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ABSTRACT
Objectives  Adequate risk adjustment for factors beyond 
the control of the healthcare system contributes to the 
process of transparent and equitable benchmarking of 
trauma outcomes. Current risk adjustment models are not 
optimal in terms of the number and nature of predictor 
variables included in the model and the treatment of 
missing data. We propose a statistically robust and 
parsimonious risk adjustment model for the purpose of 
benchmarking.
Setting  This study analysed data from the multicentre 
Australia New Zealand Trauma Registry from 1 July 2016 
to 30 June 2018 consisting of 31 trauma centres.
Outcome measures  The primary endpoints were 
inpatient mortality and length of hospital stay. Firth logistic 
regression and robust linear regression models were 
used to study the endpoints, respectively. Restricted cubic 
splines were used to model non-linear relationships with 
age. Model validation was performed on a subset of the 
dataset.
Results  Of the 9509 patients in the model development 
cohort, 72% were male and approximately half (51%) aged 
over 50 years . For mortality, cubic splines in age, injury 
cause, arrival Glasgow Coma Scale motor score, highest 
and second-highest Abbreviated Injury Scale scores 
and shock index were significant predictors. The model 
performed well in the validation sample with an area 
under the curve of 0.93. For length of stay, the identified 
predictor variables were similar. Compared with low falls, 
motor vehicle occupants stayed on average 2.6 days longer 
(95% CI: 2.0 to 3.1), p<0.001. Sensitivity analyses did not 
demonstrate any marked differences in the performance 
of the models.
Conclusion  Our risk adjustment model of six variables 
is efficient and can be reliably collected from registries to 
enhance the process of benchmarking.

INTRODUCTION
Effective, prompt, comprehensive medical 
care can reduce trauma-related mortality, 
improve outcomes and decrease the cost 
('burden') of trauma to society.1–3 The 

establishment of systems for trauma manage-
ment within geographic regions has been 
demonstrated to reduce mortality4–6 within 
those jurisdictions, as well as comparisons 
made between jurisdictions without such 
systems in place.7 Over time, this has been 
achieved through assessments of quality of 
care. Benchmarking overall system perfor-
mance, rather than individual patient 
mortality prediction, has been the primary 
aim of risk-adjustment tools.8 9

Early attempts to predict individual 
mortality risk following injury, most notably 
the Injury Severity Score (ISS),10 were based 
wholly on injury severities assigned using the 
Abbreviated Injury Scale (AIS).11 12 However, 
larger studies in the 1980s demonstrated 
that anatomical injury was not the only inde-
pendent predictor of mortality13 14; scores 
derived using the Trauma and Injury Severity 
Score (TRISS) methodology also employed 
patient age, the mechanism of injury and 
physiologic parameters (respiratory rate, 
systolic blood pressure (SBP) and Glasgow 
Coma Scale (GCS)) to prognosticate and 
do not employ optimal statistical methods. 
More recent studies using national-level data 
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from different countries have suggested that outcome 
prediction may be improved by utilising these physiologic 
parameters in different ways15; by reassessing how overall 
or region-specific injury severity is described8 16; or by 
introducing new variables such as comorbid status, initial 
laboratory values or the use of cardiopulmonary resusci-
tation (CPR) prehospital.8 17

However, the best variables for risk adjustment or 
the manner in which complex data such as AIS severi-
ties should best be used remain unclear, particularly as 
comparisons of the performance of existing tools have 
returned equivocal results, and the performance of these 
models varies in different populations.18 This may be due 
in part to factors such as the case mix of each popula-
tion, or differences in registry inclusion criteria,18 but the 
quality of the data used specifically, the level of complete-
ness of datasets used to develop models must also be 
considered. The German RISC-II model attempted to 
account for missing data in the dataset used,8 9 but using 
a two-stage process, it is unclear how uncertainties in the 
estimates were incorporated in the model. Consequently, 
such a model may not be generalisable outside of the 
population in which it was developed.

If different risk-adjustment models can provide varying 
results, it is clearly important to develop a robust, valid, 
transparent and reproducible process to decide which 
variables to include; how to treat each variable; and how 
best to combine and analyse data using appropriate 
methods. In doing so, the process should avoid over-
fitting the model (ie, including too many variables), 
inadvertently adjusting for variables which may be influ-
enced by the wider healthcare system (such as CPR), or 
including variables which are poorly measured or prone 
to measurement error or other types of bias.

The present study had two aims. The first was to iden-
tify significant and independent risk factors associated 
with inpatient mortality and hospital length of stay (LOS) 
among patients with trauma in Australia and New Zealand. 
A second aim was to develop an Australasian-specific risk-
adjustment model to enable benchmarking, which can 
be used to identify variations in care between jurisdic-
tions or hospitals in spite of the existing data limitations. 
This is different from patient risk stratification or prog-
nostication. The purpose is not to provide healthcare 
practitioners with real-time information, but to allow for 
equitable benchmarking on the trauma centres.

METHODS
Data
The Australia New Zealand Trauma Registry (ATR) is the 
collaboration of Australia and New Zealand’s designated 
trauma centres. By combining trauma data, they are able 
to share expertise in trauma care and work together to 
both improve trauma systems and patient care through 
improved outcomes and quality of life in the most severely 
injured.

Contributing sites, of which there are 24 Australian and 
7 New Zealand for the timeframe utilised in this study, 
provide in-hospital data on the most severely injured, 
categorised as an ISS  >12 or death following injury.19 
Data are submitted directly from each site or via a state-
based registry. Data are submitted according to the Bi-na-
tional minimum trauma dataset. Tasmanian data are not 
included as they were not submitted during this time-
frame. Data collection was for patients with a recorded 
trauma date between 1 July 2016 and 30 June 2018.

Inclusion/ exclusion criteria
Patients who were aged less than 16 at the time of trauma 
or sustained injuries with an ISS <1320 were excluded 
from the study as they were excluded from many of the 
state-based registries. Only blunt injuries were included 
in our study, while injuries involving penetrating wounds, 
burns and other traumas were excluded as these are 
postulated to be different in aetiology and management. 
We also excluded patients who were transferred from 
other hospitals in the main analysis, but kept them for 
the subsequent sensitivity analysis.

Data quality
Data submitted to the ATR underwent various validity 
checks such as date and time formats and chronology (eg, 
injury date is before date of discharge from hospital, etc), 
and correct classification as per the International Classi-
fication of Diseases ICD-10-AM and AIS0821 prior to data 
processing. Contributing sites were notified to correct 
any errors that were identified.19

The primary outcome measure in our study was inpa-
tient mortality (measured as discharge destination in the 
registry). The coprimary outcome was LOS, measured as 
days between arrival at definitive care hospital to the date 
of discharge from definitive care, as reported by the state-
based registries or individual sites.

For each endpoint, we studied the relationship of the 
following covariates: sex, age (in years) at date of injury, 
ISS, highest and second-highest AIS,21 GCS at arrival at 
definitive care, motor component of GCS at arrival at 
definitive care, cause of injury collected as an ICD-10 code 
and grouped into major categories similar to the Victo-
rian Emergency Minimum Dataset,22 SBP and heart rate 
(HR) and shock index (SI). All variables were measured 
on arrival at definitive care. These variables were selected 
as potential risk factors as they have been established risk 
factors found in other studies.10 21

Patient and public involvement
There was no patient or public involvement in this 
research as the deidentified data were used in the anal-
ysis. Patients and the public were not involved in the 
design, or conduct, or reporting or dissemination plans 
of this research.

Statistical model
Model building was based on 80% of randomly selected 
patient data, and model validation on the remaining 20% 
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of the sample. We analysed all available data (n=11 888) 
in the registry and therefore sample size was not under-
taken. We used the Firth23 binary logistic regression model 
to identify factors associated with inpatient mortality. 
This model is an extension of the usual logistic regres-
sion model, but allows us to handle the issue of separa-
tion in the data (ie, problems with zero cell counts). For 
inpatient mortality, we assessed the potential interaction 
effects between age and the other covariates in the multi-
variable model based on apriori beliefs. We reported the 
coefficients (or ORs) and their 95% CIs as measures of 
effect size. Based on the final multivariable model iden-
tified for inpatient mortality, we assessed the discrimina-
tory properties by calculating the area under the curve 
(AUC). We calculated these statistics separately for the 
model development and validation samples to assess 
the robustness of our models. To evaluate the internal 
validity of the models, we calculated the bootstrapped 
(1000 replications) AUC and 95% CI for the model for 
inpatient mortality.

For LOS, we used the robust regression model, with a 
tuning factor of 10, which allowed us to downweigh the 
contribution of outliers in the model, since LOS is heavily 
right skewed and not normally distributed. As mortality 
cannot be deemed a confounder for LOS and due to the 
potentially mediating effect of this variable on the causal 
pathway, we included only survivors among predictors 
of LOS and undertook a sensitivity analysis where those 
who died were included in the analysis. For LOS, model 
performance was quantified by the R2 statistic. For both 
outcomes, we undertook univariable and multivariable 
analyses. Starting from the most statistically significant 
covariate identified in the univariable model, we used the 
likelihood ratio test to examine whether the inclusion of 
the next most significant variable helped improve the fit 
of the model, and this was sequentially done until all the 
covariates were examined.

For age, we used restricted cubic splines24 to model for 
non-linear relationships with outcome and to identify cut-
offs where there was an inflection in the risk of outcome. 
The number of knots for the cubic splines were selected 
based on the Akaike information criterion (AIC) measure 
and was set at four knots at the following age values of 16, 
50, 75 and 100. ISS was left as an ordinal variable in the 
modelling as this was deemed most clinically relevant. As 
ISS and AIS scores were collinear, we opted to include the 
more important covariate based on the AIC statistic, in 
the multivariable model. Missing data for each covariate 
were kept as a separate category in our model.

To address the potential impact of survivorship bias, 
that is, a different interpretation of LOS for those who are 
alive at discharge compared with those who have died, 
we undertook separate models for those who were alive 
versus those who died (sensitivity analysis presented in 
online supplemental file 1 of the manuscript). We also 
undertook sensitivity analysis to assess the robustness of 
our models, specifically by including transfer patients in 
our analysis. Level of significance was set at 5% and data 

analysed in Stata V.16 (Stata Corp, College Station, Texas, 
USA).

RESULTS
A total of 16 965 patients sustained major trauma in 
Australia or New Zealand and were managed at an ATR 
site between July 2016 and June 2018. Of these patients, 
5061 patients were transferred from another hospital, 
and 16 had unknown transfer status; these patients were 
excluded from the main analysis. Of the remaining 11 888 
patients, 80% (9509) were used in the model-building 
process and the remaining for model validation. This 
study was based on all available patient data, and our 
large sample size of 9509 (80%)was sufficiently powered 
to detect small effect sizes (at least a 25% increase in odds 
of outcome).25

Table  1 shows the demographic and clinical charac-
teristics of the patients included in the model-building 
cohort. About half (50.2%) were more than 50 years old 
at the time of the trauma event; the majority (72.0%) 
were male. Motor vehicle occupant was the most common 
injury cause (24.6%), followed by low fall (17.7%) and 
high fall (defined as >1 m; 16.4%). The median LOS was 
7.7 days (IQR: 3.7–15.0). The highest AIS score was most 
commonly 3 (51.1%), while the most common second-
highest AIS value was 2. The majority belonged to ISS 
group 13–22 (67.7%) followed by 24–43 (28.8%). There 
were significant differences in all variables in table  1 
between those who died versus those who remained alive.

Table  2 highlights the univariable factors associated 
with mortality. Age defined by cubic splines, sex, ATR 
injury cause, arrival GCS motor score, highest and second-
highest AIS scores, HR and SBP, SI and ISS were signifi-
cantly associated with inpatient mortality. Restricted cubic 
spline plots showed that there was a non-linear associa-
tion between age and mortality (figure 1).

Compared with evaluating age as a continuous or cate-
gorical variable, we found that the cubic splines provided 
the best fit, with the lowest AIC value of 5825.8. Females 
had a 20% increased odds of mortality (95% CI: 4% to 
39%) when compared with males, p=0.014. A dose–
response relationship was observed for arrival GCS 
motor score, with those ‘obeying commands’ (score 6) 
showing a 96% decrease (95% CI: 95% to 97%) in odds 
of mortality compared with those in the ‘none’ category 
(score 1; p<0.001). Similar dose–response relationships 
were seen for the relationship between highest as well as 
the second-highest AIS scores, SI and ISS with mortality.

In the multivariable analysis (table 3), all of the variables 
originally significant in the univariable analysis remained 
significant, except for sex. We observed that effect sizes 
for age group, AIS scores and SI were smaller in size, 
while for injury cause and GCS arrival score, the effect 
sizes were larger in the multivariable analysis, probably 
due to confounding. Due to collinearity between SI and 
both HR and SBP, we opted to include SI in the multivari-
able model, as it was found to be the stronger predictor 

https://dx.doi.org/10.1136/bmjopen-2021-050795
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Table 1  Demographic and clinical variables by inpatient mortality status

Variables Alive Dead All P value

N 8579 930 9509

Age group <0.001

 � <21 673 (7.8%) 47 (5.1%) 720 (7.6%)

 � 21–30 1435 (16.7%) 113 (12.2%) 1548 (16.3%)

 � 31–40 1155 (13.5%) 63 (6.8%) 1218 (12.8%)

 � 41–50 1173 (13.7%) 74 (8.0%) 1247 (13.1%)

 � 51–60 1338 (15.6%) 94 (10.1%) 1432 (15.1%)

 � 61–70 1053 (12.3%) 123 (13.2%) 1176 (12.4%)

 � 71–80 895 (10.4%) 154 (16.6%) 1049 (11.0%)

 � 81+ 854 (10.0%) 262 (28.2%) 1116 (11.7%)

 � Unknown 3 (<0.1%) 0 (0.0%) 3 (<0.1%)

ATR injury cause <0.001

 � High fall 1399 (16.3%) 163 (17.5%) 1562 (16.4%)

 � Low fall 1416 (16.5%) 268 (28.8%) 1684 (17.7%)

 � Motor cyclist 1262 (14.7%) 68 (7.3%) 1330 (14.0%)

 � Motor vehicle occupant 2170 (25.3%) 167 (18.0%) 2337 (24.6%)

 � Other transport related 187 (2.2%) 7 (0.8%) 194 (2.0%)

 � Pedal cyclist 642 (7.5%) 26 (2.8%) 668 (7.0%)

 � Pedestrian 637 (7.4%) 120 (12.9%) 757 (8.0%)

 � Striking against or by object 229 (2.7%) 12 (1.3%) 241 (2.5%)

 � Struck by or collision with a person 240 (2.8%) 8 (0.9%) 248 (2.6%)

 � Other 397 (4.6%) 91 (9.8%) 488 (5.1%)

 � LOS, median (IQR) 8.0 (4.0–16.0) 2.0 (1.0–6.6) 7.7 (3.7–15.0) <0.001

Sex 0.044

 � Male 6210 (72.4%) 638 (68.6%) 6848 (72.0%)

 � Female 2367 (27.6%) 292 (31.4%) 2659 (28.0%)

 � Not stated 2 (<1%) 0 (0.0%) 2 (<0.1%)

Arrival GCS motor <0.001

 � None (1) 1145 (13.3%) 615 (66.1%) 1760 (18.5%)

 � Extension to pain (2) 16 (0.2%) 11 (1.2%) 27 (0.3%)

 � Flexion to pain (3) 28 (0.3%) 14 (1.5%) 42 (0.4%)

 � Withdraws to pain (4) 83 (1.0%) 28 (3.0%) 111 (1.2%)

 � Localises pain (5) 377 (4.4%) 70 (7.5%) 447 (4.7%)

 � Obeys commands (6) 6930 (80.8%) 192 (20.6%) 7122 (74.9%)

Highest AIS score <0.001

 � 1 4 (<1%) 0 (0.0%) 4 (<0.1%)

 � 2 81 (0.9%) 0 (0.0%) 81 (0.9%)

 � 3 4751 (55.4%) 109 (11.7%) 4860 (51.1%)

 � 4 2628 (30.6%) 170 (18.3%) 2798 (29.4%)

 � 5 1103 (12.9%) 610 (65.6%) 1713 (18.0%)

 � 6 8 (0.1%) 35 (3.8%) 43 (0.5%)

 �  4 (<1%) 6 (0.6%) 10 (0.1%)

Second-highest AIS score <0.001

 � 1 652 (7.6%) 126 (13.5%) 778 (8.2%)

 � 2 4552 (53.1%) 202 (21.7%) 4754 (50.0%)

Continued
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among the variables. Similarly, AIS scores were included 
in the model instead of ISS scores due to collinearity. We 
also found that those with missing SI or cardiac arrest on 
arrival had a higher OR of mortality of 2.2 (95% CI: 1.4 to 
3.5), p=0.001 and 88.9 (95% CI: 23.3 to 339.2), p<0.001 as 
compared with those in the first quartile.

The final multivariable model returned an AUC of 
0.938 (95% CI: 0.931 to 0.945) (figure  2A). The boot-
strapped 95% CI was reasonably narrow with a range of 
0.932–0.945. In the validation dataset, the model also 
performed very well with an AUC of 0.931 (95% CI: 0.930 
to 0.943) (figure  2B). There was no significant interac-
tion between age and any of the other variables in the 
multivariable model.

Table  4 highlights univariable factors associated with 
LOS among patients with trauma who survived. We found 
age, ATR injury cause, arrival GCS motor score, highest 
and second-highest AIS scores, HR, SBP, SI and ISS 
score were all significantly associated with LOS. There 
was a significant dose–response relationship between 
arrival GCS motor score and LOS, where for example 
those who ‘obey commands’ (score 6) stayed on average 
11.6 days less (95% CI: 11.0 to 12.2 days) than those who 
were recorded as ‘none’, (score 1; p<0.001). Compared 
with low falls, ‘motor vehicle occupants’ and pedestrians 
stayed longer in hospital. A dose–response relationship 
was also observed with highest and second-highest AIS 
scores, where patients with higher scores stayed longer. 

Patients belonging to the fourth quartile of the SI stayed 
on average 5.1 days (95% CI: 4.6 to 5.6 days) more than 
those in the first quartile, and this was statistically signif-
icant (p<0.001). Except for ISS=32 and 42, higher ISS 
values were associated with a longer hospital stay.

All of the associations found in the univariable analysis 
persisted in the multivariable analysis (table 5). The non-
linear relationship with age remained, while the coeffi-
cients changed for various age groups. The coefficient 
for ‘cubic spline among those aged 16–50’ also changed 
in direction. Motor vehicle occupants stayed on average 
2.6 days (95% CI: 1.3 to 2.6) longer than those who had 
low falls, p<0.001. Those who exhibited withdrawal to 
pain, localised pain and obeying commands stayed on 
average for a shorter LOS as compared with those who 
had ‘none’ for arrival GCS score. Generally, those with 
higher SI stayed longer in hospital, while those who had 
a cardiac arrest on arrival stayed for a much shorter dura-
tion (−14.7 days), p=0.004. Those with higher AIS scores 
stayed longer and those with just one AIS score (ie, coded 
“Not Applicable” NA for second-highest AIS) stayed 
on average 4.5 days less (95% CI: 3.9 to 5.1 days lesser) 
compared with those who scored 3 for the second-highest 
AIS, p<0.001. Based on the final multivariable model, we 
found that the model explained 13.1% of the variation in 
LOS. The model performed similarly well for the valida-
tion cohort, with 17.1% of the variation in LOS explained 
by the model.

Variables Alive Dead All P value

 � 3 2055 (24.0%) 237 (25.5%) 2292 (24.1%)

 � 4 253 (2.9%) 106 (11.4%) 359 (3.8%)

 � 5 34 (0.4%) 61 (6.6%) 95 (1.0%)

 �  1033 (12.0%) 198 (21.3%) 1231 (12.9%)

SBP, median (IQR) 132.0 (118.0–150.0) 131.0 (98.0–160.0) 132.0 (116.0–150.0) 0.034

HR, median (IQR) 84.0 (71.0–98.0) 88.0 (70.0–112.0) 84.0 (71.0–99.0) 0.016

Shock-index grouped in quartiles <0.001

 � First quartile 2058 (24.0%) 234 (25.2%) 2292 (24.1%)

 � Second quartile 2313 (27.0%) 131 (14.1%) 2444 (25.7%)

 � Third quartile 2039 (23.8%) 138 (14.8%) 2177 (22.9%)

 � Fourth quartile 1980 (23.1%) 285 (30.6%) 2265 (23.8%)

 � Missing 187 (2.2%) 71 (7.6%) 258 (2.7%)

 � Cardiac arrest on arrival 2 (<0.1%) 71 (7.6%) 73 (0.8%)

ISS grouped <0.001

 � 13–22 6262 (73.0%) 177 (19.0%) 6439 (67.7%)

 � 24–43 2147 (25.0%) 591 (63.5%) 2738 (28.8%)

 � 45–51 112 (1.3%) 73 (7.8%) 185 (1.9%)

 � 54–59 36 (0.4%) 28 (3.0%) 64 (0.7%)

 � 66–75 22 (0.3%) 61 (6.6%) 83 (0.9%)

AIS, Abbreviated Injury Scale; ATR, Australian Trauma Registry; GCS, Glasgow Coma Scale; HR, heart rate; ISS, Injury Severity Score; LOS, 
length of stay; SBP, systolic blood pressure.

Table 1  Continued
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Table 2  Univariable factors associated with mortality

Variable OR 95% CI P value

Age*  �   �   �   �

 � Cubic spline among those aged 16–50 0.98 0.96 0.99 0.001

 � Cubic spline among those aged 51–75 1.10 1.06 1.14 <0.001

 � Cubic spline among those aged >75 0.77 0.67 0.90 0.001

Sex  �   �   �   �

 � Male Reference  �   �   �

 � Female 1.20 1.04 1.39 0.014

 � Not stated 1.95 0.09 40.56 0.668

ATR injury cause

 � High fall 0.62 0.50 0.76 <0.001

 � Low fall Reference  �   �   �

 � Motor cyclist 0.29 0.22 0.38 <0.001

 � Motor vehicle occupant 0.41 0.33 0.50 <0.001

 � Other 1.21 0.93 1.58 0.146

 � Other transport related 0.21 0.10 0.44 <0.001

 � Pedal cyclist 0.22 0.14 0.33 <0.001

 � Pedestrian 1.00 0.79 1.26 0.981

 � Striking against or by object 0.29 0.16 0.52 <0.001

 � Struck by or Collision with a Person 0.19 0.09 0.37 <0.001

Arrival GCS motor

 � None (1) Reference  �   �   �

 � Extension to pain (2) 1.07 0.51 2.26 0.853

 � Flexion to pain (3) 0.74 0.40 1.36 0.333

 � Withdraws to pain (4) 0.47 0.30 0.72 0.001

 � Localises pain (5) 0.27 0.21 0.35 <0.001

 � Obeys commands (6) 0.04 0.03 0.05 <0.001

 � Not stated 0.24 0.18 0.32 <0.001

Highest AIS score

 � 1 4.82 0.26 90.10 0.292

 � 2 0.27 0.02 4.32 0.352

 � 3 Reference  �   �   �

 � 4 2.81 2.20 3.60 <0.001

 � 5 24.01 19.39 29.73 <0.001

 � 6 181.23 83.74 392.21 <0.001

Second-highest AIS score

 � 1 1.68 1.33 2.12 <0.001

 � 2 0.38 0.32 0.47 <0.001

 � 3 Reference  �   �   �

 � 4 3.64 2.79 4.73 <0.001

 � 5 15.43 9.96 23.91 <0.001

 � NA 1.66 1.36 2.04 <0.001

 � SBP 0.99 0.99 0.99 <0.001

 � HR 1.00 1.00 1.01 0.033

Shock-index grouped in quartiles

 � First quartile Reference  �   �   �

Continued
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Sensitivity analysis
We undertook a number of sensitivity analyses to test the 
robustness of our models against various assumptions. 

First, we assessed the impact of including transferred 
patients on our multivariable results. We found that the 
main implication was that the coefficients for several 

Variable OR 95% CI P value

 � Second quartile 0.50 0.40 0.62 <0.001

 � Third quartile 0.60 0.48 0.74 <0.001

 � Fourth quartile 1.27 1.05 1.52 0.012

 � Missing 3.35 2.47 4.54 <0.001

 � Cardiac arrest on arrival 251.06 70.63 892.47 <0.001

ISS  �   �   �   �

 � 13 Reference  �   �   �

 � 14 0.96 0.50 1.83 0.899

 � 16 3.97 2.16 7.32 <0.001

 � 17 2.33 1.34 4.07 0.003

 � 18 2.99 1.36 6.56 0.006

 � 19 2.68 1.22 5.88 0.014

 � 20 3.11 1.38 7.00 0.006

 � 21 2.47 1.15 5.30 0.020

 � 22 2.22 1.13 4.34 0.020

 � 24 3.18 1.53 6.61 0.002

 � 25 28.41 16.76 48.17 <0.001

 � 26 29.16 17.23 49.37 <0.001

 � 27 8.83 4.45 17.54 <0.001

 � 29 12.21 7.05 21.14 <0.001

 � 30 28.07 15.62 50.47 <0.001

 � 32 10.66 1.78 63.83 0.010

 � 33 14.91 7.80 28.51 <0.001

 � 34 13.60 7.30 25.34 <0.001

 � 35 31.92 15.74 64.70 <0.001

 � 36 5.68 1.93 16.69 0.002

 � 38 32.20 18.03 57.53 <0.001

 � 41 13.51 6.08 30.01 <0.001

 � 42 58.54 18.40 186.24 <0.001

 � 43 38.71 19.45 77.01 <0.001

 � 45 42.29 22.08 81.03 <0.001

 � 48 8.81 1.50 51.70 0.016

 � 50 51.57 26.83 99.13 <0.001

 � 51 121.58 24.05 614.76 <0.001

 � 54 94.56 32.91 271.75 <0.001

 � 57 39.83 16.59 95.65 <0.001

 � 59 48.25 16.79 138.65 <0.001

 � 66 77.55 32.27 186.36 <0.001

 � 75 330.62 141.25 773.86 <0.001

*No reference category exists for age as the cubic splines represent non-linear relationships; resultant ORs are not easily interpretable.
AIS, Abbreviated Injury Scale; ATR, Australian Trauma Registry; GCS, Glasgow Coma Scale; HR, heart rate; ISS, Injury Severity Score; LOS, 
length of stay; SBP, systolic blood pressure.

Table 2  Continued
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of the covariates for the mortality outcome were less 
pronounced when we included the transfers (online 
supplemental table S1). For example, motor vehicle 
occupant injury cause and a highest AIS score of 1 were 
no longer significant, whereas for some covariates, the 
effects were attenuated such as pedal cyclist (OR changed 
from 0.66 to 0.39 and became significant, p=0.013). In 
particular, we noted substantial changes in the magnitude 
and significance for SI, which became more pronounced 
when the transfers were included. The results potentially 
indicate a marked increase in effect size due to the inclu-
sion of sicker patients but independent of other measures 
of severity (ie, highest AIS, GCS motor).

As for LOS, there were no materially significant changes 
to the magnitude or direction of the effect sizes, except 
for the group with an AIS score of 6, where we found 
there was an increase in LOS from 8.2 days to 12.7 days, 
potentially caused by the more ill patients included in our 
analysis, but the numbers are small in this group (online 
supplemental table S2).

Online supplemental table S3 shows the results for the 
multivariable model for LOS including those who died. 
When deaths were included in the model (online supple-
mental table 3), the following differences to the multi-
variable results for LOS were observed: pedal cyclists and 
those ‘struck by or collision with a person’ which were 
originally not significant became statistically significant, 
staying 1.3 and 1.2 days less, respectively compared with 
those who had a ‘low fall’. Arrival GCS motor score was 
also not as important with only two categories, ‘localises 
pain’ and ‘obeys commands’ remaining significant. Simi-
larly, the magnitude of the effect sizes was reduced for AIS 
scores and those with cardiac arrest on arrival; there was a 
change in the direction of effect for the highest AIS score 
(6) from +8.2 days to −3.8 days, and the second-highest 
AIS score (5) from 10.8 days to −3.7 days compared with 
the reference of AIS 3. Given that patients with AIS 5 or 
6 injuries are more likely to die, often following compar-
atively little time in hospital, this finding is unsurprising.

Figure 1  Restricted cubic splines for relationship between 
age and inpatient mortality. 95% CIs are shown as dashed 
lines.

Table 3  Multivariable factors associated with mortality

Variable OR 95% CI P value

Age*

 � Cubic spline 
among those 
aged 16–50

0.99 0.97 1.01 0.181

 � Cubic spline 
among those 
aged 51–75

1.15 1.09 1.20 <0.001

 � Cubic spline 
among those 
aged >75

0.64 0.52 0.78 <0.001

ATR injury cause

 � High fall 0.79 0.58 1.08 0.142

 � Low fall Reference

 � Motor cyclist 0.56 0.36 0.87 0.009

 � Motor vehicle 
occupant

0.65 0.47 0.91 0.011

 � Other transport 
related

1.47 0.97 2.23 0.070

 � Pedal cyclist 0.66 0.27 1.60 0.359

 � Pedestrian 0.64 0.36 1.14 0.132

 � Striking against 
or by object

1.02 0.71 1.48 0.900

 � Struck by or 
collision with a 
person

0.57 0.28 1.15 0.116

 � Other 0.56 0.24 1.31 0.185

Arrival GCS motor

 � None (1) Reference

 � Extension to 
pain (2)

0.52 0.19 1.42 0.205

 � Flexion to pain 
(3)

0.52 0.23 1.17 0.113

 � Withdraws to 
pain (4)

0.28 0.16 0.50 <0.001

 � Localises pain 
(5)

0.17 0.12 0.25 <0.001

 � Obeys 
commands (6)

0.04 0.03 0.05 <0.001

 � Not stated 0.15 0.10 0.23 <0.001

Highest AIS score

 � 1 34.33 1.78 662.40 0.019

 � 2 0.15 0.01 2.69 0.195

 � 3 Reference

 � 4 1.69 1.26 2.28 <0.001

 � 5 8.12 6.12 10.78 <0.001

 � 6 37.60 12.89 109.64 <0.001

Second-highest AIS score

 � 1 0.86 0.61 1.19 0.358

 � 2 0.60 0.46 0.78 <0.001

 � 3 Reference

Continued
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DISCUSSION
Trauma is a time critical disease,26 and effective manage-
ment across trauma centres and trauma systems can 
measurably affect outcomes. Many different approaches 
have been developed and evolved to benchmark trauma 
care over time, but different models have resulted in 
different conclusions being drawn. Using contempo-
rary statistical techniques, this study has found that 
the important factors associated with trauma inpatient 
mortality include age group, gender, cause of injury, 
arrival GCS motor score, highest and second-highest AIS 
score, SI group and ISS group. The overall model which 
was developed performed well, with an AUC of 0.938. As 
for LOS, the same factors (except for sex) were found to 
be associated in the multivariable analysis. These findings 

will allow us to provide for transparent and robust bench-
marking of outcomes among trauma centres. The results 
could also potentially aid clinicians to risk stratify patients 
when they present to the hospital.

Our model performance (AUC=0.938) was similar 
to a recently published model RISC II (AUC=0.953).8 
Importantly, our model is based on a smaller number 
of variables, that are more readily available for trauma 
registries to collect. This small number of variables allows 
less chance of measurement error and bias and greater 
feasibility of collection. In addition, the model deals with 
missing data using a single unified statistical approach, 
without making assumptions which are difficult to ascer-
tain. The RISC II model has 15 variables (3 derived from 
AIS), while the model developed in this study is based on 
just 6 variables. Some of the laboratory variables included 
in the RISC II model could also be prone to incomplete 
data collection or missing data.

As with most observational studies, missing data are of 
concern and there are several techniques to deal with 
the problem, including complete case analysis, single 
imputation and multiple imputation. Imputing data 
would require the assumption that the data are missing 
at random, which could be problematic in the context 
of data collected from sites for the purposes of bench-
marking. Therefore, we did not undertake multiple 
imputation of missing data. Similarly, we randomly 
selected 20% of the observations across the entire 
study period to perform the validation exercise and not 
by calendar year as we observed differential levels of 
missing data by site during the more recent data collec-
tion period.

The approach to missing data in the RISC II model 
involves assigning them to existing patient categories 
which are more ‘similar’ to them in terms of risk of 
outcome and assigning the group as the reference cate-
gory. This two-stage process does not account for uncer-
tainty adequately in the modelling process. Such an 
approach is also data driven and not easily scalable to 
other population or datasets. For instance, in the RISC 
II model, missing data in the highest AIS score category 
is assigned to 2, and in the second-highest AIS score cate-
gory to 3; this is not clinically intuitive.

There is also a similar risk-adjustment work undertaken 
by the American College of Surgeons’ (ACS) Trauma 
Quality Improvement Program (TQIP).27 There are a 
few major differences between their approach and ours. 
First, the ACS’ TQIP considers additional variables such 
as individual comorbidities, race and payment type, 
which are not readily available in our registry. Second, 
they have included hospital effects as a random intercept 
term within a hierarchical regression model. Such an 
approach ‘can inadvertently ‘adjust away’ some of the key 
inter-hospital process and outcomes differences that are 
the focus of TQIP’ as acknowledged by the same authors. 
While including hospital effects may help with a patient-
risk stratification model, we feel it may not be appropriate 
for a benchmarking exercise.

Variable OR 95% CI P value

 � 4 0.99 0.69 1.42 0.946

 � 5 1.76 1.02 3.04 0.044

 � NA 0.71 0.52 0.98 0.038

Shock-index grouped in quartiles

 � First quartile Reference

 � Second quartile 0.68 0.52 0.91 0.008

 � Third quartile 0.96 0.72 1.27 0.754

 � Fourth quartile 1.09 0.83 1.44 0.517

 � Missing 2.20 1.39 3.48 0.001

 � Cardiac arrest 
on arrival

88.92 23.31 339.16 <0.001

*No reference category exists for age as the cubic splines 
represent non-linear relationships; resultant ORs are not easily 
interpretable.
AIS, Abbreviated Injury Scale; ATR, Australian Trauma Registry; 
GCS, Glasgow Coma Scale.

Table 3  Continued

Figure 2  Area under the curve for the final multivariable 
model for mortality. (A) Model development cohort and 
(B) Model validation cohort. ROC:Receiver Operating 
Characteristic
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Table 4  Univariable factors associated with length of stay among survivors

Variable Coefficient 95% CI P value

Age*  �   �   �   �

 � Cubic spline among those aged 16–50 −0.05 −0.08 −0.02 0.004

 � Cubic spline among those aged 51–75 0.16 0.07 0.25 <0.001

 � Cubic spline among those aged >75 −0.73 −1.15 −0.30 0.001

Sex  �   �   �   �

 � Male Reference  �   �   �

 � Female 0.65 0.23 1.06 0.002

 � Not stated −7.30 −19.26 4.66 0.232

ATR injury cause  �   �   �

 � High fall 0.77 0.15 1.40 0.015

 � Low fall Reference  �   �   �

 � Motor cyclist 1.39 0.74 2.03 <0.001

 � Motor vehicle occupant 3.07 2.51 3.63 <0.001

 � Other 0.72 −0.22 1.66 0.131

 � Other transport related −0.60 −1.89 0.70 0.367

 � Pedal cyclist −2.31 −3.10 −1.52 <0.001

 � Pedestrian 3.38 2.59 4.17 <0.001

 � Striking against or by object −0.60 −1.79 0.60 0.327

 � Struck by or collision with a person −2.41 −3.57 −1.25 <0.001

Arrival GCS motor  �   �   �

 � None (1) Reference  �   �   �

 � Extension to pain (2) −3.83 −7.92 0.27 0.067

 � Flexion to pain (3) −0.48 −3.36 2.40 0.743

 � Withdraws to pain (4) −5.93 −7.74 −4.13 <0.001

 � Localises pain (5) −6.67 −7.66 −5.68 <0.001

 � Obeys commands (6) −11.57 −12.17 −10.97 <0.001

 � Not stated −10.71 −11.72 −9.70 <0.001

Highest AIS score  �   �   �

 � 1 −4.73 −12.92 3.45 0.257

 � 2 −2.17 −4.04 −0.30 0.023

 � 3 Reference  �   �   �

 � 4 2.67 2.26 3.07 <0.001

 � 5 7.16 6.61 7.71 <0.001

 � 6 8.10 2.31 13.89 0.006

Second-highest AIS score  �   �   �

 � 1 −4.51 −5.22 −3.79 <0.001

 � 2 −5.26 −5.69 −4.84 <0.001

 � 3 Reference  �   �   �

 � 4 9.91 8.86 10.97 <0.001

 � 5 19.45 16.74 22.17 <0.001

 � NA −5.13 −5.74 −4.53 <0.001

 � SBP −0.04 −0.05 −0.03 <0.001

 � HR 0.09 0.08 0.10 <0.001

Shock-index grouped in quartiles

 � First quartile Reference  �   �   �

Continued
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A formal comparison with the various models would be 
problematic for several reasons. The characteristics of the 
study population are different and the way the variables 

are defined and collected could differ by countries.28 
Also, the fact that the RISC II study included penetrating 
injuries, while we excluded them in our analysis would 

Variable Coefficient 95% CI P value

 � Second quartile 0.22 −0.28 0.73 0.386

 � Third quartile 0.90 0.37 1.42 0.001

 � Fourth quartile 5.08 4.55 5.60 <0.001

 � Missing 0.61 −0.66 1.88 0.347

 � Cardiac arrest on arrival −7.50 −19.20 4.20 0.209

ISS  �   �   �   �

 � 13 Reference  �   �   �

 � 14 0.11 −0.48 0.71 0.709

 � 16 0.81 0.00 1.62 0.049

 � 17 1.86 1.27 2.45 <0.001

 � 18 1.86 0.78 2.94 0.001

 � 19 2.37 1.33 3.41 <0.001

 � 20 3.06 1.92 4.19 <0.001

 � 21 2.74 1.78 3.70 <0.001

 � 22 5.60 4.82 6.38 <0.001

 � 24 6.18 5.18 7.17 <0.001

 � 25 4.63 3.67 5.60 <0.001

 � 26 5.34 4.37 6.31 <0.001

 � 27 9.97 8.64 11.31 <0.001

 � 29 7.94 7.05 8.83 <0.001

 � 30 5.99 4.56 7.41 <0.001

 � 32 2.60 −2.67 7.87 0.333

 � 33 10.41 8.95 11.87 <0.001

 � 34 11.20 9.89 12.50 <0.001

 � 35 9.84 7.58 12.10 <0.001

 � 36 13.87 11.70 16.04 <0.001

 � 38 11.03 9.56 12.49 <0.001

 � 41 17.70 15.68 19.72 <0.001

 � 42 4.81 −0.82 10.44 0.094

 � 43 18.57 16.29 20.86 <0.001

 � 45 15.67 13.56 17.78 <0.001

 � 48 26.24 21.74 30.74 <0.001

 � 50 18.54 16.28 20.80 <0.001

 � 51 22.47 11.96 32.98 <0.001

 � 54 32.28 26.65 37.91 <0.001

 � 57 21.23 17.71 24.76 <0.001

 � 59 23.34 18.63 28.06 <0.001

 � 66 23.91 19.60 28.22 <0.001

 � 75 10.91 5.94 15.88 <0.001

*No reference category exists for age as the cubic splines represent non-linear relationships; resultant ORs are not easily interpretable.
AIS, Abbreviated Injury Scale; ATR, Australian Trauma Registry; GCS, Glasgow Coma Scale; HR, heart rate; ISS, Injury Severity Score; SBP, 
systolic blood pressure.

Table 4  Continued
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Table 5  Multivariable factors associated with length of stay among survivors

Variable Coefficient 95% CI P value

Age*

 � Cubic spline among those aged 16–50 0.04 0.01 0.07 0.006

 � Cubic spline among those aged 51–75 0.07 −0.01 0.15 0.082

 � Cubic spline among those aged >75 −0.44 −0.80 −0.07 0.018

ATR injury cause

 � High fall 0.86 0.28 1.45 0.004

 � Low fall Reference

 � Motor cyclist 1.95 1.31 2.59 <0.001

 � Motor vehicle occupant 2.56 1.99 3.12 <0.001

 � Other 0.54 −0.32 1.40 0.216

 � Other transport related 0.54 −0.61 1.70 0.355

 � Pedal cyclist −0.61 −1.37 0.14 0.109

 � Pedestrian 2.56 1.84 3.29 0.000

 � Striking against or by object −0.18 −1.25 0.89 0.737

 � Struck by or collision with a person −0.96 −2.01 0.09 0.072

Arrival GCS motor

 � None (1) Reference

 � Extension to pain (2) −1.28 −4.98 2.42 0.498

 � Flexion to pain (3) 1.49 −1.12 4.09 0.263

 � Withdraws to pain (4) −3.93 −5.57 −2.29 <0.001

 � Localises pain (5) −3.82 −4.73 −2.90 <0.001

 � Obeys commands (6) −8.01 −8.60 −7.43 <0.001

 � Not stated −6.29 −7.30 −5.28 <0.001

Highest AIS score

 � 1 −1.24 −8.35 5.87 0.732

 � 2 −1.29 −2.92 0.35 0.123

 � 3 Reference

 � 4 2.28 1.88 2.67 <0.001

 � 5 4.61 4.06 5.16 <0.001

 � 6 8.18 3.14 13.22 0.001

Second-highest AIS score

 � 1 −4.32 −5.00 −3.65 <0.001

 � 2 −3.18 −3.58 −2.78 <0.001

 � 3 Reference

 � 4 5.35 4.36 6.34 <0.001

 � 5 10.82 8.32 13.33 <0.001

 � NA −4.50 −5.11 −3.89 <0.001

Shock-index grouped in quartiles

 � First quartile Reference

 � Second quartile 0.27 −0.17 0.71 0.227

 � Third quartile 0.62 0.16 1.09 0.009

 � Fourth quartile 2.61 2.12 3.11 <0.001

 � Missing −1.07 −2.30 0.16 0.089

 � Cardiac arrest on arrival −14.73 −24.78 −4.69 0.004

*No reference category exists for age as the cubic splines represent non-linear relationships; resultant ORs are not easily interpretable.
AIS, Abbreviated Injury Scale; ATR, Australian Trauma Registry; GCS, Glasgow Coma Scale.
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preclude such a comparative analysis. The ACS’ TQIP 
also had different inclusion/exclusion criteria from our 
study. As the RISC II study has already established supe-
rior performance to previous models,8 we did not repeat 
these comparisons in our study. Any formal comparison 
between the models/approaches would require simula-
tion studies (to ensure they are valid across a variety of 
trauma system settings) as well as application to a dataset 
with broader list of variables such as the one from ACS’s 
TQIP.

Sensitivity analyses indicated that our results were 
not materially altered by including transferred patients, 
except for differences that have been discussed earlier. As 
a sensitivity analysis, we also provided a model excluding 
deaths in the multivariable model because LOS has a 
different interpretation for those who died compared 
with those alive and it also cannot strictly be considered as 
a confounding variable (online supplemental table S3).

We used a number of statistical models and techniques 
to address the inherent limitations of large observational 
registries such as ours. The Firth logistic regression, 
which uses penalised maximum likelihood estimation 
was used to analyse inpatient mortality. This model is 
able to handle the ‘separation’ issue, specifically obser-
vations being dropped due to sparseness in the data. For 
LOS which was heavily skewed, we used the robust linear 
regression model, which reduces skewness based on the 
median absolute deviation from the median residual.29 
Alternative approaches include a logarithmic transforma-
tion followed by ordinary least squares regression model, 
which would make the interpretation of the coefficients 
cumbersome and the non-parametric quantile (median) 
regression method, which is statistically less efficient.

SI was also included in the multivariable model rather 
than its component HR and SBP due to collinearity and 
the fact that SI was a better predictor. Similarly, ISS and 
AIS scores were deemed to be clinically collinear and 
we included AIS scores (specifically highest and second-
highest scores) as they indicated a better fit as compared 
with ISS (AIC=4525 and 4660 respectively).

Since our study was designed to identify risk factors asso-
ciated with inpatient mortality and LOS among patients 
with trauma for benchmarking purposes, we did not 
include the centre variable in the model. Undertaking 
such an analysis may provide for over shrinkage in the 
risk-adjusted mortality rates and increase false-negative 
rates in terms of identifying potential outliers. One paper 
which attempted to use a hierarchical logistic regression 
model ended up shrinking the variability in the mortality 
rates ranging from 1.3% to 14.3% in the crude model to 
3.7% to 6.9% multivariable model, thus only identifying 3 
out of 59 hospitals as potential outliers in their analysis.30 
The main purpose of our proposed risk-adjustment model 
is for benchmarking trauma centres and not predictive 
modelling. It is not intended to be prospectively used for 
system or patient-level prediction /triage. Hence a score 
that relies on discharge confirmation of AIS (rather than 
AIS at admission) is appropriate for our study.

Unmeasured confounders could affect the results of 
our study. For example, assessments of patient preinjury 
comorbidity such as the Charlson Comorbidity Index 
have been postulated to be associated with inpatient 
mortality among patients with trauma. However, this 
often depends on comprehensive ICD coding, which may 
not be routinely done; in addition the depth of trauma 
coding may not be consistently performed in all trauma 
centres.31 We also did not include laboratory variables 
such as International Normalised Ratio, haemoglobin and 
base deficit as used in other published risk models, but 
note that the incremental value of including these vari-
ables is marginal at the expense of a more parsimonious 
model with less potential for measurement error.8 Other 
unmeasured factors could also affect LOS, including 
availability and accessibility of postacute care placement 
services and also social factors such as availability of care-
givers, family members,etc, but these were not collected 
within our registry.

A major strength of this study is the large sample size 
with data from 31 major trauma centres from across 
Australia and New Zealand. This large study size allows 
us to perform model development and validation and 
also undertake important sensitivity analyses around 
including transfer cases and excluding mortality in the 
multivariable analysis for LOS.

CONCLUSION
This study has identified several demographic and clin-
ical risk factors for inpatient mortality and LOS among 
patients with trauma through a robust process of model 
development and validation. These results can be used 
to benchmark clinical outcomes for trauma centres 
employing a transparent and reproducible methodology.
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