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Stroke is the leading cause of global mortality and disability. Cerebral edema and

intracranial hypertension are common complications of cerebral infarction and the major

causes of mortality. The formation of cerebral edema includes three stages (cytotoxic

edema, ionic edema, and vasogenic edema), which involve multiple proteins and ion

channels. A range of therapeutic agents that successfully target cerebral edema have

been developed in animal studies, some of which have been assessed in clinical trials.

Herein, we review the mechanisms of cerebral edema and the research progress of

anti-edema therapies for use after ischemic stroke.

Keywords: ischemia stroke, cerebral edema, molecular mechanism, drug therapy, preclinical drug evaluation,

clinical trial

INTRODUCTION

Stroke is the leading cause of death worldwide (Feigin et al., 2015). Ischemic stroke accounts for
69.6–70.8% of all strokes (WangW. et al., 2017). The mortality rate of patients with acute ischemic
stroke is as high as 2.3–3.2% within 1 month after onset (Huang et al., 2010; Wang D. et al., 2017;
Li et al., 2019; He et al., 2020). The formation of cerebral edema is a major cause of death in stroke
patients (Simard et al., 2007; Walcott et al., 2014; Rungta et al., 2015).

Cerebral edema is extremely dangerous. Severe cerebral edema after stroke can increase the
mortality rate to 80% and is an important predictor of poor prognosis (Kochanek et al., 2011; Battey
et al., 2014; Walcott et al., 2014; Nawabi et al., 2019). Thus, an effective treatment of cerebral edema
during the early phase of stroke is particularly important. The human brain is enclosed in a hard
skull and the interaction between swollen brain tissue and the skull after an ischemic stroke can
further increase intracranial pressure. This increase in intracranial pressure can also increase the
degree of cerebral hypoxia and ischemia. Unfortunately, the current osmotic therapies focus on
treating edema rather than preventing it, and evidence for efficacy remains insufficient (Torbey
et al., 2015). Early craniotomy decompression reduces mortality and improves prognosis (Shah
et al., 2019), but it deals with downstream events rather than targeting the underlying molecular
mechanisms of cerebral edema (Stokum et al., 2015).

Experimentally, a number of agents have been developed that successfully target cerebral edema,
one of which has entered clinical trials. This article reviews the mechanisms of cerebral edema and
the research progress of anti-edema drugs.
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MECHANISMS OF CEREBRAL EDEMA

Cerebral edema after an ischemic stroke includes cytotoxic
edema, ionic edema, and vasogenic edema (Liebeskind et al.,
2019). These three processes are closely linked and, eventually,
∼8.5–30% of patients develop cerebral hemorrhage (Lindley
et al., 2004; Paciaroni et al., 2008). However, the mechanisms of
cerebral edema formation are not fully understood.

The formation of cerebral edema is still based on the Starling
principle. Cytotoxic edema refers to the brain swelling caused
by ions (Na+, Cl−) and water entering the cells of neurons or
astrocytes (Rungta et al., 2015). Cytotoxic edema occurs quickly
after brain tissue ischemia, causing intracellular swelling without
increasing the brain tissue volume (Liebeskind et al., 2019).
Therefore, cytotoxic edema is intracellular edema. Astrocytes in
the brain are most affected by cytotoxic edema (Stokum et al.,
2016). Cytotoxic edema leads to changes in ion concentrations
on both sides of the blood–brain barrier (BBB), with the
intravascular Na+ concentration increasing above that in the
interstitium (Mori et al., 2002). The new ionic gradients provide
the driving force for ionized edema and vasogenic edema. The
sulfonylurea receptor 1-immediate receptor potential melatonin
4 (Sur1-Trpm4), the Na+-K+-2Cl− cotransporter protein-1
(NKCC1), aquaporin-4 (AQP4), the Na+-H+ exchanger, and the
Na+-Ca2+ exchanger drive this process (Douglas et al., 2001;
Amiry-Moghaddam et al., 2004; Hamann et al., 2010; Xue and
Haddad, 2010; Ferrazzano et al., 2011; Jayakumar et al., 2014;
Stokum et al., 2016) (Figure 1).

Subsequently, cerebral edema enters the stage of ionic edema.
Ionic edema is caused by water and ions crossing the BBB
from the vasculature into the brain (Simard et al., 2007). Ionic
edema is a subtype of extracellular edema lacking albumin and
has been defined in recent years independently of cytotoxic
edema. The BBB remains intact in this stage, and ionic edema
is completely driven by various ion channels and transporters in
the BBB, including the Sur1-Trpm4 channel, NKCC1, Na+-K+-
cotransporter (KCC), the Na+-H+ exchanger, and AQP4 (Nilius
and Droogmans, 2001; Dolman et al., 2005; Yang et al., 2008; Lam
et al., 2009; Previch et al., 2016) (Figure 1).

Following the destruction of BBB, physical connections are
made between blood vessels and the interstitium of the brain.
Plasma proteins and other macromolecules pass through the
BBB into the extracellular space of the brain (Stokum et al.,
2016). Vasogenic edema may be considered to be an ultrafiltrate
of blood. Vascular endothelial growth factor (VEGF) and free
radical metalloprotease (MMP) are involved in vasogenic edema

Abbreviations: BBB, The blood–brain barrier; Sur1-Trpm4, The

sulfonylurea receptor 1-immediate receptor potential melatonin 4;

NKCC1, the Na+-K+-2Cl– cotransporter protein-1; AQP4, Aquaporin-4;

AQP1, Aquaporin-1; KCC, Na+-K+-cotransporter; KCC2, Na+-K+-

cotransporter 2; VEGF, Vascular endothelial growth factor; MMP, Free

radical metalloprotease; MMP-9, Free radical metalloprotease-9; MCAO,

A middle cerebral artery occlusion model; H2S, Hydrogen sulfide; SPAK,

SPS1-related proline/alanine-rich kinase; ZT-1a, 5-chloro-N-[5-chloro-4-

((4-chlorophenyl)(cyano) methyl)-2-methylphenyl]-2-hydroxybenzamide;

HOE-642, The specific Na+-H+exchange inhibitor; Compound RU-1355,

The new inhibitor of Na+-H+ exchanger; miRNAs, MicroRNAs; SEA0400,

2-[4-[(2,5-Difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline.

(Zhang et al., 2000; Yang et al., 2007). Mast cells are also involved
in this process (Parrella et al., 2019). By contrast, AQP4 helps to
clear vasogenic edema (Papadopoulos et al., 2004) (Figure 1).

SUR1-TRPM4 CHANNEL INHIBITORS

The Sur1-Trpm4 channel is widely involved in both cytotoxic and
ionogenic edema and is the most promising therapeutic target
for edema treatment. The Sur1-Trpm4 channel inhibitors are the
only drugs to enter clinical trials for the treatment of cerebral
edema after ischemic stroke (Table 1).

Glibenclamide
In a phase I trial of intravenous glibenclamide in normal
volunteers, two of the 34 subjects in the high dose group had
persistent hypoglycemia, while none reported serious adverse
events. In a phase II trial of intravenous glibenclamide in
10 patients, there was a reduction in cerebral edema (Sheth
et al., 2014a,b), and glibenclamide was well tolerated with
no severe hypoglycemia. The phase II trial of intravenous
glibenclamide (Sheth et al., 2016) also reported reduced cerebral
edema with a lower midline shift but showed no reduction in
mortality. Post-exploratory analyses of that trial suggested that
glibenclamide could reduce water accumulation, the mass effect,
improve survival, decrease midline deviation, and reduce MMP-
9 expression (Kimberly et al., 2018; Sheth et al., 2018; Vorasayan
et al., 2019). A phase III trial examining whether intravenous
glibenclamide can improve functional outcomes at 90 days is
currently underway (Table 1).

Glibenclamide requires intravenous administration, which
limits its application in the out-of-hospital setting. However, oral
preparations can be administered in the early stages of edema.
For example, in a study exploring the relationship between oral
glibenclamide and cerebral edema in 213 patients with ischemic
stroke and 40 patients in a matched cohort (Huang et al., 2019),
oral glibenclamide did not increase early death or hypoglycemia
but prevented cerebral edema. However, that study did not
examine the optimal drug dose or compare the efficacy of oral
vs. intravenous glibenclamide administration.

Glibenclamide Combined With Other
Therapies
At present, there are no anti-edema drugs approved for clinical
practice. The BBB can limit drug entry into the brain, resulting in
low central drug concentrations (Patel et al., 2012). Furthermore,
cerebral edema is caused by multiple factors and mechanisms.
As such, a single target drug may not effectively prevent
the formation of cerebral edema (Deng et al., 2019). Deng
et al. (2019) reported that nanoparticles of betulinic acid from
the Chinese herb Eucommia ulmoides could be loaded with
glibenclamide and could effectively penetrate the BBB to reduce
infarct size and cerebral edema in mice. Furthermore, this
system allowed a lower effective dose of glibenclamide, targeted
to Sur1-Trpm4 and oxidation, and improved the anti-cerebral
edema efficacy of glibenclamide. In another study, the combined
treatment with glibenclamide and therapeutic hypothermia
showed a synergistic neuroprotective effect by reducing edema
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FIGURE 1 | The molecular targets and anti-edema therapies in ischemic stroke. (A) The blood-brain barrier remains intact in this phase. (B) The blood-brain barrier is

destroyed in this phase. CNS, Central Nervous System. BBB, blood-brain barrier; NKCC1, Na+-K+-2Cl− cotransporter-1; ZT-1a, a highly effective and selective SPAK

inhibitor; HOE-642, a Na+-H+ exchanger inhibitor; Compound RU-1355, a Na+-H+ exchanger inhibitor; RB-222, anti-VEGF neutralizing antibody; SEA0400, a

specific inhibitor of the Na+-Ca2+ exchanger; T3, thyroid hormone; VEGF, vascular endothelial growth factor; Anti-miR-1, anti-microRNA-1; Antagomir, inhibitor of

miRNA-1. #Note that VEGF can both promote brain edema and have neuroprotective effects. Aquaporin-4 has a protective effect against vasogenic edema.

Aquaporin-4 blockers include T3, Inhaled H2S, Acetazolamide, Lactosides B, Mitochondrial aldehyde dehydrogenase 2, Paeoniflorin, Astragaloside IV, and

Tongxinluo. BBB protective agents include Alpha-tocopherol, 8-methoxypsoralen, 3-aminobenzamide, Anti-miR-1 or MicroRNA-1 antagomir, MicroRNA-132,

MicroRNA-1906, chemokine-like factors, magnesium sulfate, ulinastatin, ginkgo diterpene lactone meglumine injection, olaparib, recombinant human erythropoietin,

and 1-trifuoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea.

and improving neurobehavioral function in a middle cerebral
artery occlusion (MCAO) model in rats and in an oxygen and
glucose deprivation-reoxygenation model in endothelial cells
(Zhu et al., 2018).

Glimepiride
Preclinical and clinical studies have shown that glibenclamide
can reduce cerebral edema but can cause severe hypoglycemia.
However, glimepiride, the latest second-generation sulfonylurea,
has reduced hypoglycemic actions (Holstein et al., 2001).
Glimepiride treatment can reduce stroke in mice (Darsalia
et al., 2013) and be as effective as glibenclamide in reducing
cerebral edema in wild-type mice (Wang X. et al., 2020).
However, in that study, glimepiride was administered at
40min before reperfusion, which is not feasible in clinical
practice. Thus, further studies are required to assess its
clinical potential.

Sur1-Trpm4 Inhibitors
A number of drugs that block the Sur1-Trpm4 channel have been
developed. For example, resveratrol is a natural product found

in a range of plants. Resveratrol has antioxidant actions and can
protect against cerebral ischemia, reduce cerebral edema, and
prevent BBB damage (Ataie et al., 2016; Pineda-Ramírez et al.,
2018, 2020). Furthermore, resveratrol was reported to reduce
the expression of Sur1 and AQP4 and the formation of edema
(Alquisiras-Burgos et al., 2020).

VASCULAR ENDOTHELIAL GROWTH
FACTOR-RELATED DRUGS

Vascular endothelial growth factor is a mitogen that promotes
the formation of new blood vessels, protects nerves, and
increases capillary permeability. VEGF when used before the
model was reported to reduce the infarct volume and cerebral
edema in a rat MCAO model (Harrigan et al., 2003), despite
enhancing capillary permeability. The combination therapy
of VEGF and nerve growth factor could also reduce infarct
volume and cerebral edema, with better efficacy with earlier
administration in rabbits (Yang et al., 2018). By contrast, VEGF
treatment after cerebral ischemia was found to increase BBB
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TABLE 1 | Basic information and clinical characteristics of clinical trials of glimepiride.

Identifier Year Phase Subject information Primary outcome Status Intervention Conclusion

NCT01132703 2010 I 34 health human volunteers Adverse events.

Hypoglycemia and EKG changes

Completed RP-1127

Placebo

Two patients had persistent

hypoglycemia. No serious adverse

events.

NCT01268683

GAMES Pilot

2012 II 10 participants, clinical diagnosis of anterior

circulation of ischemic stroke, baseline MRI DWI

volume of 82–210 cm3, 18–70 years of age, and the

start of drug infusion ≤10 h from symptom onset.

Rate of recruitment.

Safety and tolerability.

Pharmacokinetics/Pharmacodynamics.

Clinical and MRI outcome data

Completed RP-1127 Reduce the cerebral edema, the drug is

well-tolerated, without safety risks and

severe hypoglycemia side effects.

NCT01794182

GAMES-RP

2015

(Estimated)

83 patients, clinical diagnosis of acute severe

anterior circulation ischemic stroke, baseline DWI

lesion volume of 82–300 cm3, age

18–80 years, and time of symptom onset to start of

drug infusion of ≤10 h.

The proportion of patients with a mRS

at day 90 ≤4 without decompressive

craniectomy. Safety of the drug

uncompleted. end

early for financial

reasons

RP-1127

Placebo

Reduce cerebral edema, midline shift

and plasma MMP-9 concentration,

does not significantly reduce mortality

NCT02864953 2021

(Estimated)

III Estimated 680 participants.

Patients with large (MRI-DWI 80–300 cm3 ) acute

MCA ischemic stroke or large hemispheric infarction

with NIHSS ≥10, study treatment infusion within

10 h after time of symptom onset. Participants

receive thrombectomy, which must be based on

post-thrombectomy MRI-DWI

The proportion of participants with

improvement in functional outcome at

day 90 assessed via the mRS

Recruiting BIIB093

Placebo

No conclusion

RP-1127, glyburide for injection; MRI, magnetic resonance imaging; DWI, diffusion-weighted imaging; BIIB093, intravenous glyburide; NIHSS, National Institutes of Health stroke scale; MCA, middle cerebral artery; MMP-9, matrix

metallopeptidase 9; mRS, modified Rankin Scale; EKG, electrocardiogram; IV, Intravenous injection; rtPA, recombinant-tissue plasminogen activator; GAMES Pilot, Glyburide Advantage in Malignant Edema and Stroke-Pilot; GAMES-RP,

Glyburide Advantage in Malignant Edema and Stroke—Remedy Pharmaceuticals.
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TABLE 2 | The mechanisms of cerebral edema and the various anti-edema agents.

Type of cerebral

edema

The affected site and features Ion channel, transporters,

or target

Agents

Cytotoxic edema All CNS cell types. Especially the astrocytes.

Ions and water flow into the cells. The cells

swelled. An ion concentration gradient is

formed between the capillaries and the brain

parenchyma.

Sur1-Trpm4 channel Oral glibenclamide, Intravenous glibenclamide (RP-1127,

BIIB093), Glimepiride, Resveratrol

NKCC1 Bumetanide, ZT-1a

Aquaporin-4 Thyroid hormone (T3), Inhaled H2S, Acetazolamide, Lactosides

B, Mitochondrial aldehyde dehydrogenase 2, Paeoniflorin and

astragaloside IV, Tongxinluo

Aquaporin-1 Fullerenol

Na+/H+ exchanger HOE-642, Compound RU-1355

Ionic edema Endothelial cells. Ions and water flow into the

brain parenchyma from the blood vessels. In

this process, the blood-brain barrier remains

intact, and a variety of ion channels and

transport proteins participate in it.

Sur1-Trpm4 channel Oral glibenclamide, Intravenous glibenclamide (RP-1127,

BIIB093), Glimepiride, Resveratrol

NKCC1 Bumetanide, ZT-1a

Na+/H+ exchanger HOE-642, Compound RU-1355

Aquaporin-4 Thyroid hormone (T3), Inhaled H2S, Acetazolamide, Lactosides

B, Mitochondrial aldehyde dehydrogenase 2, Paeoniflorin and

astragaloside IV, Tongxinluo

Aquaporin-1 Fullerenol

Vasogenic edema BBB. VEGF# RB-222, Hypertonic saline, VEGF#

The integrity of the blood-brain barrier is

destroyed, and plasma proteins and water

penetrate into the brain tissue

BBB Alpha-tocopherol, 8-methoxypsoralen, 3-aminobenzamide,

Anti-miR-1 or MicroRNA-1 antagomir, MicroRNA-132,

MicroRNA-1906, Chemokine-like factors, Magnesium sulfate,

Ulinastatin, Ginkgo diterpene lactone meglumine injection,

Olaparib, Recombinant human erythropoietin,

1-trifuoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea.

Na+-Ca2+ exchanger SEA0400

Aquaporin-4 Aquaporin-4#

Mast cell Sodium cromoglycate, Intravenous immunoglobulin

CNS, central nervous system; NKCC1, Na+-K+-2Cl− cotransporter-1; ZT-1a, a highly effective and selective SPAK inhibitor; HOE-642, a Na+-H+ exchanger inhibitor; Compound

RU-1355, a Na+-H+ exchanger inhibitor; RB-222, anti-VEGF neutralizing antibody; SEA0400, a specific inhibitor of the Na+-Ca2+ exchanger; BBB, blood–brain barrier; VEGF, vascular

endothelial growth factor; Anti-miR-1, anti-microRNA-1; Antagomir, inhibitor of miRNA-1.
#Note that VEGF can both promote cerebral edema and have neuroprotective effects. Aquaporin-4 has a protective effect against vasogenic edema.

permeability and leakage and aggravate cerebral edema (Chi
et al., 2005). Furthermore, Kim et al. (2018) reported that
VEGF could promote the formation of cerebral edema in
patients with stroke. These contrasting findings may be related
to differences in the timing of VEGF administration between
the studies.

Interestingly, intraventricular injection of an anti-VEGF
neutralizing antibody (RB-222) reduced the number of immature
blood vessels following cerebral edema in a rat MCAO model
(Zhang et al., 2017). Furthermore, hypertonic saline could
reduce osmotic pressure and reduce the formation of cerebral
edema via downregulating NKCC expression and inhibiting
the VEGF (Huang et al., 2014). Finally, a treatment with 10%
hypertonic saline was associated with the downregulation of
zonula occludens 1 and occludin expression via the inhibition of
the VEGF receptor 2/phospholipase cγ1/endothelial nitric oxide
synthase pathway (Wang et al., 2019).

AQUAPORIN BLOCKERS

Aquaporins are known to contribute to cytotoxic edema. In
particular, AQP4 is widely involved in water balance in patients
with stroke (Vella et al., 2015; Verkman et al., 2017), with
increased expression at 6 h after cerebral infarction and a peak
at 3 days (Wei et al., 2015). AQP4 has bidirectional effects
of water transport, which is involved in both the formation
and the removal of cerebral edema (Stokum et al., 2015).
AQP4 promotes the formation of cerebral edema in the early
stage (cytotoxic and ionic edema; Tang and Yang, 2016). The
brain edema of AQP4-deficient mice was decreased by 35%
compared to the wild-type mice (Manley et al., 2000). However,
another study had found that AQP4 exacerbates the formation
of cerebral edema (Zeng et al., 2012). When cerebral edema
enters the stage of vasogenic edema, water enters through the
incomplete space between vascular endothelial cells. Cerebral
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edema is no longer closely related to AQP4, which is more
involved in the clearance of cerebral edema (Tang and Yang,
2016). Unfortunately, the boundary between cytotoxic edema,
ionic edema, and vasogenic edema is not obvious. However, how
to determine the starting and ending time of APQ4 inhibitor
is a problem to be solved in the later research. Treatment with
thyroid hormone also reduced cerebral edema by inhibiting
AQP4 (Mdzinarishvili et al., 2013; Sadana et al., 2015) and
may be neuroprotective in patients with stroke. Experimentally,
Wei et al. (2015) reported that inhaled hydrogen sulfide (H2S)
could reduce cerebral edema in rats by inhibiting AQP4, as
well as protect the BBB. In a permanent-MCAO model, the
combined treatment with aquaporin inhibitors and cerebrolysin
also reduced the formation of cerebral edema (Catalin et al.,
2018). Furthermore, acetazolamide (Duan et al., 2019), lactosides
B, mitochondrial aldehyde dehydrogenase 2 (Li et al., 2018),
paeoniflorin, astragaloside IV (Chu et al., 2017), and the Chinese
herbs show the neuroprotective effect (Ni et al., 2020), while
Tongxinluo (Cai et al., 2016) showed anti-edema actions via the
inhibition of AQP4.

Aquaporin-1(AQP1) is also involved in the formation of
cerebral edema (Qiu et al., 2014), while AQP1 inhibitors,
such as fullerenols, can reduce cerebral edema (Darabi and
Mohammadi, 2017). However, AQP1 is expressed in different
species (Arciénega et al., 2010; Badaut et al., 2011) and different
organs (Buffoli, 2010), which limits the use of AQP1 inhibitors.
Importantly, while aquaporins are involved in cytotoxic edema,
the inhibition of AQPs is only effective in the early stage of
the disease.

ION CHANNEL BLOCKERS

Cation-Cl− Cotransporter Inhibitors
Na+-K+-2Cl− cotransporter protein-1 andKCC2 play important
roles in the formation of both cytotoxic and ionic edema. NKCC1
and KCC2 are cationic Cl− cotransporters that have opposing
actions on intracranial water and electrolyte balance (Russell,
2000; Blaesse et al., 2009). Bumetanide, which inhibits NKCC1,
can reduce cytotoxic edema (Yan et al., 2003). Furthermore,
Wang et al. (2014) reported that bumetanide reduced cerebral
edema in an ischemia-reperfusion model without changing the
KCC2 protein expression. Bumetanide plays a role in both the
acute and chronic phases of cerebral ischemia (Xu et al., 2016,
2017). Zhang et al. (2020a) also found that ZT-1a, a novel selective
SPS1-related proline/alanine-rich kinase (SPAK) inhibitor that
inhibits NKCC1 while activating KCC2, reduced cerebral edema
and improved stroke prognosis.

Na+-H+ Exchanger Inhibitors
As for NKCC1, the Na+-H+ exchanger plays an important role
in the early stage of cerebral edema after ischemia. Hypoxia can
stimulate BBB Na+-H+ exchanger activity, thereby promoting
the formation of cerebral edema. Intravenous injection of a
Na+-H+ exchanger inhibitor (HOE-642; compound RU-1355)
significantly reduced the Na+ concentration and reduced
cerebral edema (O’Donnell et al., 2013; Spasov et al., 2016).
Interestingly, a combined treatment with HOE-642 and

bumetanide had similar efficacy to HOE-642 alone, suggesting
no additive effect of two types of drugs.

Na+-Ca2+ Exchanger Inhibitors
Maintaining intracellular Ca2+ homeostasis is important
for protecting the BBB. Koyama et al. (2004) found that
the Na+-Ca2+ exchanger was involved in vasogenic edema
and BBB destruction. Furthermore, Na+-Ca2+ exchanger
inhibitors (SEA0400) could reduce the formation of
cerebral edema and cerebral infarction volume after cerebral
ischemia (Matsuda et al., 2001).

CONIVAPTAN

Arginine vasopressin and its receptors, V1a and V2, play
important roles in cerebral edema after ischemic stroke (Vakili
et al., 2005). Conivaptan is a V1a and V2 receptor blocker that
can reduce cerebral edema (Ansari et al., 2018). Intraperitoneal
administration of conivaptan was reported to be superior to
continuous intravenous administration (Zeynalov et al., 2016).
Zeynalov et al. (2017) also found that conivaptan treatment at
3 h after ischemia could reduce edema, suggesting a role in early
cytotoxic edema.

MICRORNAS

MicroRNAs (miRNAs) regulate the gene expression at the
transcriptional level and are promising targets for disease therapy
(Carleton et al., 2007; Li G. et al., 2018). The expression of
miRNA-1 is related to ischemic damage and cellular apoptosis
(Chen et al., 2006). Treatment with anti-miR-1 reduced the
infarct volume (Selvamani et al., 2012), while treatment with
the miRNA-1 antagomir significantly reduced cerebral edema
and BBB damage (Talebi et al., 2019). Of note, other miRNAs,
including miRNA-132 (Zuo et al., 2019) and miRNA-1906 (Yu
and Li, 2020), are potential targets for the treatment of edema.

BBB PROTECTIVE AGENTS

Vasogenic edema is accompanied by BBB destruction. Thus,
maintaining BBB integrity is an important outcome measure
for anti-edema treatments. Alpha-tocopherol can protect the
BBB via its antioxidant actions (Chaudhary et al., 2003; Hsiao
et al., 2007) and reduce edema formation after ischemic stroke
(Azar et al., 2017). Treatment with 8-methoxypsoralen can
also improve BBB ultrastructure by increasing the NFE2-
related factor 2 and hemeoxygenase 1 protein expression,
thus reducing edema (Liu et al., 2018). Furthermore, 3-
aminobenzamide and calcitriol can both maintain BBB integrity
and have anti-edema effects (Sadeghian et al., 2019; Wang J.
et al., 2020). Mast cells are also involved in BBB destruction
(Ocak et al., 2019), while the modulation of mast cells
with agents such as sodium cromoglycate (McKittrick et al.,
2015) and intravenous immunoglobulin (Widiapradja et al.,
2012) can reduce edema. Furthermore, chemokine-like factors
can maintain the BBB integrity and inhibit the formation
of cerebral edema (Kong et al., 2016). Potential drugs
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targeting BBB include magnesium sulfate (Shadman et al.,
2019), ulinastatin (Li X.-F. et al., 2018), ginkgo diterpene
lactone meglumine injection (Li et al., 2017), olaparib (Teng
et al., 2016), recombinant human erythropoietin (Wang et al.,
2015), and 1-trifuoromethoxyphenyl-3-(1-propionylpiperidin-4-
yl) urea (Zhang et al., 2020b).

PERSPECTIVES

Cerebral edema following ischemic stroke is associated with
a poor prognosis. Unfortunately, there are currently limited
specific anti-cerebral edema treatment options available for
clinical use. Traditional osmotic therapies are not specific to
the molecular mechanism of cerebral edema. Their main role
is to reduce intracranial hypertension and relieve mass effects
(Stokum et al., 2020), which may cause serious complications
such as water and electrolyte disorders and kidney damage
(Zhang et al., 2019). These drugs are usually used only
when high levels of intracranial hypertension are reached and
cerebral perfusion is threatened. Potential new drugs target the
pathophysiological mechanism of cerebral edema formation and
prevent the formation of cerebral edema while avoiding the
above complications.

A range of therapeutic agents (Table 2) have been developed
that successfully target cerebral edema and reduce brain
injury in animal models. These include targeted ion channels,
transporters, and specific targets. Also include anti-apoptotic,
anti-inflammatory, and antioxidant drugs (Tan et al., 2019;
Moghadam and Fereidoni, 2020; Yang et al., 2020). The Sur1-
Trpm4 inhibitors are of particular interest and have been
studied in three clinical trials. However, as of yet, no drugs

have been approved, which may relate to the design of
the preclinical animal experiments. To improve the clinical
translation, further preclinical animal studies are required
in a range of models, which should examine the optimal
therapeutic windows for the various agents. It is also important to
consider that cerebral edema is caused by multiple mechanisms
and that combination therapies may be the most effective
treatment strategy.
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