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A B S T R A C T   

To solve the problems of untimely and low accuracy of tunnel project collapse risk prediction, this 
study proposes a method of multi-source information fusion. The method uses the PSO-SVM 
model to predict the surrounding rock displacement. With the prediction index as the bench-
mark, the Cloud Model (CM) is used to calculate the basic probability assignment value. At the 
same time, the improved D-S theory is used to fuse the monitoring data, the advanced geological 
forecast, and the tripartite information indicators of site inspection patrol. This method is applied 
to the risk assessment of Jinzhupa Tunnel, and the decision-makers adjust the risk factors in time 
according to the prediction level. In the end, the tunnel did not collapse on a large scale.   

1. Introduction 

At present, China is one of the countries with the largest number of highway tunnels. Road tunnels run through the different regions 
of communication and development. As for tunnel excavation, there are numerous risk factors involved. Complex construction pro-
cesses often lead to collapse accidents. In case of collapse, it will cause casualties and social and economic losses [1,2]. Because the 
constitutive relationship and parameters of underground engineering soil are difficult to obtain accurately, they are often obtained by 
numerical simulation and field test. Wang H et al. [3] discussed the influence of parameter changes on the range of shear plastic zone of 
soil by limit analysis. Wang H [4] et al.determined the failure mechanism of slope soil by flume test and numerical calculation. The 
above methods are from the classical point of view of mechanics. 

In recent years, traditional artificial intelligence methods have been widely applied in the study of risk analysis and control of 
tunnel collapse such as Artificial neural networks [5], Random forests [6], and Long and short-term memory neural networks [7], 
Gaussian regression [8], etc. However, these tools tend to be more predictive of monitoring and measuring data. The use of a single 
source of information to analyze the risk of the tunnel collapse, however, does not reflect the reality of the actual construction situation 
and leads to inaccurate assessment results. The integration of multiple sources of information is more objective in determining risk 
factors. While data fusion was first applied in the military field to resolve digital conflicts between different data sources [9]. Zhang 
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et al. [10] proposed four incremental fusion mechanisms featuring changes in information sources and attributes for multi-source 
incomplete interval-valued data. The mechanism designs the corresponding static and dynamic fusion algorithms and the 
complexity of the analysis time. Thus, the computing time is reduced. Qiu et al. [11] achieved accurate identification of harvester 
operating conditions by a fault diagnosis algorithm based on speed fusion index, component slip rate, and adaptive threshold 
discrimination. Zhang et al. [12] combined the cloud model and the sequential preference similarity of ideal solutions and used the 
method for the Wuhan subway project example to deal with the uncertainty of coping with simulation and sensitivity analysis. Xun 
et al. [13] combined Building Information Modeling (BIM), Intuitionistic Fuzzy Set (IFS) theory, and D-S evidence theory for the safety 
risk assessment method to enhance the safety risk perception of undersea tunnel visualization. Among the above information fusion 
methods, the D-S evidence theory is a common approach in the field of information fusion. This is especially advantageous when 
distinguishing between uncertain or ambiguous decisions. However, the traditional D-S theory fusion process ignores the problem of 
conflicting evidence [14] and is not suitable for dealing with highly conflicting information. For example, Huang et al. [15] in the fault 
diagnosis of gas regulator, due to the large sample conflict coefficient, the fusion can not determine the fault state. 

In addition, most of the current information fusion uses real-time monitoring data for fusion analysis, resulting in the inability to 
predict the occurrence of collapse accidents in advance. The excessive deformation can lead to tunnel instability and even collapse 
accidents. Therefore, the assessment method based on deformation prediction is an important tool to achieve intelligent warning and 
ensure the safety of tunnel construction. 

In view of this, this paper develops a dynamic risk assessment method based on machine learning, cloud model and D-S evidence 
fusion. This method uses PSO-SVM algorithm to predict the displacement and deformation trend of surrounding rock, takes the 
predicted displacement value of surrounding rock as the information source, and integrates advanced geological prediction and on-site 
real-time situation. Thus, the risk level is judged, the advanced evaluation is realized, and the early warning is carried out according to 
the level. 

2. Theory 

The PSO-SVM rolling prediction is used to monitor the measurement data. Based on the predicted displacement, the cloud model +
improved D-S fusion is used to calculate the basic BPA value and determine the final risk level. 

2.1. CM + improved D-S evidence 

The normal cloud model is a special cloud model based on Gaussian affiliation function. ‘Ex’ is the central value in the field of 
qualitative concepts [16]. 

Assume that B is a qualitative concept related to X. There is a set X (1) x ∈ X (2) x that is a random instance of concept B (3) x ∼

N(Ex,En′2),En′ ∼ N(En,He2), a certain degree of rank of X belonging to concept B satisfies Eq. (1): 

μ(x)= e
−
(x− Ex)2

2(En′)2 (1)  

Analysis of tunnel envelope deformation risk factors Ci in the decision making process. To mine useful information, each risk factor 
should be further classified into different risk states Cij(i = 1,2,...,M; j = 1,2,...,N). Each risk state corresponds to a specific double limit 
interval, denoted as [cij(L),cij(R)]. The double limit interval [cij(L), cij(R)] is transformed into a normal cloud model (Exij,Enij,Heij) by Eq. 
(2). 

The values of Ex, En, and He are shown below. 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Exij
cij(L) + cij(R)

2

Enij =
cij(R) − cij(L)

6
Heij = h

, (i= 1, 2, ...,M; j= 1, 2, ...,N) (2)  

Where “Exij” is the expectation, “Enij” is the entropy of “Exij”; ” Heij” is the hyper-entropy. The distribution of “x” in the theoretical 
domain X is called a standard cloud. The range of the constant “h” is taken as 0.002 [17]. 

The basic probability distribution (BPA) of the influencing factors under different risk states can be obtained from Eq. (3). 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mi
(
Cj
)
= exp

(

−

(
xi − Exij

)2

2
(
Enij

′
)2

mi(Φ) = 1 −
∑N

j=1
mi
(
Cj
)

, (i= 1, 2, ...,M; j= 1, 2, ...,N) (3)  

where mi(Cj) is the belief measure; En′ represents a random number that satisfies En′ ∼ N(En,He2), and mi(Φ) represent the BPAs value 
in uncertain situations; that is, the focus element cannot be determined under the indicator Ci. 
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The probability values obtained by fusing the indicators of the surrounding rock deformation are used to calculate the Dempster 
combination rule [18] for multiple evidence using Eq. (4) to obtain the risk level of each indicator. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(C) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
1 − k

∑

Ci∩Cj∩⋯∩Ck=C
m1(Ci)m2

(
Cj
)
...ml(Ck), ∀C ⊆ Θ,C ∕= ∅

0,C = ∅

K =
∑

Ci∩Cj∩⋯∩Ck=∅
m1(Ci)m2

(
Cj
)
...ml(Ck)＜1

(4)  

Where the conflict factor K is defined as the normalization factor. I is the number of evidence in the combination process, and i, j, k 
denotes the ith, the jth, and the kth, respectively. 

When the value of K converges to 1, a large conflict will arise and the evidence aggregation rule of D-S will fail. For the high conflict 
evidence treatment, the Jousselme distance is used to express the degree of association between the evidence source and the reference 
evidence, and the evidence source is corrected by Eq. (5). 

d0i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2
(M0 − Mi)

T D(M0 − Mi)

√

(5)  

where M0 and Mi are the reference evidence and the BPA sequence of the ith evidence, respectively, and D is a 2 N*2 N square matrix. 
The correlation degree function is constructed from Eq. (6) to obtain the new evidence to calculate the fusion results. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r0i = e− d0i , i = 1, 2, ...., n(0 ≤ r0i ≤ 1)

wi =
r0i

∑i=l

i=1
r0i

mnew =
∑n

i=1
wimi

(6)  

where r0i and reflecting the degree of association between two pieces of evidence L are the number of evidence and the number of 
hypotheses, respectively. 

2.2. PSO-SVM coupling algorithm process 

The Support Vector Machine (SVM) is a machine learning method based on Vapnik-Chervonenk theory and structural risk mini-
mization principle. The estimation function in the prediction process can be expressed as: 

Fig. 1. PSO-SVM coupling flow chart.  
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y(x)=
∑N

n=1
wnk(x, xn) + w0 (7)  

Where wn is the weight of the model, k(x, xn) is a kernel function, w0 and is the initial weight. 
The SVM model has two critical parameters, penalty factors C and kernel function parameter g; the parameter C shows the tolerance 

of the model to errors, while parameter g indirectly affects the data. Compared with the traditional method, the particle swarm 
optimization algorithm has better global search ability and cannot easily fall into local optimum [19]. Therefore, the particle swarm 
optimization algorithm is used to optimize the SVM to determine the optimal hyperparameters C and g. As shown in Fig. 1, the 
computational procedure of the coupled PSO-SVM algorithm is as follows [20,21]. 

2.3. Rolling prediction algorithm 

The rolling prediction method is used to predict the foundation pit displacement in this paper. Suppose the {xi, yi} is used to 
describe the displacement [2], the number of predicted steps t, and the best historical point p. The detailed analysis is as follows.  

(1) Supposing the displacement time series {xi,yi}(i = 0,...,p − 1) have been obtained. The data of the first p days{xi,yi}(i = 0,...,p −
1)are used as the learning samples. The first prediction of rock deformation {xi, yi}(i = p, ..., p+ t − 1)around the pile 
displacement prediction on the subsequent t days is performed after completing training.  

(2) For the second round, the displacement time series {xi,yi}(i = t, ..., t+ p − 1) is taken as the learning sample. The t days of the 
data {xi,yi}(i = t+ p, ...,p+ 2t − 1)are used as the prediction samples.  

(3) In the nth round of prediction, the displacement time series {xi,yi}(i = nt, ...,nt+ p − 1) is used as the learning sample, and the 
displacement {xi,yi}(i = nt, ...,nt + p − 1) is predicted for the subsequent t days. 

3. Multi-source heterogeneous information fusion evaluation 

3.1. Case statistics and analysis 

3.1.1. Project overview 
The Jinzhupa Tunnel on the Puyan Expressway in Fujian Province is a two-lane split tunnel. The tunnel is designed as a two-way 

six-lane road with a road width of 33.5 m. The tunnel inlet uses a column type cavern door and the exit uses an end wall type cavern 
door. The tunnel entrance section is mainly medium-weathered siltstone, which is a softer rock. The medium-weathered rock layer is 
relatively broken, with a mosaic fracture structure and developed rock joints and fissures. The cave is dominated by medium- 
weathering siltstone, granite and powdered clay. The surrounding rocks are in bulk structure, and the self-stability of the surround-
ing rocks is poor; as shown in Fig. 2. 

Collapse accidents are collated with reference to relevant literature [22–27], and a comprehensive analysis of 100 collapse cases is 
conducted. The characteristics of the composition of factors affecting tunnel collapse are shown in Fig. 3. 

As shown in Fig. 3, it can be seen that there are 9 collapse factors with a ratio of 20% or more. Other factors are neglected due to 
their low proportion in this study. Initially, these nine risk indices are selected as the index system for tunnel collapse. Based on the 
literature statistics and construction experience, the risk indicators are classified and quantified as shown in Table 1. 

The collected 100 datasets are used as training data. In the excavated section from ZK242 + 675 to ZK242 + 875, training samples 
are selected every 5 m, and 40 tunnel sections are selected as test samples. The convolutional neural network (CNN) model is used to 
train the collapse risk level of the test samples, and the training results are shown in Figs. 4 and 5. The numbers on the diagonal on the 
graph are the correct predictions, the rest are wrong predictions. The correct rate in the training sample is 94.6429%, but only 55.17% 
in the test sample. It may be that the visual inspection index factors do not fully reflect the overall situation of the stable surrounding 
rock, resulting in deviations between the assessment results alone and the actual situation. As part of the visual inspection indicators 
are static indicators, some of the indicators will be taken into account in the dynamic indicators of site inspections. 

Fig. 2. Cross section of the right line of the tunnel.  
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Fig. 3. Percentage of risk factors.  

Table 1 
Tunnel collapse deformation prediction index.  

Factors I II III IV 

Collapse(T) marginal serious critical catastrophic 
Excavation span (m)(C1) <7 7~10 10~14 >14 
Surrounding rock grade(C2) >550 450–550 350–450 <350 
Excavation method(C3) CRD CD Step method Full-section method 
Site Management(C4) >98 95–98 92–95 88–92 
Monitoring and measurement(C5) >4 3 2 1 
Initial support(C6) Totally reasonable Reasonable General Unreasonable 
Weathering factor(C7) 0.9–1 0.8–0.9 0.6–0.8 0.4–0.6 
Geological Survey Accuracy(C8) >90 85–90 80–85 <80 
Groundwater level(C9) Undeveloped General richer Water-rich  

Fig. 4. Classification results of the training set.  
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3.2. Risk probability assessment 

The method first collects the information from the advanced geological forecasts, on-site inspections and monitoring measure-
ments. Then the CM is used to calculate the basic probability assignment of each information source. The overall collapse risk level is 
finally derived by fusing the index information through D-S evidence. The flow chart for assessing the collapse risk level is shown in 
Fig. 6. 

3.2.1. Advanced geological forecasting 
The seismic wave (TGP) is used for the advanced geological forecasting, and the original records of seismic waves are shown in 

Fig. 7. The offset image, estimated wave speed, SC, and R versus tunnel mileage are shown in Fig. 8. According to the TGP detection 
results and engineering geological analysis, the geological conditions of about 140 m (mileage 242960 m) in front of the tunnel 
workings can be obtained. From the right boundary of zone (2) 242870 m to the left boundary of zone (3) 242900 m, the longitudinal 
and transverse wave velocities remain constant [16,27]. 

Zhang et al. [2] established to identify potential undesirable geological units with geologically sensitive parameters in the TSP/TGP 
sounding results. Combined with the summary analysis of Ou, the evaluation levels based on the TGP results are shown in Table 2. 

The maximum specific velocity is 0.23, and the wave axis ratio reaches 0.4. At the same time, Vp rises to 5370 m/s, and the risk 
probability level is II. 

3.2.2. On-site inspection 
The On-site inspection is an important indicator of the tunnel construction process. The inspection content is determined according 

to the internal and external environment stipulated in the ’ Technical Specification for Monitoring of Urban Rail Transit Engineering ’ 
GB50911-2013. Using the verification table method, the inspection content is classified and identified, and the traditional qualitative 

Fig. 5. Test set classification results.  

Fig. 6. The probability assessment of the risk of collapse of the tunnel construction.  
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description of the risk situation in the inspection process is transformed into a semi-quantitative classification, as shown in Table 3. 

3.2.3. Monitoring measurements 
Monitoring measurements include vault subsidence, peripheral displacement, surface subsidence, groundwater level and blasting 

vibration, etc. These monitoring measurements can reflect the safety state of the surrounding rock and support structure. In this study, 
two indicators of vault subsidence and peripheral convergence are selected for collapse risk analysis. The daily variation amount and 
cumulative deformation amount are also selected as the judgment index, as shown in Table 4. 

Where the cumulative deformation (y) should be based on the distance between the measurement point and the palm surface (d) 
multiplied by the coefficient ω.According to the Technical Specification for Monitoring and Measurement of Road Tunnels (DB 35/T 
1067–2010) to determine ω, as shown in Table 5. 

Fig. 7. Original recordings of seismic waves in three components.  

Fig. 8. Longitudinal wave offset diagram.  

Table 2 
Evaluation table of advance geological forecast level.  

Risk 
probability 
level 

I(incredible) II(improbable) III(remote) IV(frequent) 

TGP  (1) (2) The longitudinal and transverse 
wave velocities are basically 
constant Reflection arc ratio less 
than 0.06  

(3) Wave axis similarity less than 0.2  

(1) Small variation in 
longitudinal and 
transverse wave speed  

(2) Reflection arc ratio less 
than 0.08  

(3) Wave axis similarity 
between 0.2 and 0.6  

(1) Significant reduction in 
longitudinal and 
transverse wave speed  

(2) Reflection arc ratio less 
than 0.08  

(3) Wave axis similarity 
greater than 0.6  

(1) Significant reduction in 
longitudinal and 
transverse wave speed  

(2) Reflection arc ratio 
greater than0.08  

(3) Wave axis similarity 
greater than 0.6  
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Heliyon 10 (2024) e26152

8

The CM eigenvalues of the monitored measurements are calculated according to Equation (3) as shown in Table 6. Meanwhile, 
according to the expert scoring method in Table 7 to quantify the indicators of advance geological forecasting and field inspection, the 
cloud model characteristic values are obtained as shown in Table 8. Each cloud droplet diagram is presented as Fig. 9(a–c). 

3.2.4. Heterogeneous information fusion  

(1) On-site inspections 

Based on the above analysis, experts scoring are used to obtain the raw data. The initial scoring table is shown in Table 9. Based on 
the scoring results of the five experts, the data of each assessment index is neutralized. The basic confidence assignments (BPAs) of the 
assessment metrics were calculated by Eq. (1)(2) as shown in Table 10. 

By improving the D-S theory and Eq. (4), the indicators are fused, and the fusion process is obtained as shown in Table 11.  

(2) Monitoring measurements 

The measured values of the points arranged in the cross section of tunnel ZK242 + 835 are selected, as shown in Fig. 10. Similarly, 
the BPA values calculated using formula (1) (2) are shown in Table 12. 

The BPAs of the indicators of each measurement point in the table are fused one by one according to the evidence fusion rules of the 
formula mixture to obtain the final BPAs of the monitored measurement information sources. the fusion process is shown in Table 13. 

It can be seen from Table 11 that when the two evidences are highly conflicting, the traditional D-S theory will fail. The improved D- 
S theory can correctly predict the results of the fusion model by redistributing the weights and weakening the conflict factors. 

According to the "Guidelines for Construction Safety Risk Assessment of Highway Bridge and Tunnel Projects (for Trial Imple-
mentation)" (2011), the risk level criteria are divided into four levels, as shown in Fig. 11. For different levels of risk, different risk 
acceptance guidelines are determined for risk control, as shown in Table 14. 

The tunnel collapse risk level is I according to the monitoring and measurement, while the probability level is II according to the site 
inspection and the probability level is II according to the advance geological forecast. The final fusion grade is moderate (Class II). It is 

Table 3 
Site inspection level division.  

Evaluation Metrics Risk probability level 

I(incredible) II(improbable) III(remote) IV(frequent) 

Overrun support Application of over-support qualified basically qualified unqualified complete unqualified 
Grouting effect qualified basically qualified unqualified complete unqualified 

Earth excavation Core soil size qualified basically qualified unqualified complete unqualified 
Over excavation and backfill qualified basically qualified unqualified complete unqualified 

Initial support Self-stability of the geotechnical body at the 
excavation face 

qualified basically qualified unqualified complete unqualified 

Water Leakage dry drip infiltration 
linear 

Sand 
leakage 

collapse 

Erection of longitudinal spacing qualified basically qualified unqualified complete unqualified 
Installation of locking foot anchors qualified basically qualified unqualified complete unqualified 
Stability of the initial support structure stable cracking Stripping distortion and deformation 

Backfill grouting Water leakage of the initial support structure dry Drip infiltration 
linear 

femoral karst pipeline type gushing 
water 

Temporary support 
system 

Temporary support structure dislocation no 
displacement 

slightly shifted shifted severe displacement 

Temporary support structure segmental 
removal 

qualified basically qualified unqualified complete unqualified  

Table 4 
Monitoring and measuring data classification.  

Severity class of tunnel collapse I(marginal) II(serious) III(critical) IV(catastrophic) 

Deformation rate(mm/d) 0 ≤ x < 2 2 ≤ x < 5 5 ≤ x < 10 10 ≤ x < 20 
Cumulative deformation (mm) 0 ≤ y < 50 50 ≤ y < 100 100 ≤ y < 150 150 ≤ y < 200  

Table 5 
Coefficients of cumulative deformation (y) (ω).  

Distance from the monitoring section to the palm face (d) 1B 2B 3B 4B~6B 

ω 0.5 0.75 0.85 1  
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Table 6 
CM feature values for monitoring and measuring metrics.   

Eigenvalue I II III IV 

cumulative displacement Ex 12.5 37.5 62.5 87.5 
En 8.333 8.333 8.333 8.333 
He 0.002 0.002 0.002 0.002 

displacement rate Ex 1 3.5 7.5 15 
En 0.333 0.5 0.833 1.666 
He 0.002 0.002 0.002 0.002  

Table 7 
Expert scoring table.  

level I II III IV 

score [7.5,10] [5,7.5] [2.5,5] [0,2.5]  

Table 8 
The CM characteristic values for advance geological forecasting and field inspection.  

Eigenvalue I II III IV 

Ex 8.75 6.25 3.75 1.25 
En 0.416 0.416 0.416 0.416 
He 0.002 0.002 0.002 0.002  

Fig. 9. Information cloud drop diagram.  

Table 9 
The experts’ scoring table.  

Evaluation Metrics Experts’scores 

No.1 No.2 No.3 No.4 No.5 

Advance Geological Forecasting X TGP X1 6.5 6.3 6.2 6.3 6.7 
On-site inspections Y Application of over-support Y1 6.3 6.5 6.5 5.4 6.1 

Grouting effect Y2 6.4 6.3 5.8 5.7 6.2 
Core soil size Y3 5.6 5.4 6.3 6.2 4.5 
Over excavation and backfill Y4 6.1 5.9 5.8 5.9 6.2 
Self-stability of the geotechnical body at the excavation face Y5 4.3 4.1 4.2 5.5 5.3 
Water Leakage Y6 7.2 7.1 7 7.1 7.2 
Erection of longitudinal spacing Y7 7.3 6.4 6.5 6.2 6 
Installation of locking foot anchors Y8 7.6 6.6 6.5 6.4 6.3 
Water leakage of the initial support structure Y9 5.4 5.4 5.3 5.7 5.8 
Temporary support structure dislocation Y10 6.3 6.5 6 6 6 
Temporary support structure segmental removal Y11 7.8 6.6 7.5 7.4 7  
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in the acceptable range and does not require action, but needs to be monitored. There is no obvious crack on the surface of the exit 
section, and the stability of the elevation slope is good. Observation of initial support condition: The initial support of the monitored 
section does not show cracks and bulges, but only local dripping phenomenon. The risk level assessed is consistent with the field 
situation. Based on the information of monitoring and measurement, the evaluation results are different from the on-site situation. And 
the accuracy of the classification results of visual inspection in Fig. 5 is less than 60 %, which indicates the data uncertainty of single- 
source information. The multi-source information comprehensively considers all situations, so that the error result is corrected to 
obtain the correct prediction result. 

3.3. Collapse risk control 

In order to control the collapse risk ahead of time and reduce the project loss. The predicted surrounding rock displacement is used 
as an information source and the basic probability is redistributed. The PSO-SVM algorithm was used to roll the predicted displacement 

Table 10 
The qualitative indicators BPA values.   

scores I II III IV 

X1 6.3 0 0.9929 0.0071 0 
Y1 6.3 0 0.9929 0.0071 0 
Y2 6.2 0 0.9928 0.0072 0 
Y3 5.6 0 0.7063 0.2936 0.001 
Y4 5.9 0 0.7022 0.2978 0 
Y5 4.3 0 0.002 0.4185 0.5815 
Y6 7.1 0.1256 0.874 0.04 0 
Y7 6.4 0 0.967 0.063 0 
Y8 6.5 0 0.8354 0.1646 0 
Y9 5.4 0 0.8427 0.1269 0.004 
Y10 6 0 0.8337 0 0.1663 
Y11 7.8 0.92 0.07 0 0  

Table 11 
Integration of forward geological forecasting and field inspection indicators.  

The number of fusions m(I) m(II) m(III) m(IV) 

1 0 0.999 0.001 0 
2 0 0.9936 0.01 0 
3 0 0.983 0.017 0 
4 0 0.9927 0.0073 0 
4 0 0.404 0.596 0 
5 0 0.9368 0.063 0 
6 0 0.9958 0.0042 0 
7 0 0.9918 0.0082 0 
8 0 0.9874 0.0126 0 
9 0 1 0 0 
10 0 1 0 0 

The collapse risk probability level of II is obtained through the 10 fusions of on-site inspection fusion. 

Fig. 10. Step method excavation.  
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of the ZK242 + 835 section, and the predicted values are shown in Table 15. 
Monitoring deformation collapse grade II, has been the support structure deformation. Within acceptable limits, collapses are likely 

to occur and require a high degree of attention. In the next three days, the deformation displacement of the surrounding rock is 
predicted to reach level III, with the possibility of a small collapse. Therefore, combined with the site inspection collapse risk level 
fusion, to determine whether the need to take risk measures. In the next three days, after the integration of site inspection indicators 
have been at the same level III, as shown in Table 16. The risk level of each indicator for the next three days is shown in Fig. 12. 

up the progress of the tunnel. When spraying slurry for the initial support of the upper step, the cement is not strong enough due to 

Table 12 
The BPA values for monitoring measurements.  

point index measurements m(I) m(II) m(III) m(IV) 

ZK242 + 835B cumulative settlement value − 17.9 0.8262 0.1738 0 0 
displacement rate − 3.7 0.0771 0.9228 0 0 
D-S  0.2843 0.7157 0 0 

ZK242 + 835A cumulative settlement value − 19.1 0.7484 0.2516 0 0 
displacement rate − 4.9 0.019 0.9734 0.077 0 
D-S  0.0549 0.9451 0 0 

ZK242 + 835C cumulative settlement value − 17.6 0.8442 0.1558 0 0 
displacement rate − 4.9 0.019 0.9734 0.077 0 
D-S  0.09956 0.9044 0 0 

ZK242 + 835DE cumulative settlement value − 28.4 0.1714 0.8286 0 0 
displacement rate − 1.9 0.9681 0.026 0.0058 0 
D-S  0.8851 0.1149 0 0 

ZK242 + 835FH cumulative settlement value − 24.7 0.3577 0.6423 0 0 
Displacement rate − 1.9 0.9681 0.026 0.0058 0 
D-S  0.954 0.046 0 0  

Table 13 
The integration of monitoring and measurement data.  

The number of fusions m(I) m(II) m(III) m(IV) 

1 Improved D-S 0.0226 0.9774 0 0 
D-S 0 1 0 0 

2 Improved D-S 0.025 0.9975 0 0 
D-S 0 1 0 0 

3 Improved D-S 0.1618 0.8382 0 0 
D-S 0 1 0 0 

4 Improved D-S 0.8001 0.1999 0 0 
D-S – – – –  

Fig. 11. Risk level criteria.  

Table 14 
Risk acceptance guidelines.  

risk level Acceptance 
guidelines 

Processing measures 

Low (I) neglect No risk measures and monitoring required 
Medium (II) accept Generally do not need to take risk treatment measures, but need to be monitored 
High (III) Pay attention to Risk treatment measures must be taken to reduce risk and enhance monitoring 
Extremely high 

(IV) 
High priority High priority must be given to taking practical measures and strengthening them, or else reducing the risk to 

undesired levels at any cost  
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the supply problem, and the surface is slightly cracked with dripping. Reinforcement measures for the cracked part: the cracked part of 
the surrounding rock is treated with slurry spraying and closed in time, as shown in Fig. 13. After the control measures are taken, the 
deformation rate is reduced and no large-scale collapse occurred at the site. It can be seen that the evaluation method reduces the 
probability of collapse risk reaching level III after the risk factors are adjusted. The timely reinforcement minimizes the probability of 
accidents and buys sufficient response time for decision makers. The accuracy and reliability of the method are also verified. 

4. Conclusion 

Relying on actual tunnel engineering, the risk assessment of heterogeneous information is carried out using data obtained from 
advance geological forecasts, site inspections and monitoring and measurement, and the main conclusions are obtained as follows.  

(1) An improved cloud D-S evidence theory construction collapse risk probability assessment model was constructed. Improving the 
highly conflicting nature of D-S evidence theory in extreme cases by introducing the Jousselme distance formula. The CM is also 
used to determine the basic BPA values based on the advantage of the probabilistic theory based conversion between qualitative 
and quantitative. 

Table 15 
Rolling forecast values.   

Day 
ZK835B ZK835A ZK835C ZK835DE ZK835FH 

True Predicted True Predicted True Predicted True Predicted True Predicted 

1 − 22.8 − 22.6 − 25.6 − 24.5 − 23.9 − 22.8 − 45.7 − 43.9 − 44.8 − 42.4 
2 − 23.6 − 23.1 − 26.6 − 24.3 − 24 − 23.2 − 46.9 − 44.7 − 47.9 − 42.7 
3 − 23.9 − 23.6 − 27.9 − 23.9 − 24.5 − 23.5 − 47.1 − 45.2 − 48.1 − 41.8 
4 − 24.5 − 24.1 − 28.9 − 23.4 − 25.8 − 23.8 − 48.7 − 45.6 − 48.9 − 40.0 
5 − 24.6 − 23.4 − 29.3 − 28.8 − 25.7 − 24.8 − 48.8 − 47.6 − 49.3 − 46.2 
6 − 25.4 − 22.7 − 29.8 − 29.5 − 25.7 − 25.2 − 48.9 − 47.8 − 49.7 − 43.2 
7 − 25.5 − 22.1 − 30.5 − 29.7 − 25.8 − 25.5 − 49.2 − 47.7 − 51.3 − 41.3 
8 − 26.3 − 21.8 − 30.9 − 29.5 − 26 − 25.7 − 49.6 − 47.3 − 52.6 − 40.5 
9 − 27 − 25.8 − 31.4 − 30.5 − 26.2 − 25.6 − 49.7 − 49.4 − 53.4 − 52.5 
10 − 27.5 − 26.0 − 32.4 − 30.4 − 26.4 − 25.4 − 50.1 − 49.3 − 53.9 − 53.3 
11 − 27.8 − 26.1 − 33.4 − 30.0 − 26.5 − 25.1 − 50.3 − 49.0 − 54.3 − 53.0 
12 − 28.9 − 26.1 − 33.6 − 29.4 − 26.6 − 24.8 − 50.4 − 48.6 − 54.7 − 51.7 
MAE  6.5  7.3  3.8  3.3  9.9 

p = 11, t = 4, rolling prediction after 12 days of displacement, using this displacement prediction as a benchmark to forecast the next three days of 
tunnel collapse. From the error point of view, both vault settlement and horizontal convergence are basically within 10%, which indicates that the 
algorithm has high prediction accuracy. The optimal hyperparameter results are as follows: ZK835B c = 3.9352, g = 0.1, mse = 0.014; ZK835A, c =
8.0004, g = 0.4693, mse = 0.0406; ZK835C, c = 11, g = 0.1, mse = 0.001; ZK835DE, c = 10.6461, g = 1.8925, mse = 0.0018; ZK835FH, c = 33.7722, 
g = 2.2973, mse = 0.0044. 

Table 16 
Site inspection collapse risk.  

m(I) m(II) m(III) m(IV) 

0 0 0.9959 0.0041 
0 0 0.294 0.7 
0 0 0.9903 0.0097 
0 0.004 0.1221 0.8775 
0 0 0.9342 0.0658 
0 0 0.4196 0.5804 
0 0 0.9113 0.087 
0 0 0.5558 0.4442 
0 0 0.9291 0.0709 
0 0.938 0.001 0.06 
0 0 0.1456 0.8544 
0 0.85057 0.19 0 
0 0 1 0 
0 0 0.1249 0.8747 
0 0 1 0 
0 0 0.5591 0.4409 
0 0 1 0 
0 0 0.7019 0.29 
0 0 1 0 

The results indicate that the collapse risk level will reach high (III) within the next 3 days. During the site 
inspection, it is found that the upper step excavation height is changed to 3.5 m and the upper step feed is 
changed to 1.9 m in order to speed. 
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(2) Based on the advance geological forecast, field inspection and monitoring and measurement data, an improved dynamic 
assessment model with multi-source information fusion is used. Multi-source information fusion has significant advantages in 
multi-attribute decision problems for construction collapse risk assessment. This method effectively improves the accuracy of 
assessing the probability of tunnel risk. Subsequently, the machine learning algorithms can be used to learn advanced geological 
prediction maps, on-site inspection pictures, etc., intelligently identify picture information and quickly classify and grade. It 
provides reference for the development of evaluation system and risk control system platform application.  

(3) Based on the machine learning, the displacement of surrounding rock is predicted by rolling time series. It not only reduces the 
simulation time, but also improves the prediction efficiency and accuracy. The obtained prediction results are used as infor-
mation sources to dynamically evaluate the collapse risk, and the collapse risk level is evaluated in advance to provide sufficient 
reaction time for decision makers, thereby improving construction efficiency. 

Data availability 

The data supporting the results of this study can be obtained upon request to the corresponding author. 

Fig. 12. Risk level of each indicator.  

Fig. 13. slurry spray treatment.  
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