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Background: Keloid is a skin fibroproliferative disease with unknown pathogenesis.
Metabolomics provides a new perspective for revealing biomarkers related to
metabolites and their metabolic mechanisms.

Method:Metabolomics and transcriptomics were used for data analysis. Quality control of
the data was performed to standardize the data. Principal component analysis (PCA), PLS-
DA, OPLS-DA, univariate analysis, CIBERSORT, neural network model, and machine
learning correlation analysis were used to calculate differential metabolites. The molecular
mechanisms of characteristic metabolites and differentially expressed genes were
identified through enrichment analysis and topological analysis.

Result: Compared with normal tissue, lipids have a tendency to decrease in keloids, while
peptides have a tendency to increase in keloids. Significantly different metabolites between
the two groups were identified by random forest analysis, including 1-methylnicotinamide,
4-hydroxyproline, 5-hydroxylysine, and L-prolinamide. The metabolic pathways which play
important roles in the pathogenesis of keloids included arachidonic acid metabolism and
D-arginine and D-ornithine metabolism. Metabolomic profiling reveals that 5-hydroxylysine
and 1-methylnicotinamide are metabolic indicators of keloid severity. The high-risk early
warning index for 5-hydroxylysine is 4 × 108-6.3×108 (p � 0.0008), and the high-risk
predictive index for 1-methylnicotinamide is 0.95 × 107-1.6×107 (p � 0.0022).

Conclusion: This study was the first to reveal themetabolome profile and transcriptome of
keloids. Differential metabolites and metabolic pathways were calculated by machine
learning. Metabolomic profiling reveals that 5-hydroxylysine and 1-methylnicotinamide
may be metabolic indicators of keloid severity.
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1 INTRODUCTION

Keloid is a pathological fibroproliferative disease (Ogawa, 2017).
Its characteristics of invasion and migration to surrounding
tissues are similar to the growth pattern of benign tumors, but
it does not metastasize (Andrews et al., 2016). Keloids often
protrude on the original skin lesion area accompanied by pain
and itching, which causes a serious burden on the patient’s quality
of life and even affects limb function (Berman et al., 2017).
Although there are many methods for the treatment of
keloids, due to the unknown pathogenesis and high recurrence
rate, safe and effective treatment and prevention protocols have
not been identified. Therefore, exploring the pathogenesis of
keloids will help find effective biomarkers and therapeutic
targets to inhibit or eliminate keloids.

The current research mostly describes the pathogenesis of
keloids from the perspectives of genetic susceptibility, immunity,
and inflammation (Ogawa, 2017). Metabolomics is a new high-
throughput sequencing discipline after genomics,
transcriptomics, and proteomics, and it is an important part of
reflecting changes in the body (Rinschen et al., 2019).
Metabolomics is a subdiscipline of systems biology based on
cluster index analysis, using high-throughput detection and data
processing as the means and aiming at information modeling and
system integration (Bujak et al., 2015). The metabolome refers to
all of the low–molecular weight metabolites of a certain organism
or cell in a specific physiological period (Bujak et al., 2015).
Researchers conduct qualitative and quantitative analyses of
metabolites to explore and predict diagnosis- and prognosis-
related biomarkers that reflect the disease development status of
treatment targets. 5-Hydroxylysine is usually present in collagen
in the form of glycosylation (Herbert et al., 2012). 1-
Methylnicotinamide is an immune regulatory metabolite in
human ovarian cancer (Kilgour et al., 2021). 1-
Methylnicotinamide regulates thrombogenesis and
inflammatory processes (Chlopicki et al., 2007). The role of
these two metabolites in keloid has not been studied. Research
on metabolomics based on keloids is still needed. Our research
explores the mechanism of metabolites in the development of
keloids from the perspective of metabolomics.

2 MATERIALS AND METHODS

2.1 Human Samples
This study was approved by the Medical Ethics Committee of
Peking Union Medical College Hospital (JS-2907), China. All
participants provided written informed consent.

From May 2019 to May 2021, a total of 35 patients were
included in this study, including 12 cosmetic patients and 23
keloid patients. Patients were 20–47 years old (17 males, 18
females). The collected specimens were divided into two
groups: 20 keloid tissues from keloid patents (group K) were
used as the experimental group. Eight normal skin tissues from
keloid patients (group N) and 12 healthy tissues from cosmetic
patients (group C) served as the control group. Five keloid tissues
and five normal skin tissues were obtained from the same patient.

The modified Vancouver Scar Scale (mVSS) is used to measure
the severity of keloids (Ramadan et al., 2021).

All the sequencing samples were from the chest, and the
enrolled patients did not have any systemic diseases or receive
other treatments to remove possible factors that interfere with the
results of the experiment. Normal skin samples surrounding the
keloid tissue are 2–3 mm away and need to be removed together
during surgery.

2.2 Untargeted Metabolome
In our research, we studied the metabolome of samples using a
liquid chromatography–mass spectrometry (LC–MS/MS)
method. LC–MS data were obtained by coupling an UltiMate
3000 liquid chromatograph (Thermo Fisher Scientific,
United States) and a Q Exactive Plus mass spectrometer
(Thermo Fisher Scientific, United States). Detailed parameter
information is described in the methods of chromatographic
conditions and mass spectrometry conditions. The mass
spectrometer works in the full scan mode, with a scan rate of
100–1,000 m/z, and automatically performs MS/MS fragment
scans. The obtained raw data were converted into mzXML
format through Proteowizard software (v3.0.8789) (Chambers
et al., 2012). The XCMS package of R (v3.1.3) was used to perform
peak identification, peak filtration, and peak alignment. A data
matrix was obtained including the mass-to-charge ratio (m/z),
retention time (retention time), and peak area (intensity). The
positive ion mode obtained 4,193 precursor molecules; 7,163
precursor molecules were obtained in the negative ion mode,
and the data were exported to Excel for subsequent analysis. We
analyzed 548 skin metabolites confirmed using MS/MS analysis.
An LTQ Orbitrap high-resolution mass spectrometry–liquid
chromatography mass spectrometer (Thermo Fisher Scientific)
was used for the qualitative verification of 5-hydroxylysine and 1-
methylnicotinamide. 1-Methylnicotinamide was verified using
N-methylnicotinamide (Beijing Soleibao Technology Co., Ltd.,
SM9380, China). 5-Hydroxylysine was verified using DL-5-
hydroxylysine hydrochloride (Sigma–Aldrich, H0377,
United States).

2.3 Skin Sample Preparation
Fresh surgical specimens were quickly frozen in liquid nitrogen
and stored at −80°C. A total of 63.1–101.9 mg of each sample was
accurately weighed in a 2-ml EP tube, and 1 ml tissue extract and
three steel beads were added (Thermo, Waltham, United States).
The sample was placed into a high-throughput tissue grinder
(Xinzhi Biological Technology Co., Ltd., SCIENTZ-48, Ningbo,
China) and ground for 60 s at 55 Hz. This operation was repeated
twice. Ultrasound was performed at room temperature for
30 min, and the samples were placed on ice for 30 min. The
samples were centrifuged at 4°C for 10 min at 12,000 rpm, and
then 650 μL of the supernatant from each sample was transferred
into another 2-ml centrifuge tube. The samples were
concentrated and dried in vacuum (Eppendorf, 5,305,
Hamburg, Germany). The samples were dissolved in 200 μL of
2-chlorobenzalanine (4 ppm) (Aladdin, 103616-89-3, Shanghai,
China) 50% acetonitrile solution (stored at −20°C), and the
supernatant was filtered through a 0.22-μm membrane to
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obtain the prepared samples. Twenty microliters from each
sample was tested and mixed into a QC sample. The sample
was used for LC–MS detection.

2.4 Chromatographic Condition
Chromatographic separation was accomplished in a Thermo
Ultimate 3000 system equipped with an ACQUITY UPLC®
HSS T3 (150 × 2.1 mm, 1.8 μm, Waters) column maintained
at 40°C. The temperature of the autosampler was 8°C. Gradient
elution of analytes was performed with 0.1% formic acid in water
(C) and 0.1% formic acid in acetonitrile (D) or 5 mM ammonium
formate in water (A) and acetonitrile (B) at a flow rate of 0.25 ml/
min. Injection of 2 μL of each sample was performed after
equilibration. An increasing linear gradient of solvent B (v/v)
was used as follows: 0∼1 min, 2% B/D; 1∼9 min, 2∼50% B/D;
9∼12 min, 50–98% B/D; 12∼13.5 min, 98% B/D; 13.5∼14 min,
98∼2% B/D; and 14∼20 min, 2% D-positive model (14∼17 min,
2% B-negative model) (Zelena et al., 2009).

2.5 Mass Spectrometry Conditions
The ESI-MSn experiments were executed on a Thermo Q
Exactive Plus mass spectrometer, with spray voltages of 3.5 kV
and −2.5 kV in positive and negative modes, respectively. Sheath
gas and auxiliary gas were set at 30 and 10 arbitrary units,
respectively. The capillary temperature was 325°C. The
analyzer scanned over a mass range of m/z 81-1,000 for full
scan at a mass resolution of 70,000. Data-dependent acquisition
(DDA) MS/MS experiments were performed with HCD scans.
The normalized collision energy was 30 eV. Dynamic exclusion
was implemented to remove some unnecessary information in
MS/MS spectra (Zelena et al., 2009).

2.6 Data Preprocessing
Data quality control ensures repeatability and accuracy of
metabolomics measurements. As the chromatographic
system and mass spectrometer are in direct contact with
samples, they are easily polluted with an increase in the
number of samples to be analyzed, resulting in signal drift
and system measurement error. The quality control samples
were used to evaluate the signal drift of the mass
spectrometry data during the acquisition process. These
drifts can be further identified and corrected by precise
algorithms to improve the quality of the data. The QC-
RFSC algorithm of the R statTarget package
(Bioconductor, version 3.13) was used to correct the signal
peak of each sample feature.

2.7 Bioinformatics Analysis
These metabolites were annotated using the KEGG database
(Kanehisa and Goto, 2000) (https://www.genome.jp/kegg/
pathway.html), HMDB database (https://hmdb.ca/metabolites),
and LIPIDMaps database (http://www.lipidmaps.org/). PLS-DA
is an upgraded version of linear discriminant analysis, which is
suitable for omics data where explanatory variables have a large
number of collinearity problems (Gromski et al., 2015).
Orthogonal partial least squares discriminant analysis is an
improvement of PLS-DA. In OPLS-DA, the regression model

is built between explanatory variables (metabolite data) and
response variables (grouping information) that contain
grouping information, and the model filters out information
that is not related to grouping (Westerhuis et al., 2010). The
random forest algorithm is a combination of bagging and
decision trees and is used to calculate important metabolites
(Hanko et al., 2021). Data normalization, principal component
analysis (PCA), partial least squares discriminant analysis (PLS-
DA), orthogonal partial least squares discriminant analysis
(OPLS-DA), random forest (RF) analysis, and support vector
machine (SVM) analysis were performed with the R package
MetaboAnalystR. To make the data close to a normal
distribution, the normalization function in the
MetaboAnalystR package (with arguments MedianNorm,
LogNorm, and AutoNorm) was adopted. We applied
univariate analysis (t-test) to calculate the statistical
significance (p value). The metabolites with Value
Importance in Projection (VIP) > 1, p value < 0.05, and log2
(fold change) > 1 were considered to be differential metabolites.
For clustering heatmaps, the data were normalized as z scores
and plotted by the Pheatmap package in R language. A volcano
plot was used to filter metabolites of interest based on log2 (fold
change) and -log10 (p value), using the ggplot2 package in R
language. The metabolites with a p value < 0.05 (t-test) were
used to conduct an overrepresentation analysis (ORA) or
enrichment analysis, and the resulting KEGG pathways with
a p value < 0.05 (ORA) were considered statistically significantly
enriched.

2.8 Hematoxylin–Eosin Staining
HE staining labels the nucleus in blue–purple and the cytoplasm
in red. HE staining was used to observe the morphology of keloid
tissue. First, the tissue sections were dried at room temperature
for 20 min. Second, the hematoxylin dye was added for 3 min.
Third, 0.5% hydrochloric acid alcohol was added for a few
seconds to distinguish the samples. Fourth, eosin was added
for 30 min, the slides were dehydrated with gradient alcohol,
and then xylene was used to make any unstained samples
transparent. Finally, the samples were observed under a
stereomicroscope.

2.9 CIBERSORT
The CIBERSORT deconvolution algorithm is a machine learning
method based on linear support vector regression (SVR),
implemented through the R package (version 3.5.3, R
Foundation for Statistical Computing, Vienna, Austria). The
CIBERSORT deconvolution algorithm is used to transform the
gene expression information of the transcriptome into the
proportion information of immune cells, and the abundance
of immune cells can be obtained through visual analysis of
histograms, heatmaps, and violin maps. GSE92566 was
downloaded (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc � GSE92566) from GEO datasets. The threshold was set to
p < 0.05, |log2 (fold change) |≥1. After GSE92566 was normalized,
the gene expression information was converted into immune cell
abundance information through the CIBERSORT algorithm of
the R package (Chen et al., 2018).
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2.10 Neural Network Model
The neural network model was built in MATLAB (version
9.2.0.538062, MathWorks, United States) using the BP algorithm
(multilayer feedforward neural network model) for fitting. The row
data are normalized to distribute between [0, 1]. After normalization,
the data were randomly divided into a training set and validation set
at a ratio of 3:1. The entire neural network model includes an input
layer, a hidden layer, and an output layer. The hidden layer was set to
2. The tansig function was used between the input layer and the
hidden layer: the digital S-shaped function was for information
transmission, and the hidden layer to the output layer adopt the
Purelin function (linear function) for transmission. The number of
network training iterations is 9,000, and every 1,000 iterations

display the primary error. The target error is 10−5, and the
learning rate is 0.05 based on experience. The momentum factor
mc is 0.9. The model is initialized randomly. The output values of
output neurons to patients and healthy controls are set to 1–15
(Esmaelpoor et al., 2020).

3 RESULTS

3.1 Morphological Characteristics of Group
K and Control
The collagen fiber bundles in the dermis of keloids were thick,
dense, and disorderly arranged and contained many

FIGURE 1 | (A) Histological images of the K group and control group, 100X. 400X. (B) Unsupervised principal component analysis (PCA) of keloid tissues. Each
point in the figure represents a sample, and the position of the point in the figure is determined by all the metabolites in the sample. The ellipse in the figure is based on the
95% confidence interval calculated and drawn by Hotelling T2. The sample falling outside the ellipse implies that the point may be an outlier. (C) Unsupervised principal
component analysis (PCA) of control tissues. (D) Calibration signal drift. QC sample points together, proving that the calibration effect is good. The red dots are QC
samples after calibration, and the blue dots are test samples.
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FIGURE 2 | Standardization of metabolites. The content distribution is represented by a box plot, which corresponds to outliers, minimum, lower quartile, median,
upper quartile, maximum, and outliers from left to right. The picture on the left is the distribution before normalization, and the picture on the right is the distribution after
normalization.
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FIGURE 3 |Metabolite content statistics. (A) The abscissa is the sample name, sorted according to the grouping order, and different grouped samples are marked
with different colors. The ordinate represents the percentage content of each metabolite, and the order of the columns corresponding to the metabolites from top to
bottom is consistent with the legend. (B) (C) The vertical axis is the sample name information and includes grouping information. The horizontal axis is metabolites. The
cluster tree at the top of the figure is the similarity clustering of the metabolite distribution in each sample, the middle heatmap is the metabolite content heatmap,
and the relationship between color and metabolite content (Z score) is shown in the upper right scale ruler. (D) The expression of metabolites between the two groups.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 8042486

Shan et al. 5-Hydroxylysine and 1-Methylnicotinamide Indicate Severity

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 4 | (A) Each point corresponds to a sample, and the horizontal and vertical coordinates are the values of the two factors with the best discrimination effect.
Different groups are marked with different colors, and the area marked by the ellipse is the 95% confidence area of the sample point. (B) The abscissa represents the
distribution interval of the replacement test statistic (model prediction accuracy), the ordinate is the frequency of the test statistic in the interval during the replacement
process, and the position pointed to by the arrow is the observed test statistic value. If this value is far from the randomdistribution, the model distinguishing effect is
not random, and the model distinguishing effect is significant. (C) PLS-DA metabolite importance map. In the figure, each point represents a metabolite, the abscissa is
VIP (value importance in projection), and the ordinate is the p value after FDR correction (log10 conversion). (D) Multiple change volcano map. Each point represents a

(Continued )
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inflammatory cells. The epidermal cells of normal skin were well
differentiated and had clear layers. Collagen bundles in the
dermis of healthy skin were thin and loosely arranged
(Figure 1A). The morphology of normal skin tissue and
keloid tissue was quite different. Local lipid metabolism needs
further metabolome sequencing.

3.2 Quality Assessment of Data
To clarify the profiling of local lipid metabolism in keloids, we
used non-targeted metabolome analysis to detect metabolites. We
identified 548 metabolites by adjusting the most appropriate
experimental conditions. There were 162 metabolites that were
significantly different between keloids and normal skin (p < 0.05).
Using unsupervised principal component analysis (PCA), we
modeled each group of samples and then displayed the score
plot (Figures 1B,C). This type of intragroup PCA eliminates the
interference between groups, allowing us to observe the variation
within the group more clearly and find possible outliners. Each
point in the figure represents a sample, which is determined by all
of the metabolites in the samples. There were no outliers in group
K (Figure 1B) or the control (Figure 1C). The quality control
(QC) samples were used to evaluate the signal drift of the entire
mass spectrum data in the acquisition process, which can be
further identified and corrected by accurate algorithms to
improve the quality of the data. The QC samples are the
samples obtained after all samples are mixed in equal
amounts. During the signal data acquisition process, QC
samples were inserted at the beginning, end, and middle
positions to record the signal drift. There was no signal drift,
and the signal strength of QC samples remained unchanged
during the data acquisition process (Figure 1D). After the
signal drift was corrected, the QC sampling points in the PCA
diagram were clustered together, demonstrating that the
correction effect was good.

3.3 Metabolite Standardization
The purpose of metabolite standardization is to make the mean
and standard deviation of all metabolites at the same level. For
analyses such as PLS-DA, OPLS-DA, and machine learning, if
metabolites are not standardized, the importance of metabolites
with high mean and standard deviation will tend to be higher
than the importance of metabolites with low mean and standard
deviation. To accurately analyze metabolites with large
differences between groups, metabolite standardization is
required. Before standardization, the median and upper and
lower quartiles of metabolite content were uneven, and the
difference was large (Figure 2A). However, after
standardization, they were basically at the same level
(Figure 2B). In addition, difference comparison methods such
as the t-test and ANOVA require that the metabolite content
obeys a normal distribution. Therefore, we used log

transformation to make the metabolite content distribution
close to the normal distribution.

3.4 Metabolite Profiles in Keloids Identified
by Non-Targeted Metabolomics
To calculate the percentage of the content of each metabolite in
each sample, a stacked histogram was used, as in Figure 3A,
which can intuitively compare the differences in the
composition and structure of metabolites between groups.
Figure 3A shows the top 20 metabolites, including
lidocaine, L-proline, L-leucine, creatine, gamma-
aminobutyric acid, and L-methionine. The differences in
metabolites between the two groups can be more intuitively
realized by combining the samples between the two groups
(Supplementary Figure S1A-1B). Creatine, L-leucine,
L-proline, and lidocaine seemed to be different between the
two groups (Supplementary Figure S1B). The remaining
metabolites, more than 20, were included in other groups.
We annotated all metabolites with the KEGG database br08001
to obtain the biological roles played by the metabolites, count
the percentage content of each biological role, and draw a
percentage content stacked column chart, as shown in
Figure 3B. Compared with normal tissue, lipids have a
tendency to decrease in keloids, while peptides have a
tendency to increase in keloids (Supplementary Figure S1).
Skin metabolites in keloids play various roles, including
peptides, lipids, vitamins and cofactors, nucleic acids, organic
acids, carbohydrates, hormones and transmitters, and steroids.
Metabolites of concern were selected (the top 30 metabolites
were selected by default), and the cluster was conducted
according to the metabolite composition of the samples
(Figure 3C). N-(4-Oxoglutaryl)-L-cysteinylglycine, L-leucine,
5,6-dihydro-5-fluorouracil, piperidine, L-aspartic acid,
L-methionine, and L-glutamic acid were upregulated in
group K. Pyroglutamic acid, glycerophosphocholine,
niacinamide, monoethylglycinexylidide, and L-histidine were
downregulated in group K (Figure 3D). The expression of these
metabolites was reversed in the control group.

3.5 A PLS-DA Model Was Established to
Analyze the Metabolites of Keloids
3.5.1 PLS-DA Looks for Factors That Can Distinguish
the Grouping of Samples to the Greatest Extent
Factors can be understood as the weighted sum of all metabolites.
Discriminant analysis encodes the discontinuous categorical
variable to be predicted as a latent variable, and the latent
variable is continuous so that regression can be established
between the explanatory variable and the latent variable,
which can be solved by least squares regression. As shown in

FIGURE 4 |metabolite, the abscissa is the multiple of change, and the ordinate is the p value of the t-test. The larger the multiple of change, the smaller the p value [the
higher the log10(p)], and the larger the point. (E)Box diagram of metabolite differences. To visually display the differences inmetabolites between groups, wemade a box
diagram of representative differential metabolites with the top ranking (top 25with small p value) obtained from one-dimensional statistical analysis. *, **, *** correspond to
p < 0.05, p < 0.01, p < 0.001.
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FIGURE 5 | (A) Box diagram of metabolite differences. To visually display the differences in metabolites between groups, we made a box diagram of representative
differential metabolites with the top ranking (top 25 with small p value) obtained from one-dimensional statistical analysis. *, **, *** correspond to p < 0.05, p < 0.01, p <
0.001. (B) The 15 most important metabolites in random forests. The abscissa of the left figure is “Mean Decrease Accuracy,” which measures the importance of a
metabolite in a random forest; the right figure is a heatmap of the content of metabolites in two groups. (C) Pearson correlation heatmap. Correlation coefficient
matrix of the top 100 metabolites in total content. The correlation coefficient is represented by color: red is positively correlated, and green is negatively correlated.
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Figure 4A, we used the two factors with the best distinguishing
effects to draw a scatter plot. The point clouds of samples in
different groups are distributed in different areas, meaning that
the PLS-DA model has a good discrimination effect. There were
significantly different metabolites in the two groups. In OPLS-
DA’s permutation test, we use Q2 as the test statistic and use the
permutation method to obtain the random distribution of Q2. As
shown in Figure 4B, the actual observation Q2 indicated by the
arrow is on the right side of the random distribution (the
observed value is greater than the random value), meaning
that Q2 is not random but significant, and the predictive
ability of the model is significant, that is, there exist
significantly different metabolites between the two groups
(Figure 4B). The PLS-DA model was used to calculate the
importance of metabolites (Figure 4C). Univariate analysis is
used to measure how much metabolites differ between groups to
assess how much metabolite changes will affect the organism. We
measured the magnitude of this change by calculating the fold
change (FC) of the metabolite change, combined with the p value,
to screen some key metabolites. The change multiple of up is
positive, and the multiple of down is negative. As shown in
Figure 4D, the threshold of the p value was less than 0.05, and an
absolute value of the fold change greater than 2 was defined as the
yellow area. These metabolites had significant differences
between groups (Figure 4D) and had large changes, which
should be considered in further research. To visually show the
difference in metabolites between groups, representative different
metabolites were displayed in box diagrams (Figure 4E,
Figure 5A, p < 0.001).

3.6 Machine Learning of Metabolite of
Keloids
The random forest algorithm was used to calculate different
metabolites in the two groups. The random forest algorithm is
a combination of bagging and decision trees. In random forest
analysis, we used “Mean Decrease Accuracy” to measure the
importance of a metabolite in the random forest to distinguish
groups. Changing the value of a metabolite into a random
number, the degree of reduction in the accuracy of random

forest prediction is “Mean Decrease Accuracy.” The greater
the value, the greater the importance of metabolites in the
random forest. Figure 5B shows the 15 most important
metabolites in random forests, including 1-
methylnicotinamide, diacetyl, 4-hydroxyproline, beta-alanyl-
L-arginine, heptanoic acid, 5-hydroxylysine, galactaric acid,
cytidine monophosphate N-acetylneuraminic acid,
L-prolinamide, and beta-glycerophosphoric acid (Table 1).
Figure 5C shows the cluster correlation heatmap of the two
groups. Correlation coefficient matrix of the top 100 metabolites
in total content. The correlation coefficient is indicated by color:
red represents a positive correlation, and green represents a
negative correlation.

3.7 Metabolic Pathway Enrichment Analysis
of Keloids
According to the metabolites with significant differences between
groups (p < 0.05), the biological pathways that play a key role in
the pathogenesis of keloids were identified, and the basic
molecular mechanism was revealed. Through the KEGG
enrichment analysis of metabolic pathways, whether the
metabolites of interest are significantly enriched in these
metabolic pathways can be assessed. Figure 6A shows the
metabolic pathways with significant enrichment of differential
metabolites, which may play a role in the occurrence and
development of keloids.

Topological analysis can calculate the effect of the
metabolite of interest in the metabolic pathway (measured
by impact). Therefore, we combined topological analysis and
enrichment analysis to determine whether a metabolic
pathway plays a key role in the biological process of
keloids. The metabolic pathways in the blue area in
Figure 6B are significant metabolic pathways in the
enrichment analysis, including arachidonic acid metabolism;
D-arginine and D-ornithine metabolism; pantothenate and
CoA biosynthesis; alanine, aspartate, and glutamate
metabolism; arginine and proline metabolism;
aminoacyl−tRNA biosynthesis; phenylalanine metabolism;
and nicotinate and nicotinamide metabolism (Table 2).

TABLE 1 | Random forests of metabolites.

Metabolite Mean decrease accuracy Mean decrease gini t.stat p value

1-Methylnicotinamide 0.008 0.318 −3.958 −3.958
Diacetyl 0.004 0.326 3.990 <0.001
4-Hydroxyproline 0.004 0.191 −5.028 <0.001
Aspartame 0.004 0.152 −3.153 0.004
Beta-alanyl-L-arginine 0.004 0.216 −7.585 <0.001
Formononetin 0.003 0.185 5.301 <0.001
Heptanoic acid 0.003 0.127 4.981 <0.001
5-Hydroxylysine 0.003 0.122 5.355 <0.001
Galactaric acid 0.003 0.143 −5.119 <0.001
Cytidine monophosphate N-acetylneuraminic acid <0.001 0.029 1.104 0.28
Pyridoxine 0.002 0.124 −3.897 <0.001
5-Acetamidovalerate 0.002 0.1 −3.13 0.004
L-Prolinamide 0.002 0.109 4.51 <0.001
Kyotorphin 0.002 0.076 −2.837 0.007
Beta-glycerophosphoric acid 0.001 0.049 2.185 0.037
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FIGURE 6 | (A) Enrichment analysis. The abscissa is the enrichment factor, which is the number of observedmetabolites/theoretical metabolites in the metabolic pathway.
The size of the p value is expressed by color: the darker the color, the smaller the p value. (B) Topological analysis. The abscissa is the p value, and the blue area is significant (p <
0.05); the ordinate is the topological analysis impact. (C) The volcano plot illustrates the differentially expressed genes between control and keloid tissues after analysis of the
GSE92566 dataset with GEO2R. (D) GO enriched terms are shown, and accumulative hypergeometric p values and enrichment factors were calculated and used for
filtering. The remaining significant termswere then hierarchically clustered into a tree based on kappa-statistical similarities among their genememberships. Then, a kappa score of
0.3 was applied as the threshold to cast the tree into term clusters. (E) Transcription factor enriched terms. The darker the color, the higher the enrichment score. (F)Metascape
analysis. We selected a subset of representative terms from this cluster and converted them into a network layout. More specifically, each term is represented by a circle node,

(Continued )
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3.8 Gene Expression Profiles of Keloids
To better understand the pathogenesis of keloids from multiple
angles, GSE92566 was used to reveal changes in gene expression
profiles. The threshold was set to p < 0.05, |log2 (fold change) |≥1.
In total, 3,370 different genes were screened, as shown in
Figure 6C. These differentially expressed genes were enriched
and related to extracellular matrix organization, NABA CORE
MATRISOME, and blood vessel development (Figure 6D). The
enrichment results of transcription factors are shown in
Figure 6E, including NF1, MEF2, and RSRFC4. Metascape
analysis (Zhou Y. et al., 2019) is shown in Figure 6F,
including cell–substrate adhesion, blood vessel development,
response to growth factor, cross-linking of collagen fibrils, and
supramolecular fiber organization. The same enrichment
network has its nodes colored by p value, as shown in
Figure 7A. Differentially expressed genes between keloids and
normal tissues were identified by protein–protein interaction
(PPI) analysis with complex interactions (Figure 7B). The
MCODE algorithm (Zhou Y. et al., 2019) was used to screen
the differentially expressed genes and obtain the important genes
of pathogenesis (Figure 7C). The CytoHubba algorithm was also
used to screen the important genes during keloid formation,
including POSTN, COL3A1, COL1A2, SOX9, COL5A2,
COL1A1, ITGB1, COL5A1, FN1, and BGN (Figure 7D). The
hub genes of COL1A, COL1A2, COL5A2, and COL3A1 indicate
that genes related to collagen synthesis play a vital role in the
pathogenesis of keloids.

3.9 Immune Microenvironment of Keloids
Keloid tissue has a high collagen content, making it difficult to be
separated from immune cells in the local immune
microenvironment. To better study the local immune
microenvironment of keloids, the CIBERSORT algorithm was
used (Xiong et al., 2018; Zhou R. et al., 2019). According to the
biomarkers of gene expression profile, immune cells are typed to
obtain cell abundance information (Xiong et al., 2018; Zhou R.
et al., 2019). The histogram and heatmap showed that the
information about the proportion of immune cells in group K
and group N was uneven, and the local immune

microenvironment was different (Figures 7E,F). The
relationship between immune cells is shown in Figure 7G. M2
macrophage and gamma delta T-cell proportion synergistically
increased (Figure 7G). Treg and resting dendritic cell proportion
synergistically increased (Figure 7G). The proportion of Tregs in
groups K and N was significantly different (p � 0.032). The
proportion of Tregs, which plays an important role in immune
regulation, was lower than that in normal skin tissue, which may
contribute to the vigorous growth of keloid tissue (Figure 7H).

3.10 5-Hydroxylysine and
1-Methylnicotinamide are Related to the
Severity of Keloids
Metabolites were easier to obtain in the clinic than transcriptome
information, for example, using microneedle punch, tape strip,
macroduct sweat collector, and suction chamber (Elpa et al., 2021).
Exploring metabolites related to the pathogenesis of keloids can
help doctors monitor the development of the disease at any time
and provide effective biomarkers for diagnosis, treatment, and even
recurrence. To explore the value of 5-hydroxylysine and 1-
methylnicotinamide in clinical applications, we incorporated the
metabolome sequencing data of 5-hydroxylysine and 1-
methylnicotinamide into the construction of the neural network
model as the input layer. The mVSS was used as a common index
to measure the severity of keloids in the clinic. mVSS was the
output layer. Thirty samples were used as the training set, and 10
samples were used as the validation set. The neural network model
was successfully built through training. The best training
performance was 0.10994 at epoch 9,000 (Figure 8A). The
verification set was used to verify the training effect of the
neural network model. The agreement between the predicted
value and the actual value proved that the training effect is
good (Figures 8B,C). The error diagram also showed that the
error is acceptable (Figure 8D). The predicted value was consistent
with the actual value, and the correlation coefficient was 0.9211
(Figure 8E). The successful construction of the neural network
model demonstrated that the expression of 5-hydroxylysine and 1-
methylnicotinamide may be predictors of the severity of keloids

TABLE 2 | Pathway enrichment of keloid.

Description Raw p FDR Impact Fold enrichment

Arginine and proline metabolism 0.00021735 0.017388 0.31068 3.0555
Arachidonic acid metabolism 0.006079 0.15052 0.09836 2.6271
Aminoacyl-tRNA biosynthesis 0.00718 0.15052 0.19356 2.413
D-Arginine and D-ornithine metabolism 0.007526 0.15052 0.14286 6.7867
Phenylalanine metabolism 0.010442 0.16707 0.18181 2.8152
Pantothenate and CoA biosynthesis 0.014411 0.19215 0.18181 3.3514
Nicotinate and nicotinamide metabolism 0.031723 0.36255 0.14544 2.4679
Alanine, aspartate, and glutamate metabolism 0.039998 0.39998 0.4 3.0163

FIGURE 6 |where its size is proportional to the number of input genes falling into that term, and its color represents its cluster identity (i.e., nodes of the same color belong to the
samecluster). Termswith a similarity score>0.3 are linkedby anedge (the thicknessof the edge represents the similarity score). The networkwas visualizedwithCytoscape (v3.1.2)
with a “force-directed” layout and with edges bundled for clarity. One term from each cluster is selected to have its term description labeled.
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FIGURE 7 | (A) Same enrichment network has its nodes colored by p value, as shown in the legend. The darker the color, the more statistically significant the node
is (see legend for p value ranges). (B) The protein–protein interaction (PPI) network of differentially expressed genes of GSE92566. (C) The MCODE algorithm was used
to screen the differentially expressed genes and obtain the important genes of pathogenesis using GSE92566. (D) The CytoHubba algorithmwas also used to screen the
imported genes of GSE92566. (E) Fractions of immune cells between control and keloid tissue in the GEO database (GSE92566). (F) Heatmap of immune cells
between control and keloid tissue in the GEO database (GSE92566). (G) A correlational heatmap of immune cells of keloids. (H) A violin plot of immune cells found in
control and keloid tissue according to the GEO database (GSE92566); blue denotes normal tissue and red denotes keloid tissue.
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(Figure 8F). The high-risk early warning index for 5-hydroxylysine
was 4 × 108-6.3×108 (p � 0.0008), and the high-risk predictive
index for 1-methylnicotinamide was 0.95 × 107-1.6×107

(Figure 8G, p � 0.0022). The receiver operator characteristic
curve shows that the expression level of 5-hydroxylysine can
predict keloids sensitively and specifically (AUC, 0.845; 95% CI,

FIGURE 8 | (A) Neural network model for the prediction of keloid severity. (A) The best training performance was 0.10994 at epoch 9,000. (B) The predictive value
of the data was verified against the actual value. (C) Absolute error diagram between the predicted value and the actual value of the data. (D) Error distribution map
between the predicted value and the actual value of the data. (E)Correlation scatter plot of mVSS. y � 1.0112*x+1.5381, R2 � 0.9211, r � 0.9913. (F,G)High-risk warning
range of 5-hydroxylysine and 1-methylnicotinamide at the planform and three-dimensional levels.
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0.715–0.975, Figures 9A, and 1-methylnicotinamide can also
predict keloids (AUC, 0.702; 95% CI, 0.524–0.881, Figure 9B).

1-Methylnicotinamide is formed from nicotinamide
N-methyltransferase (NNMT). The overexpression of NNMT
is associated with the enhanced proliferation, invasion, and
metastasis of various cancers (Eckert et al., 2019; Roberti
et al., 2021). The expression of aldehyde oxidase 1 (AOX1)
converts 1-methylnicotinamide into 1-methyl-2-pyridone-5-
carboxamide (2-PYR) or 1-methyl-4-pyridone-5-carboxamide
(Kilgour et al., 2021). AOX1 catalyzes the metabolism of 1-
methylnicotinamide (Supplementary Figure S2A). The
expression levels of NNMT and AOX1 could be analyzed by
GSE92566. We found no significant difference in AOX1 between
the two groups (Supplementary Figure S2B), and the expression
of NNMT in group K was much higher than that of the control
(Supplementary Figure S2C, p � 0.0008). The expression of
NNMT at the transcription level was consistent with the
metabolome sequencing data. This finding indicates that 1-
methylnicotinamide may promote the vigorous proliferation
and invasion of keloids. 5-Hydroxylysine is one of the raw
materials of collagen biosynthesis. 5-Hydroxylysine forms due
to collagen biosynthesis or posttranscriptional modification
disorders (Wu et al., 2019). The formation of collagen fiber
cross-links requires posttranslational modification of
procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2).
Lysine hydroxylase can be divided into three different
subtypes based on different functions: PLOD1, PLOD2, and
PLOD3. The expression of PLOD1 (Supplementary Figure
S2D, p � 0.0118) and PLOD2 (Supplementary Figure S2E,
p � 0.0023) was significantly increased in group K compared to
the control. The expression of PLOD3 was not significantly
different between the two groups (Supplementary Figure
S2F). The increased expression of PLOD1 and PLOD2
regulates the expression of 5-hydroxylysine in keloid tissue.
These results also anastomosed with increased expression of
COL3A1, COL1A2, COL1A1, COL5A2, and COL5A1
(Figure 7D). Qualitative verification of 1-methylnicotinamide

and 5-hydroxylysine was performed using standard products
(Supplementary Figure S3).

4 DISCUSSION

Keloid is a pathological fibroproliferative disease (Ogawa, 2017).
Although an increasing number of studies on keloids have
revealed the influence of genetic and environmental factors on
their formation, the etiology of keloids is still unclear. Some
studies have shown that metabolism is involved, from a
metabolome point of view (Bujak et al., 2015). We used
non-targeted LC–MS to identify and quantitatively analyze the
collected skin tissue samples, and a total of 548 metabolites were
identified. There were 162 metabolites that were significantly
different between keloids and normal skin (p < 0.05). Quality
control and a series of analyses were performed on the data, and
several important metabolites were finally calculated through the
random forest model.

Lipids are an important part of skin and have pro- and anti-
inflammatory effects (Louw, 2007; Judge and Dodd, 2020).
However, their role in the pathogenesis of keloids has been
neglected. Lipids are mainly used as membrane components
and second messengers to form biological membrane
structures and stratum corneum and play a certain role in
local inflammation and intracellular signal transduction
(Huang and Ogawa, 2013). Compared with normal tissue,
lipids have a tendency to decrease in keloids, while peptides
have a tendency to increase in keloids. The decrease in lipids may
be a reason for keloid formation.

Skin metabolites of keloids act as peptides, lipids, vitamins
and cofactors, nucleic acids, organic acids, carbohydrates,
hormones, transmitters, and steroids. The content of lipids is
second only to peptides. Lipids include fats (triglycerides), lipids
(phospholipids, sterols), sterols and their esters, phospholipids,
and glycolipids. Keloid fibroblasts isolated and cultured in vitro
have a reduced ability to generate PGE2 and EP2 receptors and

FIGURE 9 | (A) Receiver operator characteristic curve indicated that the expression level of 5-hydroxylysine could sensitively and specifically predict keloids. (B)
The receiver operator characteristic curve indicated that the expression level of 1-methylnicotinamide could sensitively and specifically predict keloids.
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increase collagen synthesis (Huang and Ogawa, 2013). The
expression of insulin-like growth factor I receptor in keloid
fibroblasts is higher than that in normal fibroblasts, which
inhibits ceramide-induced apoptosis (Ohtsuru et al., 2000).
This fact may be the reason why Fas-mediated signaling
molecules in keloids are not converted into ceramides. These
studies have shown that lipid metabolism plays an important
role in keloid formation.

1-Methylnicotinamide is the amide form of vitamin B3 and
the main metabolite of nicotinamide (NA) (Przygodzki et al.,
2010). The pyridine compound NA is metabolized by
nicotinamide N-methyltransferase (NNMT) to form 1-
methylnicotinamide. 1-Methylnicotinamide is an activator of
prostacyclin production, which can regulate thrombus
formation and inflammatory processes (Chlopicki et al., 2007).
1-Methylnicotinamide can improve the pathological changes in
mice induced by free fatty acid binding to albumin, such as
inflammation, fibrosis, and necrosis. In a study of liver injury, 1-
methylnicotinamide improved liver injury by inhibiting the
release of the pro-inflammatory cytokines TNF-α and IL-4
(Chlopicki et al., 2007). The expression of 1-
methylnicotinamide in keloids is higher than that in normal
tissue. The role of 1-methylnicotinamide in the pathogenesis of
keloids has not been studied.

4-Hydroxyproline is a non-essential amino acid that is found
in collagen and a few other extracellular animal proteins.
Hydroxyproline is an important component of the main
structural protein of collagen, which affects the stability and
synthesis of collagen (Li and Wu, 2018; Tang et al., 2020).
Abnormal hydroxyproline can cause defects in collagen
synthesis, such as rupture of tendon connective tissue
(Srivastava et al., 2016). Hydroxyproline levels reflect
collagen metabolism and are significantly higher in keloid
tissue. Keloid fibroblasts are similar in appearance and
morphology to normal skin fibroblasts, but the
hydroxyproline content and collagen production are
significantly higher than those of normal skin fibroblasts
(Srivastava et al., 2016).

5-Hydroxylysine is usually present in collagen in the form of
glycosylation and is an important synthetic target (Herbert et al.,
2012). Collagen contains a peptide sequence with a repeating
triplet Gly-X-Y, where Y is usually a proline or lysine residue.
During collagen synthesis, certain proline and lysine residues
undergo hydroxylation and glycosylation, causing the peptide
chain to fold into an alpha-helix. The collagen molecule is a triple
helix structure. The formation of the triple helix requires
repetition of the Gly-Xaa-Yaa sequence (Herbert et al., 2012).
Gly-Pro-Hyp is the most common triplet (10.5–22%) in collagen.
The preresidue at the Yaa site of the Gly-Xaa Yaa sequence is
converted by prolyl-4-hydroxylase (Herbert et al., 2012), a
non–heme iron enzyme that exists in the endoplasmic
reticulum. The enzyme catalyzes the posttranslational and
stereoselective hydroxylation of the inactive γ-carbon of the
Pro residue at the Yaa position of the collagen sequence to
form hydroxyproline. Most proline residues at the Yaa
position of vertebrate collagen are hydroxyproline.
Hydroxylysine plays an important role in stabilizing the triple

helix structure of collagen. Abnormal changes or instability of the
triple helix structure may cause a variety of diseases (Krane, 2008;
Pálfi and Perczel, 2008; Srivastava et al., 2016). The expression of
5-hydroxylysine is higher than that in normal tissue, which may
be the reason why collagen production increases and is difficult to
diminish. Based on the metabolome data, we found that a single
metabolite cannot accurately reflect the severity of keloids. The
successful construction of the neural network model
demonstrated that the expression of 5-hydroxylysine and 1-
methylnicotinamide may be predictors of the severity of
keloids. The high-risk early warning index for 5-hydroxylysine
is 4 × 108-6.3×108, and the high-risk predictive index for 1-
methylnicotinamide is 0.95 × 107-1.6×107. The results of this
study may have practical clinical significance because metabolites
are easier to obtain from skin tissues than transcriptomes, for
example, they can be easily obtained from skin secretions. The
expression level of metabolites can more conveniently reflect the
development process of keloids and provide a convenient
biomarker for early diagnosis, treatment, and prognosis
observation.

Interestingly, when the expression of 5-hydroxylysine was
the highest, the symptoms of keloids were not the most serious,
which may be related to the complex mechanism of the
interaction of 1-methylnicotinamide and 5-hydroxylysine
and will also be an interesting research direction in the
future to explore the underlying molecular reasons.
Transcriptome analysis reveals the pathogenesis of keloids
from the perspective of gene expression. Collagen
accumulation is an important manifestation of the
pathogenesis of keloids (Andrews et al., 2016).
Transcriptome analysis showed that the core differentially
expressed genes related to collagen synthesis play a vital role
in the pathogenesis of keloids, including COL1A, COL1A2,
COL5A2, and COL3A1. The analysis of the keloid immune
microenvironment revealed the infiltration of immune cells
around fibroblasts, which directly or indirectly affected the
proliferation of fibroblasts (Zhou et al., 2021). The
expression of NNMT, AOX1, PLOD1, PLOD2, and PLOD3
at the transcription level is consistent with the metabolome
sequencing data (Supplementary Figure S2). The expression of
Tregs in groups K and N was significantly different (p � 0.032),
which may be related to the vigorous growth of keloid tissue.
Tregs play a significant role in immunosuppression and self-
tolerance. Tregs indirectly inhibit the production of TGF-β by
reducing the number of macrophages or directly inhibit the
production of TGF-β by releasing IL-10. Murao et al. (2014)
found that the proportion of Tregs in keloids is relatively low,
which is related to our study of inhibition. Coculture of Tregs
and keloid fibroblasts can reduce the expression of type I
collagen and TGF-β in keloids.

This study reveals the metabolome characteristics of keloids
for the first time and calculates the metabolites with significant
differences between the two groups through machine learning,
and enrichment analysis further reveals the possible
pathogenesis of keloids. The core genes and immune cells
of keloid pathogenesis were identified by transcriptome
analysis.
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1-Methylnicotinamide is produced by NNMT, which is
mainly expressed in tumor cells and fibroblasts. NNMT is
overexpressed in various cancers and is related to
proliferation, invasion, and metastasis (Eckert et al.,
2019; Roberti et al., 2021). The expression of NNMT is
restricted to fibroblasts and tumor cells (Kilgour et al.,
2021). The overexpression of NNMT promotes metabolism
in tumor-associated fibroblasts of the ovary, leading to
invasion and metastasis of tumors, and is related to poor
prognosis (Kilgour et al., 2021). AOX1 is expressed in
fibroblasts, and AOX1 is the enzyme responsible for the
degradation of 1-methylnicotinamide (Kilgour et al., 2021).
There was no significant difference in AOX1 between the
two groups (Supplementary Figure S2B), and the
expression of NNMT in group K was higher than that of
the control (Supplementary Figure S2C p � 0.0008),
possibly indicating that the overexpression of NNMT
may be a factor influencing the vigorous proliferation
of keloid fibroblasts. The expression of PLOD1 and
PLOD2 was abnormally increased at the transcriptional
level, which affected the abnormal metabolism of 5-
hydroxylysine, enhanced collagen cross-linking, and
increased deposition.

The expression levels of 5-hydroxylysine and 1-
methylnicotinamide can more conveniently reflect the
development process of keloids and provide convenient
biomarkers for early diagnosis, treatment, and prognostic
observation. However, these observations still need to be
clinically verified and observed on a larger scale. Although
promising metabolites were determined through rigorous
bioinformatics analysis and the metabolites were
qualitatively verified, there was no richer experimental
design and no verification of the enrichment of pathway
information. We only discovered the laws of the two
metabolites in the neural network model and did not
conduct in-depth exploration and experimental
verification of the interaction of the two metabolites,
which is a limitation and will be further studied in future
research.
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