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A B S T R A C T   

Drug resistance is a prominent impediment to the efficacy of targeted therapies across various cancer types, 
including glioblastoma (GBM). However, comprehending the intricate intracellular and extracellular mecha-
nisms underlying drug resistance remains elusive. Empirical investigations have elucidated that genetic aber-
rations, such as gene mutations, along with microenvironmental adaptation, notably angiogenesis, act as pivotal 
drivers of tumor progression and drug resistance. Nonetheless, mathematical models frequently compartmen-
talize these factors in isolation. In this study, we present a multiscale agent-based model of GBM, encompassing 
cellular dynamics, intricate signaling pathways, gene mutations, angiogenesis, and therapeutic interventions. 
This integrative framework facilitates an exploration of the interplay between genetic mutations and the vascular 
microenvironment in shaping the dynamic evolution of tumors during treatment with tyrosine kinase inhibitor. 
Our simulations unveil that mutations influencing the migration and proliferation of tumor cells expedite the 
emergence of phenotype heterogeneity, thereby exacerbating tumor invasion under both treated and untreated 
conditions. Moreover, angiogenesis proximate to the tumor fosters a protumoral milieu, augmenting mutation- 
induced drug resistance by increasing the survival rate of tumor cells. Collectively, our findings underscore 
the dual roles of intrinsic genetic mutations and extrinsic microenvironmental adaptations in steering tumor 
growth and drug resistance. Finally, we substantiate our model predictions concerning the impact of gene mu-
tations and angiogenesis on the responsiveness of targeted therapies by integrating single-cell RNA-seq, spatial 
transcriptomics, bulk RNA-seq, and clinical data from GBM patients. The multidimensional approach enhances 
our understanding of the complexities governing drug resistance in glioma and offers insights into potential 
therapeutic strategies.   

1. Introduction 

As a type of primary brain tumor, glioblastoma (GBM) is one of the 
most malignant cancers [1]. Many previous studies have demonstrated 
that receptor tyrosine kinase (RTK) signaling pathways are often highly 
activated in most GBM tumors [2]. Multiple RTK inhibitors, including 
tyrosine kinase inhibitors (TKIs), are being developed and evaluated in 
clinical trials. However, most of the TKI therapies for GBM show limited 
efficacy in clinical Phase II/III trials [3]. The formidable challenge of TKI 
resistance looms large, significantly limiting the clinical effectiveness of 
targeted therapies in GBMs. While experimental studies have yielded 
invaluable insights into various facets of drug resistance mechanisms, a 
comprehensive and systematic understanding of these intricate mecha-
nisms remains elusive, posing a substantial impediment to progress in 

the field of tumor treatment. 
Drug resistance in tumor can manifest either as an inherent trait 

(referred to as intrinsic resistance) or as an adaptive response that de-
velops subsequent to a period of drug therapy (known as acquired 
resistance). Traditional investigations into the mechanisms of drug 
resistance have mainly focused on tumor cells themselves, encompass-
ing inquiries into genetic heterogeneity [4], gene mutations, and 
epigenetic variations [5]. However, the rapid emergence of acquired 
resistance remains inadequately accounted for by genetic mutations 
alone [6,7]. Recent experimental evidence underscores the pivotal role 
played by the tumor microenvironment in influencing the response to 
drug therapy [8,9]. Tumor cells cooperate with neighboring cells to 
create an environment conducive to evading treatment, a phenomenon 
known as tumor microenvironment-mediated drug resistance [10]. This 
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milieu encompasses the external surroundings within which tumor cells 
thrive, comprising a diverse array of cell types (e.g., fibroblasts, endo-
thelial cells, and immune cells) and bioactive molecules (e.g., cytokines, 
growth factors, and chemokines) [9]. 

Theoretical modeling of tumor drug resistance presents a formidable 
challenge [11], spurring researchers to explore diverse methods and 
perspectives. Tumor cell populations are inherently heterogeneous, 
consisting of both drug-sensitive and drug-resistant cells. Historically, 
mathematical models have been developed at the cellular population 
level to elucidate the dynamics of tumor drug resistance. For instance, 
Panetta et al. [12] formulated a mathematical model comprising two 
ordinary differential equations (ODEs) to describe the growth and evo-
lution of heterogeneous tumor cell populations (drug-sensitive and 
drug-resistant) during chemotherapy. This model was instrumental in 
the analysis of effective treatment options and the optimization of drug 
combinations to enhance therapeutic outcomes. Foo et al. [13] estab-
lished a stochastic model to investigate the evolutionary kinetics of 
tumor cell populations (drug-sensitive and drug-resistant) and to 
delineate strategies for optimizing drug dosages during treatment. 
Subsequently, Pisco et al. [14] introduced the Markov state transition 
model and ODE model, employing an integrative experimental and 
modeling approach to explore the influence of cell growth rates and 
phenotypic transition rates on cell population homeostasis. Their work 
explained the emergence of multi-drug resistance in drug-treated leu-
kemia cancer cells. Furthermore, Nowak et al. applied branching process 
models to study the temporal evolution of gene mutations associated 
with intrinsic resistance [15] and resistance resulting from spatial het-
erogeneity in drug concentrations [16]. Nevertheless, few existing 
models integrate gene mutations and the vascular microenvironment to 
scrutinize their collective impact on drug resistance. 

Building upon the foundation of our prior investigations [17,18], the 
present study advances a multiscale model of drug resistance. This 
model integrates an agent-based representation of cellular phenotypes, 
ODEs of signaling pathways, stochastic simulations of gene mutations, 
spatial–temporal evolutions of microenvironmental factors, and 
rule-based simulations of angiogenesis. Within this framework, we 
investigated the ramifications of mutation timings and distance from the 
parent vessels to the tumor on the efficacy of drug treatment. Further-
more, we delved into the underlying mechanisms governing cellular 
heterogeneity and microenvironmental adaptations, both of which in-
fluence the spatial–temporal dynamics of tumor growth and drug 
resistance. Lastly, we substantiated our model predictions by using 
single-cell RNA-seq, spatial transcriptomics, bulk RNA-seq, and clinical 
data to perform survival analysis among glioma patients undergoing 
targeted therapies. 

2. Mathematical modeling and simulation 

We described a multiscale agent-based model for GBM, encompass-
ing microenvironmental factors, signaling pathways, cellular agents 
bearing gene mutations, angiogenesis, and drug treatment. This model 
operates across three scales: microenvironmental scale, molecular scale, 
and cellular scale. At microenvironmental scale, we consider five 
microenvironmental factors (i.e., glucose, oxygen, epidermal growth 
factor (EGF), vascular endothelial growth factor (VEGF), and fibro-
nectin) as well as drug (e.g., TKI); at molecular scale, we consider EGFR 
signaling pathway and cell cycle pathway; at cellular scale, we consider 
cell agents, gene mutations, and angiogenesis. Of note, as signaling 
mechanisms underlying tumor cell-microenvironment are complicated, 
we used EGF as a representative growth factor in the tumor microen-
vironment and a classical epidermal growth factor receptor (EGFR) 
pathway as a representative oncogenic signaling pathway, since EGFR is 
one of the most-altered RTKs in GBM [2]. 

To characterize the spatial-temporal dynamics of microenviron-
mental factors and drugs diffusion, production, and/or degradation, we 
employed a lattice-based spatial–temporal discrete model. The 

intracellular EGFR signaling pathways targeted by an EGFR-targeting 
TKI were simulated through ODEs based on the law of mass action 
and Michalis-Menten kinetics. The diverse phenotypes of tumor cells 
were accounted for by postulating that gene mutations affect parameters 
governing cell migration and proliferation. The behavior of tumor cells 
was simulated using an agent-based model. Additionally, the generation 
and expansion of new blood vessels (i.e., angiogenesis), which pro-
foundly reshapes the microenvironment, were also integrated into our 
model at the cellular scale. 

The simulation was conducted within a 200 × 200 two-dimensional 
lattice, where each grid element represented a spatial resolution of 
20μm, approximating the diameter of individual tumor cells. A single 
cell occupied only one grid. Initially, a parent vessel along with six 
vascular buds was situated at the bottom boundary of the lattice, while 
several tumor cells were randomly distributed near the center of the 
lattice. 

2.1. Microenvironmental scale 

The microenvironment provides tumor cells with a conducive space 
for survival and a source of nutrients. It also serves as a bridge con-
necting angiogenesis with tumor cells. Six key continuous variables are 
implicated in the microenvironmental scale: glucose concentration (G), 
oxygen concentration (O), fibronectin concentration (N), EGF concen-
tration (E), VEGF concentration (V), and drug concentration (D). Each 
variable (X) may undergo processes of penetration, diffusion, uptake, or 
decay. Generally, these processes can be summarized by the following 
equation: 

Xl+1
i,j − Xl

i,j

Δt
= dX∇

2Xl
i,j
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where ∇2Xl
i,j =

Xl
i+1,j+Xl

i− 1,j+Xl
i,j+1+Xl

i,j− 1 − 4Xl
i,j

h2 and h is the mesh size. Δt is the 
timestep used for updating the concentration of microenvironmental 
factors, which is set to 1 second in this study. dX stands for the diffusion 
coefficient of X. pX is the vessel penetration rate of X. Xblood signifies the 
X concentration within the blood vessel. vX, sX, uX, and δX are the vessel 
secretion, tumor secretion, tumor uptake, and natural decay rates of X, 
respectively. We define χ1(l, i, j) = 1when a vessel cell is present at the 
position (i, j) in the l-th iteration; otherwise, χ1(l, i, j) = 0. Similarly, we 
set χ2(l, i, j) = 1 when the position (i, j) is occupied by a tumor cell in the 
l-th iteration; otherwise, χ2(l, i, j) = 0. To ensure non-negativity of 
concentrations, we apply Xl+1

i,j = max(0,Xl+1
i,j ) in each iteration. The 

specific equation for each variable is described below. 
Glucose, oxygen, and EGF each play crucial roles in tumor growth. 

Glucose supplies essential nutrients for cellular activity, while oxygen 
impacts signaling components in the cell cycle pathway. EGF, on the 
other hand, represents a ligand secreted by tumor cells that binds to 
EGFR, thereby initiating an autocrine signaling pathway.. Their evolu-
tions can be described by the following reaction-diffusion equations: 

Gl+1
i,j − Gl

i,j

Δt
= dG∇

2Gl
i,j + pG

(
Gblood − Gl

i,j

)
χ1(l, i, j) − uGχ2(l, i, j), (2)  

Ol+1
i,j − Ol

i,j

Δt
= dO∇

2Ol
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(
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i,j

)
χ1(l, i, j) − uOχ2(l, i, j), (3)  

El+1
i,j − El

i,j

Δt
= dE∇

2El
i,j + sEχ2(l, i, j) − δEEl

i,j.
(4) 

VEGF and fibronectin exert influence over angiogenesis. VEGF is 
secreted by hypoxic tumor cells to stimulate blood cell growth, and is 
consumed by endothelial cells [19]. Conversely, fibronectin, acting as a 
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haptotaxis factor for endothelial cells, is secreted by the endothelial cells 
and can be absorbed by invasive tumor cells. We describe their evolu-
tions by the following equations: 

Vl+1
i,j − Vl

i,j

Δt
= dV∇

2Vl
i,j − χ1(l, i, j)pV Vl

i,j + sV χ2(l, i, j) − δV Vl
i,j,

(5)  

Nl+1
i,j − Nl

i,j

Δt
= vNχ1(l, i, j) − χ2(l, i, j)uNNl

i,j.
(6) 

TKIs are considered as EGFR inhibitor in this study. They exert their 
inhibitory effects on tumor progression by binding to EGFR, thereby 
modulating cellular functions (e.g., migration and proliferation) 
through the EGFR signaling pathway. The drug is delivered and 

Fig. 1. Flowchart of cell fate determination. Abbreviations: MP, migration potential; cdh1, Cadherin 1; cycCDK, Cyclin-dependent Kinase;.  

H. Yang et al.                                                                                                                                                                                                                                    



Computational and Structural Biotechnology Journal 21 (2023) 5285–5295

5288

permeated via blood vessels and diffuses across the microenvironment, 
as described in the following equation: 

Dl+1
i,j − Dl

i,j

Δt
= dD∇

2Dl
i,j + pD

(
Dblood − Dl

i,j

)
χ1(l, i, j) − uDχ2(l, i, j) − δDDl

i,j.

(7) 

The homogeneous Neumann boundary conditions are applied for the 
abovementioned equations by assuming zero flux along the boundary of 
the domain. 

2.2. Molecular scale 

At the molecular scale, we scrutinized the EGFR signaling pathway 
and the cell-cycle pathway for each tumor cell. EGFR activation ensued 
upon EGF ligand binding, subsequently propagating downstream signals 
and inciting the cell-cycle pathway. The EGFR signaling pathway [20, 
21] considered in this study is illustrated in Fig. A.1. 

Treatment with TKIs impeded EGFR activation. Assuming rapid 
binding and unbinding kinetics between EGFR and TKI, we modeled the 
EGFR:TKI complex (R:D) utilizing the following Hill equation based on 
Michaelis–Menten kinetics: 

[R : D] =
[R]0 • [D]

km + [D]
,

where km is the Michaelis constant and [R]0 is the initial concentration of 
EGFR. Thus, the quantity of effective EGFR is derived as follows: 

[R]eff = [R]0 − [R : D]. (8) 

Based on the law of mass action, the biochemical reactions among 
the molecular species in these pathways are described by the ODEs: 

dxi

dt
= f (x), (9)  

where f(x) =
∑

v+ −
∑

v− , with v+ and v− representing the pro-
duction and consumption rates of substance xi, respectively. The details 
of ODEs are listed in Appendix B. 

2.3. Cellular scale 

2.3.1. Agent-based model of cell behaviors 
At the cellular scale, each tumor cell is viewed as an individual agent. 

It receives signals from the microenvironment and dynamically adjusts 
its behavior in response, following the rules below (Fig. 1):  

1. Initially, each cell chooses one of the following states: active, 
quiescent (reversible), or apoptotic (irreversible), depending on the 
glucose concentration at its location and the neighboring space. Only 
active cells can migrate or proliferate based on the state of the 
signaling pathway.  

2. Each active cell assesses its migration potential MP = Δ[PLCγ]
Δt to 

determine whether migration is possible. If MP > θ1, the cell mi-
grates, where θ1 is a threshold set to be the average change rate of 
PLCγ. In such instances, each cell chooses the most favorable sur-
rounding vacant space according to the following score: 

Sij =
αGij

Nij
+ (1 − α)εij, (10)  

where Gij and Nij represent the concentrations of glucose and fibro-
nectin at position (i, j), respectively. εij ∼ N(0, 1) denotes an error 
term following a normal distribution, while α stands for the search 
precision and is set to 0.7 [22]. 

3. Otherwise, if MP < θ1, the cell does not migrate and evaluates ac-
tivities of cdh1 and cycCDK in the cell cycle pathway to determine its 
potential for proliferation. If [cdh1] < θ2, [cycCDK] > θ3, and the age 

of the tumor cell is > 24 h, then the cell proliferates and divides into 
two daughter cells. 

2.3.2. Stochastic simulation of gene mutations 
We assume that gene mutations affect the migration and prolifera-

tion of tumor cells by modulating specific threshold parameters: θ1, θ2, 
and θ3 (Table 1). Lowering θ1 augments cell migration potential, 
whereas elevating θ2 or reducing θ3 expedites cellular proliferation 
(Fig. 1). Consequently, we defined five distinct tumor cell phenotypes 
characterized by varying migration and proliferation capacities, as 
outlined in Table 1. Notably, our choice of parameters aligns with 
established values of s = 0.05 and t = 0.03 [17,18]. 

Phenotype I corresponds to the wild-type (WT) tumor cells, while 
phenotypes II–V represent mutated variants. Cells embodying pheno-
type II exhibit heightened migratory tendencies compared to WT cells, 
while those with phenotype III display the converse behavior. Further-
more, phenotype IV or V pertains to tumor cells exhibiting diminished or 
augmented proliferation capabilities, respectively. 

Initially, all tumor cells are presumed non-mutated, reflecting 
phenotype I. During cell division, there exists a slight probability of 
mutation (pmutation = 0.1). When mutations occur, each of the resultant 
daughter cells is randomly assigned one of the four mutant phenotypes, 
with each phenotype holding an equal likelihood of selection. Then, the 
daughter cells participate in the subsequent simulation iteration, using 
the newly acquired threshold parameters corresponding to their 
assigned phenotypes. Of note, the mutant phenotypes can mutate again 
in the subsequent simulation iteration. 

2.3.3. Rule-based simulation of angiogenesis 
We also consider the effect of angiogenesis on tumor growth at the 

cellular scale. We hypothesize that the migration of endothelial cells is 
guided by chemotaxis toward VEGF and haptotaxis toward fibronectin. 
Therefore, we defined the migration probability of endothelial cells as 
follows: 

P1 =
ckV

kV + V(i, j)
(V(i, j + 1) − V(i, j)) + λ(N(i, j + 1) − N(i, j)),

P2 =
ckV

kV + V(i, j)
(V(i, j − 1) − V(i, j)) + λ(N(i, j − 1) − N(i, j)),

P2 =
ckV

kV + V(i, j)
(V(i, j − 1) − V(i, j)) + λ(N(i, j − 1) − N(i, j)),

P4 =
ckV

kV + V(i, j)
(V(i + 1, j) − V(i, j)) + λ(N(i + 1, j) − N(i, j)),

P5 =
P1 + P2 + P3 + P4

4
,

(11)  

where V represents the concentration of VEGF, while N signifies the 
concentration of fibronectin. c denotes the chemotaxis coefficient, and 
kV controls the weight of VEGF concentration in chemotaxis sensitivity. 
Additionally, λ is the chemotactic coefficient. The probabilities denoted 
as P1− 5 correspond to the likelihoods of endothelial cells moving up, 
down, left, or right, or remaining stationary, respectively. Moreover, for 
every sprout tip cell, if the age of the vessel is greater than 18 h and there 
is free space in its immediate neighborhood, the sprout bifurcates into 
two vessels. 

2.4. Multiscale integration and simulation workflow 

To integrate multiple scales in silico, the following computational 
procedures were performed within each iteration step: 

1. At the microenvironment scale: solve Eqs. (2–7) to update the spa-
tial–temporal distributions of glucose, oxygen, fibronectin, EGF, 
VEGF, and TKI. The timestep for updating the concentrations of 
microenvironmental factors is set to 1 s. 
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2. At the molecular scale: utilize the drug concentration obtained in 
step 1 to calculate the effective EGFR [Eq. (8)]. Furthermore, employ 
the computed concentrations of EGF and oxygen as input to solve Eq. 
(9) for updating the EGFR signaling pathway and cell-cycle pathway. 

3. At the cellular scale: subject each tumor cell to migration, prolifer-
ation, or mutation in accordance with the predefined rules influ-
enced by microenvironmental factors, neighboring space, and 
signaling activities. Additionally, angiogenesis is considered at the 
cellular scale: sprout tip endothelial cells migrate as per Eq. (11) or 
undergo branching if the age of the vessel is > 18 h. The timestep for 
updating cell activity is set to 1 h. 

Within each iteration step (1 h), the numerical simulations for 
solving PDEs at microscale (1 s) were continuously updated 3600 times; 
and at the end of 1 h, the cell activities were updated, which influences 
the spatial distribution of tumor cells and vessel cells that in turn in-
fluence the reaction terms of PDEs. In this way, the microscale and 
macroscale were coupled. 

The model parameters (Appendix C) were adapted from our previ-
ous works [17,18]. 

2.5. Survival analysis for verifying model predictions 

To verify the prognostic effects of gene mutations and angiogenesis 
in glioma patients undergoing targeted therapies, we collected single- 
cell RNA-seq data, bulk RNA-seq data, spatial transcriptomics, clinical 
profiles, and somatic mutation data for GBM patients. The bulk RNA- 
seq, clinical information, and somatic mutation records for GBM pa-
tients were sourced from the TCGA database (https://cancergenome.nih 
.gov/). Our analysis encompassed a cohort of 19 GBM patients who had 
received targeted drug therapy and possessed available gene expression, 
somatic mutation, and clinical data. 

To investigate the prognostic impact of genetic mutations, we 
quantified the number of genes with somatic mutations for each GBM 
patient. Employing the ROC method [23], we determined the optimal 
cutoff value, categorizing the 19 GBM cases into two groups: a “mor-
e-mutation” group and a “less-mutation” group. We subsequently con-
ducted Kaplan-Meier (K-M) analysis to analyze the progression-free 
survival (PFS) among the patient group, with the statistical significance 
of differences assessed using the two-sided log-rank test. 

To verify the prognostic implications of angiogenesis in drug resis-
tance, we performed K-M survival analysis to explore the clinical asso-
ciation of tumor progression with the distance between tumors and 
blood vessels. To accomplish this, we harnessed bulk2space [24] to 
deconvolute each of the 19 bulk RNA-seq samples into single-cell reso-
lution data with spatial coordinates, using the single-cell RNA-seq data 
and spatial transcriptomics data of GBM patients as references for 
deconvolution. The single-cell RNA-seq data [25] were downloaded 
from the GEO database (GSE182109), while spatial transcriptomic data 
[26] were retrieved from https://github.com/theMILOlab/SPATAData 
with sample ID #243UKF. Based on the deconvoluted data, we 
computed the distance matrix between glioma cells and endothelial cells 
within each bulk RNA-seq sample. For K-M survival analysis, the 19 
patients were divided into a “close” and a “far” group according to the 
mean value of the distance matrix. 

Finally, we examined whether combined variables, encompassing 
gene mutation numbers and vessel-tumor distance, carried superior 
prognostic significance compared to individual variables. We built a 

multivariable Cox regression model based on two binary variables, gene 
mutation numbers (more = 1, less = 2) and tumor-vessel distance (far =
1, close = 2), to calculate a risk score for each glioma patient. 
Risk score =

∑2
i=1βi × xi, where βi is the regression coefficient and xi 

denotes the value of each variable. Patients were divided into a high-risk 
and low-risk score groups based on the optimal cutoff value of the risk 
score. K-M analysis for PFS was subsequently conducted for both groups, 
with statistical significance was assessed using the two-sided log-rank 
test. 

3. Results 

3.1. The model recapitulates evolutionary dynamics of vascular tumor 
growth with gene mutations 

We first examined the effects of mutation timings on the spa-
tial–temporal dynamics of tumor growth in the absence of TKI treat-
ment. In order to bolster the robustness of our findings, we performed a 
total of 10 separate simulations. Within these simulations, tumors 
initiated mutation at time points of 0, 50, or 100 h, persisting in growth 
for a duration of 150 h. We recorded the temporal alterations in the 
tumor cell counts across these 10 simulations, in addition to capturing 
the spatial distribution of tumors at the conclusion of the first simulation 
(Fig. 2). 

Fig. 2a shows that tumors originating from mutations at 0 h exhibit a 
greater cell count than unmutated tumors, indicating the capacity of 
genetic mutations to propel malignant tumor expansion. In addition, the 
number of tumor cells arising from mutations at 0 h significantly sur-
passes those originating from mutations at 100 h, implying that the 
earlier the mutation occurs, the more tumor growth can be promoted. 
Fig. 2b-e portray the spatial distribution of tumors at the 150-hour mark 
under various mutation scenarios. These depictions consistently reveal 
that migrating and proliferating cells predominantly occupy the outer-
most tumor layer, while apoptotic or quiescent cells are predominantly 
nestled within. This observation suggests that the outer layer of the 
tumor benefits from a more abundant living environment and nutrients 
supply compared to the inner regions. 

Given the close association between the defined mutant phenotypes 
and the proliferation and migration capabilities of tumor cells, we 
delved into determining which ability predominantly fosters tumor 
progression. Thus, we monitored the cell counts and phenotype distri-
butions within tumors across different mutational scenarios (Fig. 3). 

Fig. 3a–c indicate that, despite the coexistence of all phenotypes, 
phenotypes I and II dominate the tumor cell population, each forming 
distinct colonies. Phenotype I represents the wild type, while phenotype 
II promotes tumor cell migration, suggesting that an enhancement in the 
migratory capacity of tumor cells may expedite malignant tumor 
growth. As shown in Fig. 2b–e, numerous cells within the tumor assume 
a quiescent or apoptotic state due to their incapacity to move or the 
scarcity of nutrients, while active cells near the tumor boundary enjoy 
ample space and resource availability. Hence, it is reasonable to spec-
ulate that elevating the migration ability of tumor cells affords them 
more living space and resources, thereby elucidating the prominence of 
phenotype II. 

In addition, we conducted simulations involving deterministic 
threshold parameters (θ1, θ2, and θ3) associated with gene mutations 
(Appendix E). Fig. E.1 and Fig. E.2 present findings consistent with the 
aforementioned observations, reinforcing the tumor-promoting effect of 

Table 1 
Phenotypes and their random threshold parameters.  

Phenotype I (WT) II (Migration ↑) III (Migration ↓) IV (Proliferation ↓) V (Proliferation ↑) 

θ1 k (0,k) (k,2k) k k 
θ2 s s s (0, s) (s,2s)
θ3 t t t (t,2t) (0, t)
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phenotypic heterogeneity stemming from gene mutations in the context 
of cancer progression. 

3.2. Impact of gene mutations on drug efficacy 

In the simulation, we treated tumors with TKIs, which bind to EGFR 
and consequently diminish the cell migration potential (Fig. 1). A total 
of 10 simulations were performed to enhance the robustness of the 
findings. In these simulations, tumors started to mutate at time points of 
0, 50, or 100 h. Fig. 4 shows the various vascular tumor growth patterns 

under different conditions of mutation timings. 
Compared to untreated cases, TKI treatment significantly slowed 

down tumor growth, indicating its inhibitory prowess against tumor 
expansion. We also observed that gene mutations exerted a pronounced 
reduction in treatment effectiveness. Notably, tumors harboring earlier 
mutations manifested amplified tumor cell counts (Fig. 4a) and a 
heightened proportion of migratory and proliferative tumor cells 
(Fig. 4b). These results accentuate the role of gene mutations within 
tumor cells enhancing their drug resistance. 

To investigate the most viable tumor cell phenotypes during drug 

Fig. 2. Evolutionary dynamics of vascular tumor growth with gene mutations. (a) Temporal evolution of tumor cell numbers across ten simulations with varied 
mutation timing. The lines represent the mean tumor cell numbers, while the shaded areas show the 95% confidence intervals. (b–e) Spatial patterns of the vascular 
tumor growth in the first simulation (evaluated at 150 h), with gene mutations commencing at 0 h (b), 50 h (c), and 100 h (d), as well as no mutations (e). Different 
colors indicate various cell types or cellular states: vascular cells (red), proliferating or migrating tumor cells (magenta), active tumor cells (blue), quiescent tumor 
cells (cyan), and dead tumor cells (black). 

Fig. 3. Spatial distribution and temporal dynamics of a heterogeneous cell population in the absence of drug treatment. Vascular tumor growth with five different 
phenotypes of tumor cells, each initiated at different mutation timings, was examined. (a) Mutation commencing at 0 h; (b) Mutations commencing at 50 h; (c) 
Mutations commencing at 100 h. In the lower panel, solid lines represent the mean values of log10(cell number), while shaded areas indicate the 95% confi-
dence intervals. 
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treatment, we scrutinized the evolution and distribution of different 
phenotypes within the diverse mutation timings scenarios (Fig. 5). It is 
evident that among the heterogeneous cell populations, phenotype II 
tumor cells have a survival advantage over other mutant phenotypes, 
mirroring the untreated situation. Moreover, earlier mutations resulted 
in a higher proportion of phenotype II tumor cells surrounding the outer 
layer of the tumor, thereby promoting tumor expansion and invasion. 
These results imply that mutations increase the migratory capacity of 
the tumor cells, potentially facilitating their adaptation to the cytotoxic 
microenvironment and resistance to drug pressure. 

In addition, we conducted simulations using deterministic threshold 

parameters (θ1, θ2, and θ3) associated with gene mutations (Appendix 
E). Fig. E.3 and Fig. E.4 consistently affirm the aforementioned obser-
vations on the role of gene mutations in accelerating the emergence of 
acquired drug resistance. 

3.3. Impact of vascular microenvironment on tumor progression 

Many studies have revealed the pivotal role of angiogenesis in tumor 
growth and metastasis [27,28]. The vascular microenvironment serves 
as a conduit for delivering nutrients and growth factors (e.g., glucose, 
oxygen, and EGF) to support tumor growth while facilitating drug 

Fig. 4. Tumor growth dynamics with TKI treatment. (a) Temporal changes in the number of tumor cells under varying mutation timings, based on the results of ten 
simulations. The lines represent the mean tumor cell counts, while the shaded areas show the 95% confidence intervals. (b–e) Spatial patterns of vascular tumor 
growth in the first simulation (evaluated at 150 h) with gene mutations starting at different time points: 0 h (b), 50 h (c), and 100 h (d), as well as no mutations (e). 
Different colors denote distinct cell types or states: vascular cells (red), proliferating or migrating tumor cells (magenta), active tumor cells (blue), quiescent tumor 
cells (cyan), and dead tumor cells (black). 

Fig. 5. Spatial distribution and temporal dynamics of heterogeneous tumor cells with TKI treatment. The vascular tumor growth, characterized by five different 
phenotypes of tumor cells, was examined under various mutation initiation times. (a) Mutation initiation at 0 h; (b) Mutation initiation at 50 h; (c) Mutation 
initiation at 100 h. In the lower panel, solid lines represent the mean value of log10(cell numbers), while shaded areas indicate the 95% confidence intervals. 

H. Yang et al.                                                                                                                                                                                                                                    



Computational and Structural Biotechnology Journal 21 (2023) 5285–5295

5292

transport for tumor cell eradication. Tumor cells secrete VEGF, stimu-
lating the growth of blood vessels toward tumors. In our multiscale 
model, we incorporated the spatial–temporal evolutions of microenvi-
ronmental factors to capture the intricate feedback dynamics between 
tumors and the vascular network. In this context, we investigated the 
impact of the distance between blood vessels and tumors on tumor 
growth under drug treatment. 

We set five incremental values (0.6, 0.65, 0.7, 0.75, and 0.8) repre-
senting the initial distance from the parent blood vessel to the tumor 
center. These dimensionless values are the proportions of the domain 
size. Continuous drug treatment was administered to the tumor via 
vessels, with each scenario examined 10 times. The survival rates of 
tumor cells () across five scenarios were calculated for comparison 
(Fig. 6). 

The results unveil a clear escalation in the number of tumor cells as 
the distance between blood vessels and the tumor diminishes (Fig. 6a). 
This observation indicates that closer vascular proximity confers 
heightened resistance upon tumor cells against drug treatment. Cor-
roboratively, the survival rate of tumor cells registers a parallel increase 
as the distance between vessels and tumors shrinks (Fig. 6b), suggesting 
that closer vessels adjacency affords tumor cells an enhanced supply of 
nutrients and growth factors, sustaining their viability even amidst drug 
treatment (Fig. 6c). 

3.4. Impact of the vascular microenvironment on mutation-induced drug 
resistance 

After examining the individual effects of gene mutations and the 
vascular microenvironment on drug efficacy, we investigated the col-
lective impact of these factors on tumor evolution during drug treat-
ment. We applied the rules governing the simulation of mutation- 
induced phenotypes (Table 1 and Fig. 1). In each simulation, tumors 
were allowed to grow for 200 h, with mutations commencing at either 
0 or 100 h, while considering five vessel-tumor distances (0.6, 0.65, 0.7, 
0.75, and 0.8). Each simulation was iterated independently 10 times. 

Fig. 7a shows a comparative analysis of tumor cell numbers across 
various combinations of mutation timing and vessel-tumor distance. The 
results reveal that tumors characterized by earlier mutations and closer 
vessel-tumor distances exhibited heightened growth, thus manifesting 
increased resistance to drug treatment. Fig. 7b–f present the spatial 
patterns of vascular tumor growth when gene mutations commences at 
0 h, in conjunction with varying V-T distances. We observed that tumors 
closer to the vessels (e.g., V-T distance = 0.6) exhibited a greater 
prevalence of active cells in the vicinity of vessels and fewer apoptotic 

cells. These findings indicate that angiogenesis closer to the tumor 
provides a more pro-tumor microenvironment, thereby amplifying 
mutation-induced drug resistance by increasing the survival rate of 
tumor cells, a pattern consistent with our earlier results (Fig. 6b–c). 
Additionally, we scrutinized the evolution and distribution of pheno-
types across different vessel-tumor distances (Fig. E.5). The outcomes 
reaffirmed the growth advantage of phenotype II over other mutated 
phenotypes. Collectively, these findings illustrate the synergistic accel-
eration of tumor drug resistance facilitated by the interplay between the 
vascular microenvironment and gene mutations. 

3.5. Verification using clinical data 

Based on our simulation findings, which indicate that both genetic 
mutations and angiogenesis contribute to drug resistance in GBM tu-
mors, we hypothesized that GBM patients with more mutated genes or 
closer vessel-tumor distances would exhibit reduced sensitivity to tar-
geted therapies and consequently experience poorer prognoses. To 
validate our model’s predictions, we assembled a dataset comprising 
single-cell RNA-seq, bulk RNA-seq, spatial transcriptomics, somatic 
mutation, and clinical data from GBM patients who underwent targeted 
therapies, and we conducted K-M survival analysis. 

The K-M survival analysis for gene mutation numbers in glioma pa-
tients (Fig. 8a) showed that individuals with a greater number of 
mutated genes had shorter PFS time. This is consistent with our model’s 
predictions that the accumulation of genetic mutations in tumors with 
earlier mutations leads to larger tumor cell populations (Fig. 4). 
Furthermore, the K-M survival analysis for vessel-tumor distance for 
glioma patients (Fig. 8b) indicates that GBM patients with smaller 
vessel-tumor distance had lower PFS rate. This is in harmony with our 
simulations which indicated that closer vessel-tumor distance is more 
conducive to tumor progression during drug treatment (Fig. 6). 

To validate the combined prognostic impact of gene mutations and 
vessel-tumor distance, we employed multivariable Cox regression 
analysis to calculate a risk score for each patient based on the number of 
gene mutations and vessel-tumor distance. The analysis reveals that 
patients with a close vessel-tumor distance or a higher number of gene 
mutations exhibited elevated risk scores. Subsequently, the K-M survival 
analysis based on these risk scores (Fig. 8c) indicated that the high-risk 
score group had a lower PFS rate. This corresponds with our predictions 
that tumors characterized by a closer vessel-tumor distance and an 
increased number of genetic mutations are more resistant to targeted 
therapies (Fig. 7a). Moreover, we found that the log-rank test p-value for 
these two variables (i.e., genetic mutations and vessel-tumor distance) 

Fig. 6. Effect of the distance between blood vessels and tumors on the tumor growth during drug treatment. Five values (0.6, 0.65, 0.7, 0.75, and 0.8) representing 
the distance between the parent blood vessel and the tumor’s center (V-T distance) were investigated. (a) The number of tumor cells at the 200-hour mark for the five 
different scenarios of V-T distances, based on data from 10 simulations. (b) Time-dependent survival rate curves for the five V-T distance scenarios. The solid lines 
represent the mean values, and the shaded areas indicate the 95% confidence interval. (c) Spatial distributions of four microenvironmental factors (glucose, oxygen, 
EGF, and VEGF) for a V-T distance of 0.6. 
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(p = 0.006, Fig. 8c) was lower than that for each individual variable 
(p = 0.074, Fig. 8a; p = 0.026, Fig. 8b). This suggests that the combined 
variables enhanced the prognostic significance in comparison to each 
individual variable, further validating the synergistic combination effect 
of the vascular microenvironment and gene mutations on tumor drug 
resistance. 

4. Discussion 

Over the past decades, many mathematical models have been 

developed to simulate tumor evolution, such as ODE models [29,30], 
stochastic differential equation models [31–33], partial differential 
equation models [34,35], agent-based models [36,37], and hybrid 
models [38,39]. These models have shed light on the biological mech-
anisms underlying tumor growth, offering valuable insights into the 
intricacies of drug resistance. 

However, to date, there has been a scarcity of mathematical models 
that comprehensively integrate both gene mutations and angiogenesis, 
despite their well-established significance in cancer progression, 
extensively explored through experimental studies. In our investigation, 

Fig. 7. Effect of the vessel-tumor distance on mutation-induced drug resistance. Five distinct values (0.6, 0.65, 0.7, 0.75, and 0.8) representing the vessel-tumor 
distance (V-T distance) were examined, alongside two mutation time points (mutation initiation at 0 h or 100 h). (a) The tumor cell population at the 200-hour 
mark across the various V-T distances and mutation time points, based on data from 10 simulations. (b–f) Spatial patterns of vascular tumor growth (assessed at 
200 h), corresponding to gene mutations commencing at 0 h, with V-T distances set at 0.6 (b), 0.65 (c), 0.7 (d), 0.75 (e), and 0.8 (f). 

Fig. 8. Individual and combined prognostic effect of gene mutation numbers and vessel-tumor distance for glioma patients. (a) K-M survival analysis of the number 
of gene mutations. (b) K-M survival analysis of vessel-tumor distance. (c) K-M survival analysis of gene mutation numbers and vessel-tumor distance. 
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we have developed a multiscale model that incorporates an agent-based 
representation of cellular phenotypes, ODEs of signaling pathways, 
stochastic simulations of gene mutations, the spatial–temporal evolu-
tions of microenvironmental factors, and a rule-based portrayal of 
angiogenesis. This innovative model served as our tool to scrutinize the 
combined influences of genetic mutations and angiogenesis on the 
spatial–temporal dynamics of tumor growth in response to TKI 
treatment. 

To incorporate gene mutations into our agent-based tumor growth 
model, we introduced a connection between gene mutations and alter-
ations in the migration and proliferation capabilities of tumor cells. This 
was achieved by introducing random adjustments to the threshold pa-
rameters governing migration and proliferation. As such, several mutant 
phenotypes of tumor cells, each characterized by distinct thresholds, 
emerged during the simulations. 

Initially, drug treatment exhibited effectiveness in restraining tumor 
growth. However, a marked expansion of tumors ensued after the 
occurrence of mutations, with the timing of mutations exerting influ-
ence, as earlier mutations led to more extensive tumor proliferation. 
This phenomenon can be attributed to tumors with earlier mutations 
accumulating a greater number of mutated genes, thereby elevating 
their propensity for progression, as supported by the K-M survival 
analysis concerning genetic mutation numbers. Furthermore, among the 
mutant phenotypes, the one with the most robust migration capacity 
predominated within the tumor population and tended to localize in the 
outer tumor layer. We speculate that mutations augment the heteroge-
neity among tumor cells, enhancing their adaptability to the dynamic 
and challenging growth environment. Besides, cell growth is inextri-
cably tied to the availability of living space and nutrient concentrations. 
Therefore, mutant phenotypes with stronger migration abilities were 
more inclined to occupy advantageous positions for reproduction. 

In addition to gene mutations, we also investigated the impact of the 
vascular microenvironment on tumor growth and drug resistance. We 
specifically examined how the distance between the tumor and the 
parent blood vessels impacted tumor expansion and treatment out-
comes. The results showed that tumors situated in closer proximity to 
blood vessels exhibited accelerated growth rates and diminished sur-
vival rates. This can be reasonably interpreted as follows: the vascular 
microenvironment provides the tumor with an ample supply of nutrients 
and growth factors, fortifying their resilience against drug interventions 
and sustaining their vitality. Furthermore, we subjected our results to 
validation through K-M survival analysis. 

In fact, both gene mutations and angiogenesis have been demon-
strated as indispensable factors in tumor progression, leading to 
numerous excellent studies exploring drug resistance mechanisms from 
these two perspectives. For instance, mathematical models for the 
interconversion of phenotypes (sensitive and resistant) in GBM [40,41] 
have been developed, revealing that mutations induce tumor evolution 
towards a more adaptive resistant environment, aligning with our 
findings. In contrast to most previous studies that categorized tumor 
cells into sensitive and resistant phenotypes, we consider that 
post-mutation cell phenotypes should exhibit greater diversity and 
randomness. Therefore, we introduce a broader range of mutated phe-
notypes to investigate potential behaviors that may contribute to tumor 
resistance. Furthermore, many scholars have shown a keen interest in 
the role of blood vessels in tumor progression. For instance, a hybrid 
cellular automaton model was developed to assess how different 
vascular distributions affect tumor treatment outcomes [42]. They also 
acknowledged the role of blood vessels in promoting tumor resistance. 
However, they only viewed blood vessels as mere nutrient transporters, 
neglecting the feedback loop from tumor cells to the vasculature. In 
contrast, our model takes into account the interplay between blood 
vessels, tumors, and the microenvironment, aligning more closely with 
the realistic dynamics of tumor growth. Another study [43] demon-
strated the mutual dependence of tumors and blood vessels, further 
validating our modeling framework. Collectively, these previous studies 

consistently support our conclusion on the roles of mutations and 
angiogenesis during tumor growth and drug response. However, these 
studies have remained at a single level, whereas our model integrates 
both intracellular and extracellular influencing factors. By coupling 
molecular, cellular, and microenvironmental levels, our model not only 
describes tumor growth and drug resistance processes but also explores 
the roles played by mutations and angiogenesis in this process. 

The model developed in this study offers a valuable framework for 
integrating multiple levels of biological mechanisms within a dynamic 
system. In particular, the model incorporates gene mutations and 
angiogenesis to elucidate their influences on tumor growth and drug 
resistance. However, we acknowledge certain limitations in our model. 
Firstly, akin to other models, our framework simplifies the intricate 
biological processes despite its incorporation of multiple scales and 
multi-dimensional variables. There are over 50 different growth factors 
that act on over 50 receptor tyrosine kinases, forming a complex 
signaling unit. However, our model only incorporates six microenvi-
ronmental factors, i.e., glucose, oxygen, fibronectin, EGF, VEGF, and 
drug, as representative variables for simulation. As tumor microenvi-
ronment and signaling mechanisms are complicated, we used EGF as a 
representative growth factor in the tumor microenvironment and a 
classical EGFR pathway as a representative oncogenic signaling 
pathway. As for VEGF signaling pathway, it is complex and the mech-
anisms by which VEGF determines the proliferation and migration of 
endothelial cells are not fully clear to us. Moreover, it is hard to quantify 
the VEGF signaling pathway due to the lack of enough experimental data 
for the biochemical reactions involved in this pathway. To avoid intro-
ducing additional uncertainty into our model, we did not include VEGF 
into the current model. Nevertheless, it’s valuable to model VEGF 
signaling pathway and incorporate it into the multiscale model of tumor 
growth in the future studies. 

Secondly, our model falls short of integrating high-throughput bio-
logical data from diverse scales. The advent and progression of single- 
cell and spatially resolved omics data (e.g., single-cell RNA-seq, single- 
cell proteomics, single-cell metabolomics, and spatial transcriptomics 
data), now facilitate the development of data-informed, single cell-based 
multiscale models [44]. For example, single-cell or spatial tran-
scriptomics data can quantitatively delineate cell-to-cell communication 
networks [45–47] or signaling networks [48,49]. Such data can be 
incorporated into our multiscale modeling approach to account for the 
complex signaling mechanisms underlying a broader array of growth 
factors and receptor tyrosine kinases, as mentioned earlier. 

In summary, this study developed a multiscale model to investigate 
the evolutionary dynamics of vascular tumor growth in the presence of 
mutations. Our model revealed that both intrinsic genetic mutations and 
extrinsic microenvironmental adaptations influence the spa-
tial–temporal dynamics of tumor growth in response to TKI treatment. 
This research contributes to our comprehension of drug resistance 
mechanisms and potential treatment strategies. 
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