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Abstract

This paper develops and analyses a habitat area size dependent mathematical model to study the transmission dynamics of
COVID-19 in crowded settlements such as refugee camps, schools, markets and churches. The model quantifies the potential
impact of physical/social distancing and population density on the disease burden. Results reveal that with no fatalities and no
infected entrants, the reproduction numbers associated with asymptomatic and symptomatic cases are inversely proportional
to; the habitat area size, and the efforts employed in tracing and hospitalising these cases. The critical habitat area below which
the disease dies out is directly proportion to the time taken to identify and hospitalise infected individuals. Results also show
that disease persistence in the community is guaranteed even with minimal admission of infected individuals. Our results
further show that as the level of compliance to standard operating procedures (SOPs) increases, then the disease prevalence
peaks are greatly reduced and delayed. Therefore, proper adherence to SOPs such as use of masks, physical distancing

measures and effective contact tracing should be highly enforced in crowded settings if COVID-19 is to be mitigated.
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1 Introduction

With over 109 million confirmed cases and 2 million deaths
globally (as of 15th February 2021) [1], the on-going coro-
navirus 2019 (COVID-19) pandemic is among the most
devastating global human epidemics. Besides the public
health impact, there is also the global economic devastation
associated with the pandemic that renders its control a pri-
ority [2]. The disease spreads through direct and indirect
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contact with aerosols from infectious individuals. In addi-
tion to SOPs (physical/social distancing, use of mask and
isolation), social awareness and anthropogenic migration are
some of the recommended measures to curb its spread within
communities [3].

Directly transmitted infections tend to increase with pop-
ulation densities with scaled frequency of contact rates [4].
Local public sites with extremely high population density
such as transport hubs, markets, large social, political or reli-
gious mass gatherings and business locations are regarded
as high risk transmission points for highly infectious respi-
ratory diseases [4] such as COVID-19 due to close contact
between hosts [5].

At the onset of implementation of possible control mea-
sures of COVID-19, lock-down of activities that were a
source of crowding were effected. However when the dis-
ease spread mechanisms and dynamics begun to evolve,
social-economic impacts dictated ease of lock-downs. The
uncertainties associated with the timing and levels of effec-
tive ease of the lock-downs, along with social-economic and
political agitations required careful assessment to quantify
the dynamics of population dispersal especially for loca-
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tions with extremely high densities. The efficacy of specific
measures depends on population density and this should be
considered during decision making process.

Mathematical models can be deployed to make efficacy
assessments and such are formulated under specific assump-
tions pertaining to the force of infection, mixing patterns,
diseases spread mechanisms and purpose of the study. The
force of infection is driven by a contact rate whose expression
fundamentally differs depending on whether a frequency or
density dependent formulation is used. The latter assumes
a constant contact rate while the former assumes a rate that
depends on the total population size [6—11]. However, the
explicit incorporation of habitat area size in formulating the
force of infection is not common yet it can be handy in
addressing specific population density-related questions for
diseases that spread via the aerosols and airborne route [7].

Given the transmission mechanisms of COVID-19, explicit
incorporation of habitat area size in the formulation of the
force of infection may add more realism in capturing the
dynamics of the disease in crowded settlements such as
refugee camps and high-activity areas like markets. This
dependence can be modelled using compartmental models
in which the contact rate explicitly depends on population
density in the settlement [7,12]. This explicit approach would
enable the direct assessment of the impact of habitat area size
and population density on the dynamics of the disease and
thus guide the design of outbreak control measures suitable
for crowded settlements.

In this study, we formulate and analyze a mathemati-
cal model in which we explicitly incorporate habitat area
size in the force of infection together with processes that
influence spread dynamics of COVID-19 in high popula-
tion density settlements. We use the model to quantify the
potential impact of physical/social distancing and population
density on the disease burden. We further investigate how
the variation of density dependent transmission rates would
influence adherence to SOPs. The rest of this paper is organ-
ised as follows; in Sect. 2, we present the model description,
mathematical analysis is given in Sect. 3, numerical simula-
tion in Sect. 4 and lastly a discussion in Sect. 5.

2 Model formulation
2.1 Model description

A compartmental SETHR(S) epidemic model where S(¢) are
the susceptibles, E(¢) are the latently infected, I(t) are the
infectious individuals comprising of the asymptomatics 7, (¢)
and symptomatics I;(t), H(t) are the hospitalized and R(¢)
are the recovereds.

The modelled processes/transitions are as follows: upon
contact with infectious material, a susceptible individual

becomes latently infected and remains in this state for the
duration of the latent period, 1/p. Some individuals (a frac-
tion, c¢) can be traced and quarantined and hospitalized before
the end of latency while the rest proceed to either become
asymptomatically (a fraction r) or symptomatically infec-
tious for respective durations (1/w,) and (1/(ws+0)), where
o, is the disease-induced death rate. After this duration,
infectious individuals are then identified and hospitalized
for a period (1/(e¢ 4+ ho)) where h, is the reduction in
disease-induced death rate for hospitalized individuals. Upon
recovery, individuals are conferred a disease-induced immu-
nity for a duration 1/7, which is pending further studies for
appropriate calibration. The model captures recruitment, at a
constant rate 7, of individuals into the habitat with a fraction,
a being asymptomatically infected, e being latently infected
and the rest being susceptible. Susceptible and recovered
individuals exit the habitat at a per-capita rate . In this
model, vital dynamics are not considered.

The force of infection is modelled as (BbS(ml, + I +
gH )) /A, where B is the transmission coefficient with dimen-
sion of area per time and can be interpreted as the effective
area over which a susceptible makes contact in unit time [7],
b is the proportion of susceptible individuals, m and g, are the
percent reductions in infectivity of asymptomatic infectious
and hospitalized individuals respectively and A, is the size
of the area occupied by the population being studied. Due
to lack of adequate data to better understand the impact of
habitat area size on the nature of interaction among individ-
uals, we make a simplifying assumption (as done in [7,12])
in formulating the habitat size-dependent transmission term,
whereby the contact rate among individuals in the community
increases linearly with the density of the population, N/A. A
Schematic diagram illustrating the relationship amongst the
classes is given in Fig. 1.

2.2 Model equations

From the proceeding description, the dynamics of the model
system are given as;

ds bS(ml 1 H

E:(l—(e%—a))n—ﬂ (m “:: s T8H)
—uS + TR,

dE BbSml, + I, + gH)

— —=em —pE,

dt A

dl,

=an +rpE —w,l,,

= —-(c+r)pE—ol; —wl;,

dr

dl

dt

dH

o =cpE +wyl, + wsly —hoH —aH,

dR H R R (1)
— =aH — —7R.

dt H
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Fig.1 Schematic diagram for
the model

o

Table 1 Parameter values used in the model

Parameter/variable Description Value (units) Source

N Population in high activity area 270,000 [13]

A Settlement area size 250 (km?) [14]

a Fraction of arrivals that are asymptomatic 0.01 Asuumed

e Fraction of arrivals that are latently infected 0.01 Assumed

B Transmission coefficient 0.00056 (km? per day) [15]

b Fraction of susceptible individuals that mingle freely 0.1 Assumed

T Constant arrival rate 0.17 (per day) [13]

nw Per capita exit rate of susceptible and recovered 6.2 x 10~7 (per day) [13]
individuals from the community

T Waning rate of immunity 0 (per day) Assumed

g Infectivity reduction factor among hospitalised (e [0, 1]) 0.005 Assumed

wq Hospitalisation rate of asymptomatic infectious 0.2 (per day) [15,18]

wy Hospitalisation rate of symptomatic infectious 0.5 (per day) [15-18]

c Fraction of latently infected hospitalised (€ [0, 1]) 0.2 [16,17]

r Fraction of latently infected that become asymptomatic 0.4 [16]
(e0,1D)

h Disease induced mortality reduction among hospitalised 0* [16]
(€10, 1D

m Infectivity reduction among asymptomatic individuals 1% Assumed
(e0,1D)

0 Progression rate from latent stage to infectious stage 0.2 (per day) [18]

o Disease induced death rate 0* (per day) [16]

o Recovery rate 0.048 (per day) [16]

*Set to zero since death rate was zero in Uganda as of 20th July 2020
**Set to one pending further studies

3 Mathematical analysis

3.1 Basic properties of the model

theorem.

Theorem 1 Suppose the model’s initial values are S(0)
0,E(0) > 0,7,00) =0, ;(0) =0, HO) = 0 and R(0)

always remain positive at all time ¢ > 0 in the following

vV 1V

The epidemiological feasibility of system (1) is guaranteed
by proving that all its variables are non-negative at all time
t, that is, the model’s outputs with positive initial values will

@ Springer

0, then the model’s solutions, (S(t), E(t), 1,(t), I;(t), H(t),
R(1)), with positive initial values will remain positive for all
time t > Q.



Mathematical model for COVID-19 management in crowded settlements and high-activity areas 1361

Theorem 2 The closed set D = {(S,E,I,,I;,H,R) €

g
Rg_; N < — }, is positively invariant and attracts all pos-

itive solutions of the model.

The proofs of these two theorems are given in the “Appendix”.

3.2 Local stability of the disease free equilibrium
and computation of R

The model system (1) has a disease free equilibrium (&p)
given by §y = (7/u,0,0,0,0,0). The local stability of
&o, is determined using the next generation matrix method
described in Driessche and Watmough [19]. The basic repro-
duction number, Ro (the average number of secondary
infections generated by a typical COVID-19 asymptomatic
and symptomatic infectious individual during their entire
infectious period) used to understand the disease dynamics
and ascertain the effectiveness of implemented control strate-
gies is also obtained by the same method. We set m = 1
by assuming that there is no reduction in transmission from
asymptomatic individuals. Then, we obtain the derivatives of
the matrix expressions for the new infections and transition
states. These are evaluated at &y and are given by,

S
=

T bBgm

o bbm bbm
Ap  Ap Ap
F_l00 0 o0
00 O 0 ’
00 O 0
o 0 0 0
ve| P 0 0
| —pkt 0 wg+o O
—cp —w; —ws a+oh
with
BGr bBr(a+gw,+oh) bBr(a+gws+oh) bpgm
Ap Apwq (+oh) Ap(ws+o)(a+oh) Ap(a+oh)
Fy-! — 0 0 0
0 0 0 0 ’
0 0 0 0
(2)
where

G = bkiwg(a + ho) + bg (o (c + 1) + wy)
+br(a + ho) (ws + o),

ki=1—c—r,kh=1—a—e, ks=1—a,
ksy=1—r, ks=1—c.

The spectral radius, p, of matrix F V! gives the basic repro-
duction number as,

Ro=p(FV ) =Ry, +Ri, + R, A3
b bBk
Where Rla e T 'Br . IS = n—ﬂl’
Apawg Ap (w5 +0)

_ wbBg(alctr) + o)

Ry = .
Apla 4 ho) (w5 +0)

By Theorem 2 of [19], the following lemma is established.

Lemma 1 The DFE, &y, of the model is locally asymptotically
stable if Ry < 1 and unstable if Ry > 1.

Lemma 1 epidemiologically implies that a slight influx
in COVID-19 cases cannot result into an outbreak. The
COVID-19 threshold R estimated under the assumption
of population density dependent contact rate, constitutes the
reproduction numbers associated with the asymptomatically
infected R, , the symptomatic R, and the hospitalised R,
individuals. All these three expressions highlight the sig-
nificance of the infectious period 1/w, and (1/(ws + o)),
susceptible fraction (b) and habitat area size (A) on the
magnitude of Ry. For example, in relation to COVID-19
dynamics, shortening the infectious period can be achieved
through improved contact tracing and surveillance. The sus-
ceptible fraction can be reduced by lock-downs and the use of
masks. Since the habitat size translates directly into popula-
tion density, the effect of area size can be implicitly explored
by reducing the total population or increasing the size of the
area occupied. These effects are further explored numerically
as exhibited in Sect. 4.

In a situation with no fatalities, R, and R, are inversely
proportional to the habitat area size and the efforts employed
in tracing and hospitalising asymptomatically and symp-
tomatically infected individuals. This implies that if the
surveillance and contact tracing efforts are not sufficient to
ensure timely identification and hospitalisation of infectious
individuals, then the number of new cases caused by each
infectious individual would be more than one.

On the impact of area occupancy on the number of new
cases, our analysis reveals that if all other parameters remain
constant, R is inversely proportional to the area occupied
by a given population. This implies that the smaller the area,
the bigger the number of expected new cases. The critical
area, (A™) below which the disease dies out is determined
to analyse the relationship that exists between the area and
effective contact tracing. This is obtained by equating R to
one such that,

wbBr

HWq

7Tb/3k1
u (w5 + o)

nbpg (o(c+r) + wy)

A* = .
ple +ho) (w5 +0)

“

From expression (4), we notice that critical area is directly
proportional to time taken to identify and hospitalise infected
individuals. This continues to emphasise the importance of
effective contact tracing in crowded and high activity areas
if COVID-19 is to be mitigated.

On social distancing and proper use of masks to manage
COVID-19, Ry is directly proportional to the proportion of
susceptible individuals (b). It is clear that with proper use of
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masks and proper exercising of social distancing, then the
number of new cases will be minimized.

On the impact of hospital acquired infections, the limit as
g tends to zero and R can be obtained from the sum of R,
and Ry,.

3.3 Global stability of disease free equilibrium

Lemma 2 The DFE, &y, of the model is globally asymptoti-
cally stable in the invariant region D if Rog < 1 and unstable
if Ro > 1.

Proof is given in the “Appendix”.

3.4 Stability analysis of the unique endemic
equilibrium point without recruitment of
infecteds

Let &* = {S*, E*, I}, I}, H*, R*} be the generic equilib-

rium point and A = (ﬂb(la + Iy + gH))/A be the force

of infection, then equilibrium points are obtained in terms of
the force of infection at steady state denoted as (A*™) which
must satisfy the quadratic equation

A2+ A 4+ A =0, 5)
where
Al = —abBu(u+7) (w4 (gla+e)ws+ago +eo (g(c+r)+hky)

+aeky) + (a +er)(a + ho) (ws +0)),

Ay = Apw,(n+ 1) (@ + ho) (w5 + o)
+7bp (cws(n +7) ((h — g) (aki +c+r) — h)
—gwa (1 + T)ws — (w5 +0)
x (akg(ap +ho(u+ 1)) +r(n + 1) (@ + ho))
—akiwg (kap + 7) —aakiot),

A3 = Awg (0 (ho(u + 1) +a (k1T + 1))
tog(ap +ho(u+1))) .

The equilibrium points are obtained by solving Eq. (5) and

substituting the positive values of A* into the equilibrium
point £*.

@ Springer

Without infected arrivals, the parameters a and e (the
proportions of asymptomatically and latently infected indi-
viduals respectively recruited into a closed community) are
set to zero to obtain,

AsV? 4+ A0 =0. (6)

Clearly, A* = 0 is a solution and in this case, corresponding
to & and when A*™ # 0, the coefficient A, reduces to

Ay = Apwa(p + 7)(a + ho) (w5 +0) (1 = Ro) . )

Since Aj is always positive, thenif Rg > 1, we have A3A™ +
—A

Ay = 0 implying that A* = A—z In this case, a unique

endemic equilibrium point (§1) is obtained as;

w(u+ 1) (e + ho) (w5 + o)

St = (wg +0) (@A + 4+ 1) +ho (W + w)(u + 1)) + ar*kiot’
E = ar *(u+ t)(a + ho) (ws + o)
p ((wg +0) (ap(A* + p + 1) + ho (A + u)(n + 1)) + ar*kjot)’

I = A r(u + )(a + ho) (ws + o)

CT g (05 +0) @OF + e+ 1) +ho 0 + ) (1 + 1) + adtkioT)
o A ki (n+ ) (e + ho)

T (wy +0) (@uF + 4+ 1) +ho (W + ) (4 1)) + artkiot’
H = T (1 + 1) (0(c+71) + ws)

T (ot 0) @pOF + p+ 1) Fho (W + W+ 1) + artkior’
R = T (4 1) (0(c+ 1) + ws) ( )
' o F o) @uF + p+ )+ ha 0 + (e + 1) +artkiot

The local stability of the endemic equilibrium & is
assessed using the Center Manifold Theorem 4.1 in [20] and
the following result is established

Lemma 3 The unique endemic equilibrium point &1 is unsta-
ble when Ry > 1.

The proof of this Lemma is given in the “Appendix”. When
infected individuals are recruited into the community, model
(1) has three other endemic equilibria that are obtained by
investigating the nature of the coefficients of the polynomial
(5).

When a # 0 and e # 0, A3 is positive, A is negative,
thus we have one positive root of (5) irrespective of the sign
of the coefficient A,. Consequently the endemic equilibrium
point &; is given by;
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7 (ot (0 (1 —ek)) + wy) + ko (w5 + 0) (@p + ho (u + 7))

3

52 = (w5 +0) (@A 4+ +1) +ho(0W* + ) + 1) + ar*kiot’
By — 7 (w5 +0) (@A™t +ep(u + t)(a + ho) + A*ks(ap + ho (1 + 1)))
p (g +0) (@pu* + pu+ 1) + ho (A + (i + 1) + ar*kjot)

1 T ((ws +0) (1 + ) + ho)(ap +r(ep + A%)) + ar*ka(ap + ho (u + 1)) + aar*k101)
“ wq (w5 +0) (apu(A* + pn + 1) + ho(A* + w)(n + 1)) + ar*kio1)

I — ki (@A*T +ep(p + 1) (a0 + ho) + A*k3(ap + ho (1 + 1))

2 (s +0) (W + 4 1)+ ho OF + ) (e + 1)) + ad*kiot’
Hy = m(u+71)(0(apn + (c +r)lepn + A*) + ws(u(a +e) + 1*) +ar*kio)

(w5 +0) (apuA* + u+ 1) +ho(A* + ) (n + 1)) + ar*kjot
Ry — wa(o(ap+ (c+r)(ep + A%) + ws(u(a + e) + A*) + ar*ki0)

(05 +0) (@u(* + 1+ 1) + ho O + (e + 1)) + ar*kiot

©))

The results obtained above show that the disease will
always persist as long as infected individual are allowed
into the community. It is important to note that all the
endemic equilibrium points have the basic reproduction
number inbuilt in them implying that all control measures
targeting the reduction of R will directly affect the size
of these equilibrium points. From the computation of Ry,
the number of new cases in a given community is inversely
proportional to the area. This indicates that the size of the
equilibrium points will also be inversely proportion to the
area occupied by the population implying that with a small
area, if R is even slightly greater than one, there will be
an outbreak. Furthermore, equilibrium point & will always
exist irrespective of the value Rg. This implies that control
measures such as social distancing and reducing on the con-
gestion would be the only feasible approaches to manage the
disease in a community with such settings.

4 Numerical simulation

In this Section, numerical simulations are presented to gain
more insight into the model properties under various scenar-
ios. Simulations are performed using Mathematica ®12.0
(Wolfram Research, Inc.) software. The parameters values
given in Table 1 are used for the simulations.

4.1 Impact of SOPs on the basic reproduction
number, Ry

In this section, we investigate the impact of SOPs on the value
of the basic reproduction number. All simulation results in
Fig. 2 show that as the level of adherence to SOPs increases,
basic reproduction number will decrease. In Fig. 2a, it is
observed that Ry < 1 over the entire explored area allocation

per individual if only 10% of the population did not observe
SOPs. However, if 50% or 90% are unprotected, Rg < 1
only if we ensure area allocations of 0.00081 km? and 0.0015
km? per individual respectively (i.e., population densities of
1,230 and 675 individuals per km?). These findings support
adoption of measures to reduce crowding in existing refugee
settlements e.g., relocation of people to less crowded settle-
ments, as well as limiting new arrivals in the already crowded
settlements. These results also echo the importance of proper
adherence to the existing SOPs and they are consistent with
the observations of Niu etal [21], that suggest that existence
of strict intervention measures can be a more effective miti-
gation strategy than border closures.

From Fig. 2b, it can be seen that Ry < 1 for all explored
infectivity levels of the hospitalised, if non-adherence to
SOPs is kept at 10% and at 50%, infectivity levels of the
hospitalised need to be at < 2.5% to have Ry < 1. On the
other hand, if non-adherence is at 90%, then even without
hospital-acquired infections, Rg > 1. Results show that, in
settlements with a population density of 1,080 individuals per
km?, ensuring 50% mingling and susceptibility may not be
sufficient to avert the epidemic if the hospitalised are > 2.5%
infectious (compared to the free-living infected). Thus, elim-
ination of hospital acquired infections is key to preventing an
epidemic situation even in partial locked-down populations.

Effective surveillance and contact tracing is key in reduc-
ing the infectious period of a COVID-19 asymptomatic
patient who may remain unidentified in the community for an
extended period, or the symptomatic individual that is fairly
easier to identify and hospitalise. Results on the impact of
delaying the identification and subsequent hospitalization of
infectious individuals (Fig. 2c, d), show that if 90% of the
population in a settlement with a density of 1080 individuals
per km? is freely mingling and susceptible, then all infec-
tious individuals must be identified and hospitalized within
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Fig.2 Effect of a population density, b infectivity of hospitalised individuals, ¢ hospitalisation rate of asymptomatic infectious individuals and, d
hospitalisation rate of symptomatic infectious individuals on the basic reproduction number for COVID-19

Fig.3 Estimated COVID-19
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Fig.4 Estimation of COVID-19
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two days if an epidemic is to be avoided. This requires inten-
sification of contact tracing efforts and may even involving
recruitment and regular reinforcement of outbreak response
teams.

4.2 Impact of SOPs on disease prevalence

In this section, the simulations presented show the change in
disease prevalence with time for different transmission rates
per square kilometre per day under different levels of adher-
ence to SOPs. The parameter, b, which measures the fraction
of available susceptible population indicates the percentage
of individuals within a community that is not complying with
the public health interventions of observing SOPs any given
time.

In Fig. 3 (top left), we observe that a low transmission rate
of 0.00056 per km? per day would raise the number of new
cases by 4%, attaining the first peak in a period of 400 days
if 90% of the individuals in a highly populated area do not
adhere to SOPs. Increasing the transmission rate to 0.00084
per km? per day and maintaining the percentage of individu-
als not adhering to SOPs at 90%, we notice that the number
of new cases rapidly grows to 25% in a shorter period of
only 180 days (Fig. 3, top right). Additionally, when com-
pliance is above 50%, then the peak may never be observed
for more than two years. Therefore, keeping the transmission
rates low would significantly delay the peaks. This empha-
sizes that implementation of public health interventions leads
to delayed peaks that may eventually lead to the flattening of
the curve.

200 300 0 100 200 300
Time in days

Time in days

In Fig. 3, bottom plots and Fig. 4, we notice that as the
transmission rate increases, the level of compliance to SOPs
needs to increase if the prevalence peaks are to be reduced and
delayed. The disease prevalence may peak at 80% in a period
of just 40 days if 90% of the individuals do not comply with
SOPs with a transmission rate of 0.0034 per km” per day.
However, if 70% (30% non-adherence) effectively adhere to
SOPs, our results show that the peak would be delayed by 60
days with a prevalence of 40% and as the number of people
adhering to SOPs increase to 90% (10% non-adherence), then
even after a period of two years the peak prevalence will not
reached and thus leading to flattening of the epidemic curve.

5 Discussion

The aerosol and possible airborne spread mechanisms of
COVID-19 imply that population density is the likely key
driving factor in transmission especially in crowded settle-
ments such as refugee camps and slums as well as high
activity areas like markets and schools. If properly enforced,
physical distancing and closure of high population congrega-
tion avenues would help limit disease spread. However, there
are challenges in enforcing physical distancing in crowded
settlements due to the ways of life in such communities.
Determination of critical population density should be a
key component in formulating density-related disease control
policies as this would guide feasibility and efficacy assess-
ments of the interventions. The formulated model is analysed,
equilibrium points obtained and their stability assessed. The
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disease’s habitat size dependent basic reproduction number
is determined and used to calculate the critical habitat area
size at which the disease could not be maintained in the settle-
ment. The impact of interventions that: reduce the fraction of
susceptible, improve the detection and subsequent hospital-
ization of infectious individuals and, reduce on the population
density in the habitat on COVID-19 transmission dynamics
are assessed.

Analytical results show that without entry of infected
individuals into the settlement, a globally stable disease
free equilibrium exists whenever 'R¢p < 1 and an unsta-
ble endemic equilibrium exists when %y > 1. That is, if
a single infected person cannot infect at least one suscepti-
ble, then the disease dies out naturally without extra effort.
The unstable endemic equilibrium implies that if interven-
tion measures such as social distancing and effective use of
face masks are well adopted, then COVID-19 new cases can
be greatly minimized and the disease could be eliminated.
With entry of infected individuals, our analysis shows that
at any given time, an endemic equilibrium exists and efforts
targeting reducing the number of new cases through effective
contact tracing and surveillance may lead to disease elimi-
nation.

The analytical expression for R highlights the depen-
dence of its magnitude on three major aspects namely, the
susceptible fraction, surveillance and contact tracing efforts
and population density in the settlement. These factors where
hence further assessed quantitatively to determine thresholds
for disease spread.

The importance of understanding the disease peak preva-
lence is to prepare healthcare facilities facilities just in case
the disease transmission increases and also be in position to
enforce adherence to SOPs if the pandemic curve is to be
flattened. The results presented in Sect. 4.2 provide infor-
mation on how best to manage COVID-19 in places that are
densely populated and the required efforts in enforcing SOPs
if disease spread is to be mitigated. Therefore, proper use of
masks and physical distancing measures should be enforced
in such settings for almost all individuals mingling.

Acknowledgements The authors acknowledge and thank the Govern-
ment of Uganda and Makerere University Research and Innovation Fund
for the grant to carry out this study, and Ministry of Health for the data
on COVID-19.

Appendix
Proof of Theorem 1
Proof To prove positivity of the solution, it is sufficient to

show that all the trajectories of system (1) are non-negative
for time ¢ > 0. From the first equation of system (1), the

@ Springer

evolution of susceptible individuals over time will be given
by the inequality;

Bb(mla(e) + 1,0) + gH®))

> — S(1),
o 2 A +p ) S@

by solving this inequality and taking the limitas t — oo, we
obtain

S(t) = Soexp

( ( t(ﬂb<MIa(r)+Is(t)+gH(t))) )}
X 94— ,ut—i—f ) dt ,
0

lim inf S(7) > 0.
11— 00

Similarly, it can be shown that E(¢) > 0, I,(t) > 0, I;(t) >
0, H(t) > 0 and R(¢) > 0. Hence all solutions of system (1)
will remain non-negative whenever we have non-negative
initial conditions. O

Proof of Theorem 2

Proof Consider the D =
T

(S,E.1,,I,, H, R) e RO N < —},therateofchangeof
w

positive  domain

the total population is given by;

dd—]jzn—M(S—l-R)—o(Is—i-hH). (10)

dN
We observe that N > T whenever v < 0 and since the
w

right hand side of d—N is always bounded, and by standard
comparison Theorem in [22], it can be shown that N (1) <
N(Q)e # + %(1 — e M), Therefore tl_l)Iglo supN (1) = %,
implying that if N(0) < - then N() < . The domain D is

positively invariant under the flow of system (1). Therefore,
system (1) is biologically feasible and mathematically well
posed in D. O

Proof of Lemma 2

Proof Consider the positively definite Lyapunov function,
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a
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Anw,
b (x + gws + ho) I

: nb,BgH‘
Ap(wg +0)

Ap

(1D

The time-derivative of function (11) is given by,

v (o + h)dE +
2 (a+oh)—
dt Alwg

dt
bBr(a+ gws +0oh) di
Au(o + wy) dt

n gBbn\ dH
An dt’

— (@t ol (bﬂpS(gH + 1, + )

bBm(a + gw, + ah)) dl,
dt

— pE
A +em p)

(bﬂn(a + gw, + ah))
+
Apwy

(am —wgl, +rpE)
(bﬂn(oc + gwg +o't)
Ap(o + ws)

) (ok1E — oIy — wsly)

gBbm
T (cpE —aH —ohH + wul, + wly) ,
m

IA

b H+1,+1
(a+0h)( ﬂpﬂ(gAJr .+ s)+m_pE>
"

<bﬂﬂ(a + gwq + ah)>
+
Apwg

bBm(a + gws + al))

— wgl, E
(amr — wqly +rp )+( Ao + o)

(ok1E — oIy — wsly)

b
+<gﬁ7ﬂ> (L'pE—aH_UhH+wﬂIa + ws 1),
"

IA

abBr(a + gw, +oh)
i ( Apwg
+pE(ax+ho)(Ro—1),

abBr(a + gw, + oh)
" < Apwg
+pE(a +ho)(Rp — 1),

+ e(a + ah))

IA

+ e(a + ah))

— = —pE(a+ho)(1 = Ry),

since a = 0 and e = 0 at the disease free equilibrium &p.

dv
When Ry < 1, ar is negative semi-definite, hence the

dv
largest compact invariant set in D such that I = 0 when
Ro < 1is the singleton &y. By the LaSalle Invariance Princi-
ple [23], we conclude that the disease free equilibrium & is
globally asymptotically stable in D if Ro < 1 and unstable
otherwise. O

Proof of Lemma 3

Proof Let us redefine the state variable (S, E, I,,, Iy, H, R)
as (x1, x2, X3, X4, X5, X6). Then the associated system (1) is
given as;

dx Bbx1(x3 + x4 + gx5)
o fi=(] - _
= fi=(-(+a) n
—MnX1 + Tx6,
dxp frmen+ Bbx1(x3 + x4 + gx5) ~ox
o 2= N px2,
dxs
W = fa=am +rpxy — wax3,
dxy
I =fa={0—(c+r))pxy —oxqg — wsxs,
dx
d_ts = fs = cpx2 + Wax3 + wsxa — hoxs — axs,
dx6
_dt = fo = axs — uxg — TXg- (12)

The bifurcation parameter ¢ obtained by equating R to one
is given by

Apwg(a + ho) (ws + 0)

= = @hiwn + o (e T )8 — ) + ) + g + rla 1 5o) (@r + )

By Linearizing system (12) at disease free equilibrium (&)
and with ¢ the bifurcation parameter, we obtain

w0 _]JZZ;Z _,JZ}LZ —bzqﬁiﬂ i
T T b4

O —p %% dw A O

0 pkf 0 —0—wy; O 0

0 0 wy Wy —ho —a

0 O 0 0 o —u-—-rt

The Jacobian matrix Jg, has zero eigenvalue and the rest are
negative. The left eigenvector associated with the zero eigen-
value of (13) is given by v = (vq, v2, v3, V4, v6)T where,

Apve (0 + oh(n + 1))

v =0 v = abB*gm

V6 (o® + gwa (i + 1) +ho (u + 1))
V3 = — s
3 agwqy
oo V(@ + gt Doy +ho(ut 1)
‘T ag (@, +0) ’

ve(u + 1)
vy = ———= vg > 0.

o

Similarly, the right eigenvector of (13) associated with the
zero eigenvalue is given by w = (wy, wa, w3, w4, we) ! with
v.w = 1 where,
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wbhB*r(ws+0o) (W"’Oﬁﬂﬁ)

whB*k; (*’wwﬁéﬂﬁ) +aw5)

_ mhB*gwe(utt)

- + Aptwe —

(1—c)ws+ro o

_ wa((1—=c)ws+ro)
w) = A,LL2

we (@5 +0) (¢ +ho (1 + 1))

r(ws +0) (—hawiy‘ﬁ) + awﬁ)

wy = , W3 =

ap (1 —c)aos +ro) g ((1
ki (hamo(zwrr) + aw6> we(p + 1)
wy = , ws = ——, we > 0.
(1 —-0c)ws +ro o

— C)ws +ro)

Next we compute the non-zero partial derivatives of system
(13) with respect to the state variables that are used in the
computation of coefficients a and b defined as,

92 fi
a= Z s (0 0)
ljk 1
b= Z Vi o (0 0). (14)
i,k=1

Thus, we obtain,
3fi bpr ¥
axidxs A 9x10xs

b Tf

- A’ 9x1dxs

_ bB'g A bp*

T A dxzdxy A
fi b S
dx4dx; A dxsdx;

__bB%g 3 f _ bp* 3 fa _ bB”

A 0x10x3 A 9x10x4 A’

3fr  bprg  f
0x10x5 A 0x30x]

DBt 0%fHh  bBT 0%fr  bB*g

A dxgdxy A dxsdxp 0 A

Following Theorem 4.1 in [20], the non-zero partial deriva-
tives of system (12) with respect to state variables and the
bifurcation parameter ¢ that are given by;

92 fi bt 3*fi bt 9*fi brg
0x30¢  An' 0xadp  Ap oxsop  Aw’
3fr br  0%fr  bm 0°fy  bmg
dx3dp  Ap’ dxdp  Apdxsdp  Ap’

By substituting v,w, and the above expressions above (14)
we obtain,
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_2bB% (w3 + wa + gws) (Viwi — VW)
2 .

Since v; = 0, it simplifies to,

_ 2bB* (w3 + wa + gws)vown

= " ,

which is negative because vy < 0.

brvy (w3 + wa + gws)

b= . Since v <0, thenb < 0.
Ap

Thus, according to condition (ii) of Theorem 4.1 in [20], it
can be concluded that the model system (1) with @ = 0 and
e = 0, has an unstable endemic equilibrium point &;. O
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