up- (or down-) 
step.

This strategy is also clearly superior to gaining time separately during level walking. For example, the optimal 
compensation in five steps requires 51.3% less total extra work and 8.5% less peak work ( = = .N b L5, 0 075 ; see 
Fig. 5), while also having less sensitivity to the number of compensation steps. This is because a separate time gain 
is largely a matter of walking faster, which is costly on level ground. But the transient loss of speed and time from 
the up-step allows opportunity to reduce collision losses over two bouts of acceleration. Less energy is lost to 
collisions when either accelerating or stepping upward, and the optimal compensation takes full advantage of 
such opportunities.

These results help to reinforce the benefits of looking ahead. Vision (or other imaging) is certainly critical 
for spatial path planning, for example to determine feasible paths to avoid obstacles. But the dynamics of leg-
ged locomotion are such that planning can also be performed dynamically, in terms of momentum trajectories. 
Knowledge of upcoming terrain variations can allow not only for economy, but also for surmounting obstacles 
that might otherwise exceed actuator limitations. An up-step can thus be surmounted with less loss of time, less 
overall work, and reduced peak push-off compared to the up-step’s gravitational potential energy.

This has potential implications for control of legged robots. Perhaps the most straightforward control for 
robots, and also the most important for stability, is state feedback control. Such control might automatically reg-
ulate walking speed toward a nominal reference value, but would not normally be expected to make up for lost 
time, unless time were included as an explicit goal, and perhaps included as an explicit state (e.g., integrated error 
in the feedback controller). Even then, responding after a disturbance (see separate time gain, Fig. 3; or later tim-
ing, Fig. 5) cannot be as economical as the optimum ( =m 0, Fig. 5). Although the true optimum appears to 
require infinite look-ahead, near-optimal performance is possible with only about two persistence times (or dis-
tances) of foresight. Although such compensation could be stored as a scalable trajectory (e.g., Fig. 6c), an alter-
native would simply be a model predictive control18, where an optimal plan is continually regenerated with a 
receding horizon. That horizon need only be about two persistence times ahead, and might be compatible with 
other optimization approaches already employed for some legged robots19–22.

Our analysis may suggest how humans negotiate small obstacles. Humans rely on vision to identify curbs or 
height discrepancies in a sidewalk, and the resulting compensations may do more than simply prevent tripping. 
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It is possible that humans speed up prior to a stepping up a curb, and perhaps slow down prior to stepping down 
a curb23. They appear to look several steps ahead24 and make quick, dynamically sensible decisions. Moreover, 
they appear to control not only speed but also foot placement, while taking into account actuator limitations. It is 
unknown how humans actually plan their momentum or whether they control it optimally. The optimal strategies 
considered here might serve as a reference for comparison to humans.

The compensation strategies examined here are focused on pendulum-like walking. Our step-to-step transi-
tion analysis treats the leg as relatively straight when it contacts ground. This may apply well to relatively small 
up-steps, but not to larger ones. Humans normally flex the swing knee at mid-stance, in part to gain ground 
clearance, and then extend again prior to ground contact25. But swing knee extension does not seem to apply for 
larger inclines or typical stairs, where there may be less forward momentum. Compensation strategies might be 
different for larger up-steps, and especially for less pendulum-like gaits.

The present analysis has a number of additional limitations. Our model has fixed step length and width, 
and performs impulsive step-to-step transitions, whereas humans actually modulate step distances, and perform 
step-to-step transitions over finite time. The actual costs of varying speed26 might therefore differ from that con-
sidered here. The model is also confined to dynamical planning of push-offs and speed, assuming that the spatial 
path is already determined. An improved model could allow for three-dimensional stepping27,28 with multiple 
joints that allow for leg compliance29 and finite-duration step-to-step transitions, and might combine spatial and 
dynamical planning into a single optimization problem.

Despite these limitations, there may be some general conclusions that may yet apply to more complex mod-
els. Even with additional degrees of freedom, walking is often dominated by forward momentum, and the 
step-to-step transition may dissipate significant energy, which must then be restored with active work. It may 
therefore be advantageous to counter a step height disturbance by gaining momentum several steps beforehand 
and continuing the compensation past the disturbance for several steps thereafter. Furthermore, the appropriate 
compensation range may be described by a measure such as persistence time. Without planning, compensations 
for uneven terrain may come with a relatively high cost in overall work, peak actuator demands, and/or number 
of compensation steps. There may be considerable advantage to applying optimization to the dynamics of legged 
locomotion, particularly on uneven terrain.

Methods
Model of walking.  The walking model has rigid, pendulum-like legs whose ground collisions dominate the 
energetics (Fig. 1a). It has a point-mass pelvis of mass M, atop massless legs taking fixed-length steps (Fig. 1b). 
The stance leg behaves like an underactuated, inverted pendulum during single support, punctuated by the “step-
to-step transition” to redirect the center-of-mass (COM) velocity between steps14. This is accomplished with an 
active push-off along the trailing leg, followed immediately by an inelastic heel-strike collision along the leading 
leg, both modeled as ideal impulses in immediate succession (Fig. 1c). A full walking step therefore starts with a 
push-off then a collision and followed by pendular stance phase that ends just before the next leg contacts ground. 
Middle stance (mid-stance) is defined as the instant that the stance leg is upright within the stance phase. When 
the terrain disturbance is encountered (Fig. 1d), we consider cases where push-off occurs pre-emptively or late, 
relative to collision. In the optimal case (Fig. 1e), terrain variations are sensed in advance, and pre-emptive push-
offs are to be planned. We previously examined a similar model17, and found that failure to anticipate and perform 
push-off pre-emptively, for example on uneven terrain, results in considerably poorer economy.

The model dynamics are briefly summarized as follows (detailed previously17): Each step has index i with the 
disturbance located at =i 0 (Fig. 1d). Negative i therefore refer to the preparatory steps beforehand, and positive 
to recovery steps thereafter. Each step begins just before the step-to-step transition, with COM velocity −vi  
directed forward and downward as dictated by the preceding step’s stance phase. The ideal step-to-step transition 
starts with pre-emptive push-off work ui (in units of mass-normalized work) performed impulsively along the 
trailing leg to redirect the COM velocity. Applying impulse-momentum (and normalizing by body mass) yields 
an intermediate velocity of magnitude vi

0,

= + .−v v u( ) 2 (1)i i i
0 2

This is followed immediately by the heel-strike collision along the leading leg, to yield post-collision velocity 
+vi . Again applying impulse-momentum,

α α= + .+ −v v ucos2 2 sin2 (2)i i i

The single stance phase follows the step-to-step transition, and is modeled as an underactuated, simple 
inverted pendulum. As a discrete measure of overall forward momentum, we use the mid-stance velocity vi (no 
superscript; see Fig. 1e), sampled when the leg is vertical and the COM velocity is purely forward.

We treat steady, level walking as the nominal condition (Fig. 1c). Each begins and ends at the same speed 
=− +v vi i . The nominal push-off work ui offsets the collision work14,

so that

α= .−u v1
2

( ) tan (3)i i
2 2

The up- or down-step disturbs steady walking (Fig. 1d). Its height b (positive for up-steps, negative for 
down-steps) causes the preceding step ( = −i 1) to end with different leg angles from nominal. For simplicity, we 
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will typically refer to up-steps alone, and treat down-steps as a straightforward generalization there-of, unless 
otherwise discussed. For a given height b and step length S, we define the angular disturbance as δi,

δ δ= = ≠− b
S

isin , 0 for 0, (4)i0
1

where the angle is zero for all non-disturbance steps.
We expect that it is helpful to detect the up-step ahead of time, to allow push-off to occur pre-emptively, that 

is, before the collision. Pre-emptive push-off is more economical both on the level14 and on the up-step17, because 
it reduces the subsequent collision loss. If the up-step is completely unanticipated, the push-off might occur late. 
If so, the leading leg collision first redirects COM velocity along a new pendular arc. We refer to the work of a late 
push-off as +u0  (with the plus sign ‘+’ indicating the post-collision timing), performed impulsively to increase 
speed along that new arc:

α− = + = .+ − +v v u iLate push off: ( cos2 ) 2 for 0 (5)0 0
2

0

We treat the late push-off as of nominal amount, as if the nominal energy were stored elastically as observed in 
humans30,31, but released late. The next step will then have substantially reduced speed +v0  and slower step time τ0.

The inverted pendulum stance phase follows the step-to-step transition. The step time τi is defined as the time 
for the stance leg angle θ to move from initial to final angles (α δ+ i and −α δ+ +i 1, respectively). Using the lin-
earized dynamics,

τ
α δ α δ δ δ δ

α δ
=

− + − + + −

− −
.+

+
+ +

+

v
v

log ( ) 2 ( )

(6)i
i i i i i i

i i

1
2

1 1
2 2

Solving the equation of motion with the step time, the velocity at end of stance +
−vi 1, or equivalently the begin-

ning of the next step-to-step transition can be found as:

α δ α δ= − − + + + .τ τ
+
− − + +v e v e v1

2
( ( ) ( )) (7)i i i i i1

i i

We chose nominal parameters to correspond to typical human walking. A person with leg length L of 1 m may 
typically walk at 1.5 m/s, with step length of 0.79 m and step time of 0.53 s (from anecdotal observations). Using 
dynamic similarity, parameters and results may be expressed in terms of body mass M, gravitational acceleration 
g, and L as base units. The corresponding model parameters are angle α = .0 41, push-off = .U MgL0 0342 , step 
time = . − . .T g L1 66 0 5 0 5, and pre-collision speed = . . .⁎V g L0 601 0 5 0 5, where capital letters indicate nominal val-
ues for ui, τi, and −vi , respectively. We also refer to a nominal speed = . . .V g L0 44 0 5 0 5 for mid-stance speed vi. We 
considered a range of up-step heights, for example = .b L0 075 , equivalent to about 7.5 cm for a human.

Although most of this study relied on the linearized dynamics of Eqs. (6 and 7), we also performed a subset of 
simulations with fully nonlinear dynamics to test the accuracy of this approximation (Fig. 4).

Optimal Control Formulation.  We used optimization to determine the push-off sequence that modulates 
momentum to most economically negotiate a single disturbance. The objective was to minimize the total positive 
work of N  consecutive push-offs of amount ui, subject to constraints to depart from and then regain nominal 
walking with no loss of time or speed compared to steady, level gait. The timing of this compensation was found 
to affect overall economy and was therefore explored by shifting the N  modulated steps earlier or later relative to 
the disturbance. The optimal strategies were explored with parameter variations in compensatory steps N , step 
height b, nominal speed V , and compensation timing m.

The N  compensatory steps were nominally centered about the up-step. It is convenient to consider odd N , so 
that the single up-step at =i 0 is surrounded by an equal amount of anticipatory steps before, and recovery steps 
after. The parameter m (Fig. 1e) shifts these steps later ( >m 0) or earlier ( <m 0). Again for odd N , the compen-
sation steps range from “start” = − +− mN 1

2
 to “end” = +− mN 1

2
. The speed constraint states that walking 

speed begins at and returns to nominal, level walking. The time constraint requires that the total time for stepping 
onto and recovering from the uneven terrain, be equal to the nominal time to walk the same number of level 
steps.

The optimal policy π (sequence of push-offs …u u, ,start end, all constrained to be non-negative) is:

∑π =
π =

⁎ uargmin
(8)i

i
start

end

Subject to:
Initial speed: =− ⁎v Vstart
Final speed: =+ ⁎v Vend
Time: τ∑ = ⋅= N Ti istart

end

Dynamics: Step-to-step transition Eq. (2)
Stance phase Eqs. (6) and (7)
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We next define a persistence time for the hybrid dynamics of discrete step-to-step transitions and 
continuous-time pendulum dynamics. On level ground and with unmodulated push-offs, walking speed con-
verges exponentially toward nominal with each discrete step. The step-to-step eigenvalue cos 2α (about 0.68 for 
nominal gait; Eq. 2) determines this convergence. This may be combined with the continuous-time step period T 
to yield an overall decay with time constant Tpersist:

α
∆

∆
= =+ −v

v
ecos2

(9)
i

i

T
T1 persist

where ∆vi refers to the deviation from nominal mid-stance speed at step i. Solving for persistence time,

α
= − .T T

log cos2 (10)e
persist

An analogous persistence distance may be found by dividing Tpersist by nominal speed. Persistence time (or 
distance) may be interpreted as the time (or distance) required for a disturbance response to decay to ≈−e 37%1  
of its peak amplitude. It helps to place an expectation on optimal recovery from a disturbance. With active control 
of push-off, it is of course possible to change the disturbance response substantially. But when optimizing for 
work or energy, we do not expect the response to be far faster than uncompensated, because that would entail a 
high effort cost. Nor do we expect the response to be slower than the uncompensated case, which is already stable. 
We therefore expect that optimal compensation responses should be somewhat faster than uncompensated and 
should therefore decay within no more than a few persistence times.
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