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Computer aided designing of novel 
pyrrolopyridine derivatives as JAK1 
inhibitors
Seketoulie Keretsu1, Suparna Ghosh1 & Seung Joo Cho1,2*

Janus kinases (JAKs) are a family of non-receptor kinases that play a key role in cytokine signaling 
and their aberrant activities are associated with the pathogenesis of various immune diseases. The 
JAK1 isoform plays an essential role in the types 1 and II interferon signaling and elicits signals from 
the interleukin-2, interleukin-4, gp130, and class 2 receptor families. It is ubiquitously expressed in 
humans and its overexpression has been linked with autoimmune diseases such as myeloproliferative 
neoplasm. Although JAK1 inhibitors such as Tofacitinib have been approved for medical use, the low 
potency and off-target effects of these inhibitors have limited their use and calls for the development 
of novel JAK1 inhibitors. In this study, we used computational methods on a series of pyrrolopyridine 
derivatives to design new JAK1 inhibitors. Molecular docking and molecular dynamics simulation 
methods were used to study the protein-inhibitor interactions. 3D-quantitative structure–activity 
relationship models were developed and were used to predict the activity of newly designed 
compounds. Free energy calculation methods were used to study the binding affinity of the inhibitors 
with JAK1. Of the designed compounds, seventeen of the compounds showed a higher binding energy 
value than the most active compound in the dataset and at least six of the compounds showed higher 
binding energy value than the pan JAK inhibitor Tofacitinib. The findings made in this study could be 
utilized for the further development of JAK1 inhibitors.

Janus kinases (JAK) are non-receptor tyrosine kinases that mediate cellular signaling from the extracellular 
matrix via the cytokine  receptors1. They play a crucial role in type 1 and type 2 cytokines mediated  signaling2. 
The binding of endogenous ligands such as cytokines and interferons at the transmembrane receptors leads to 
the activation of JAKs, which in turn phosphorylate the transcription factor STAT  kinases3. The activated STAT 
kinases modulate the expression of genes that are associated with cell proliferation, apoptosis, and angiogen-
esis. The dysregulation of the JAK/STAT signaling has been linked with various autoimmune disorders. The 
JAK family consists of the isoforms JAK1, JAK2, JAK3, and the tyrosine kinase 2 (TYK2)4. While the JAK1 and 
JAK2 are ubiquitously expressed, the TYK2 is predominantly expressed in the endothelial. The JAK1 isoform 
regulates cytokine signaling from the interleukin-2 (IL2) receptor, interleukin-4 (IL4) receptor, and glycoprotein 
130 receptor families. They also transduce signaling from type 1 and type 2  interferons5. The aberrant activity of 
JAK1 is linked with the pathogenesis of inflammatory disorders and immune diseases like rheumatoid arthritis 
(RA), ulcerative colitis, and Crohn’s  disease6,7.

The JAK1 shares a high sequence identity with the other members of the JAK family. Structurally, JAK1 
consists of seven distinct domains termed JAK homology (JH1-JH7) domains. The JH1 domain consists of the 
protein tyrosine kinase domain and plays a significant role in physiological function. The JH2 domain consists 
of a kinase-like domain called the pseudokinase domain that regulates the activity of the protein tyrosine kinases 
(PTK) domain. The JH3 and JH4 share some homology with the Src homology 2 (SH-2) domains and stabilize 
the conformation of JAK1. The JH5 and JH7 domains make up the N-terminus of JAK1 and play an essential 
role in the regulation of the JAK1. The ATP binding takes place at the cavity formed by the residues from the 
glycine-rich loop, activation loop, hinge region, and αC-helix at the JH2 domain.

Currently, JAK1 inhibitors such as Filgotinib, Tofacitinib, Peficitinib, and several other second-generation 
inhibitors are in consideration for the treatment of inflammatory disorders and autoimmune  disorders8–10. 
Tofacitinib was approved for oral use against RA. However, it is a multi-JAK inhibitor with inhibitory activity 
against JAK2, JAK3, and  TYK211. Filgotinib is a second-generation, orally available drug in clinical trials for 
RA. However, the drug is a potent inhibitor of JAK1, JAK2, and  TYK212. Peficitinib is another pan JAK inhibitor 
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that has been approved for clinical use in Japan. Clinical trials have shown that Peficitinib is effective against RA 
with an acceptable safety  profile10,13. Several other JAK1 inhibitors are also in consideration for the treatment of 
autoimmune and inflammatory  diseases14. However, due to the low potency, non-selectivity, and off-target effects 
of existing drugs, developing novel JAK1 inhibitors with high potency is in crucial need for the treatment of RA.

We used computational modeling techniques such as 3D-QSAR, molecular docking, molecular dynamics 
simulation, and free energy calculation methods to study a series of pyrrolopyrimidine based JAK1 inhibitors. The 
study was carried out to explore the protein–ligand interactions and to characterize structural features important 
for the inhibition of JAK1. 3D-QSAR models were developed for structure–activity relationship analysis and to 
predict the activity value of novel JAK1 inhibitors. The relative binding affinity of the inhibitors and the newly 
designed compounds were calculated using free energy calculation methods.

Methodology
Data collection and protein preparation. The dataset of 50 pyrrolopyrimidine based compounds that 
showed inhibitory activity for JAK1 was collected from the  literature15. The half-maximal inhibitory concentra-
tion  (IC50) values were converted to negative log values  (pIC50). The inhibitory activity  (pIC50) values of the 
compounds ranged from 5 to 9.7. The structure of the dataset compounds and the activity values are given in 
Table 1. The X-ray crystallographic structure of JAK1 in complex with the Tofacitinib (PDB ID 3EYG) at 1.9 Å 
resolutions was collected from the protein  repository16. The protein structure was prepared by removing solvents 
molecules and adding the missing atoms.

Molecular docking. The protein–ligand binding was carried out using Autodock 4.2 (The Scripps Research 
Institute, La Jolla, CA, USA)17. Prior to the docking, the protein was prepared by adding polar hydrogen atoms, 
followed by the addition of Kollman charges. The inhibitor was sketched and minimized in Sybyl X 2.1 (Tripos 
Inc., St. Louis, MO, USA). Gasteiger charges were added as partial charges. The conformational search area 
within the receptor was defined by a 60 × 60 × 60 grid box. The gird space was set to 0.37 Å. The Lamarckian 
Genetic algorithm within the Autodock program was used to perform the conformational search and generate 
100 conformations. The autodock tools package was used to analyze the outcome of the  docking17. The protocol 
described above was used during the docking of the dataset compounds as well as the docking of the newly 
designed compounds.

Molecular dynamics. Molecular dynamics simulation was performed using the Gromacs  202018. The 
docked protein–ligand structure from the docking study was used as the initial structure for simulation. The 
ACPYPE (or AnteChamber PYthon Parser interfacE) script was used to develop the ligand  parameters19,20. The 
amber force field Amber99SB was used to parameterize the  protein20. The protein–ligand complex was placed 
inside a cubic box and was solvated with a TIP3P water model.  Na+ ions and  Cl− ions were added to the system to 
neutralize the system. The system was energy minimized with the maximum force  Fmax set to 1000 kJ  mol−1  nm−1 
to remove steric contacts. Position restrained NVT ensemble and NPT ensemble equilibrations were carried out 
to gradually heat the system to a pressure and temperature of 1 bar and 300 K, respectively. During the equilibra-
tion, V-rescale was used for temperature coupling and Parrinello-Rahman was used for pressure coupling. The 
long-range electrostatic interactions were was estimated using the Particle Mesh Ewald  method20. During the 
simulation, hydrogen bonds were constrained using LINCS methods and the minimum time step was kept at 
2 fs. The unrestrained production was performed using the leap-frog integrator. A more detailed explanation of 
the simulation methodology can be found in previous protein–ligand interaction studies by our  group21–24. Pro-
tein–ligand snapshots were collected from the equilibrated region of the MD simulation and the binding energy 
values were estimated using the Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method 
implemented by Kumari et al.25.

The g-mmpbsa method implemented by Kumari et al.25 does not consider the entropy term hence, the methods 
can only give the relative BE. Though there are several methods to calculate the entropy  term26,27, these methods 
are time-consuming and the magnitude of the standard error is high. Hence, the binding energy results presented 
in the study are considered as relative binding energy values. More detail regarding the MM/PBSA methods can 
be found in the supplementary material.

Three dimensional structure–activity relationships (3D-QSAR). The compounds were sketched 
based on the binding conformation of the most active compound 42 inside JAK1 as observed in the MD simu-
lation. The compounds were prepared by adding Gasteiger charges as partial charges and then minimizing the 
substituents in Sybyl X 2.1 (Tripos Inc., St. Louis, MO, USA). Using the distill-rigid alignment method, the 
compounds were superimposed on the common substructure, using the most active compound as the template.

3D-QSAR models were developed to analyze the relationship between the physicochemical descriptor of the 
compounds and their biological activity values  (pIC50). The dataset was split into test sets and training set for 
training and validating the models using a stratified random sampling approach. As a first step, the compounds 
were split into various mutually exclusive and non-overlapping groups (or strata) based on the  pIC50 values. 
Based on a random draw, compounds belonging to each group were split into a training set and test set in a 2:1 
ratio. The final training set consists of the training sets compounds from all the groups. Similarly, the final test 
set consists of the test set compounds from all the groups. This process of drawing test set and training set was 
repeated five times resulting in five sets of the test set and training set pairs (Sets 1–5).

Taking the first test set and training set pair (Set 1), Comparative Molecular Field Analysis (CoMFA) 
models were developed for various charge schemes namely Gasteiger, Gasteiger-Hückel, Delre, Pullman, and 
 MMFF9428,29. In CoMFA, the electrostatic and steric descriptors were used as the independent variables and the 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23051  | https://doi.org/10.1038/s41598-021-02364-2

www.nature.com/scientificreports/

Table 1.  (continued)
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activity values of the compounds were used as the dependent variables. The models were validated using vari-
ous internal and external validation techniques. The non-validated Leave-One-Out (LOO) method was used to 
estimate the predictive ability of the models.

Table 1.  Dataset of pyrrolopyridine based JAK1 inhibitors. *Test set compounds.
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The bootstrapping method was used to evaluate the robustness of the model. The sensitivity of the model to 
chance correlation was tested using the progressive scrambling method (progressive scrambling  Q2). To evaluate 
the predictive ability of the models against the external dataset, the r2pred , Q2

F1, Q
2
F2,Q

2
F3, Concordance Correlation 

Coefficient (CCC), mean absolute error (MAE), and r2m validations were  performed30. A more detailed description 
of the validation techniques is provided in the Supplementary Material. Comparative Molecular Similarity Index 
Analysis (CoMSIA) models were also developed based on various combinations of electrostatic, steric, H-bond 
donor, and acceptor and hydrophobic descriptors, and the models were tested using the various validation 
techniques. Finally, based on statistical results, the models with the highest q2, r2, and r2pred values were selected 
for further contour map study. We have also analyzed the applicability domain (AD) of the 3D-QSAR models to 
assess their applicability and reliability in predicting the activity values of the test set compounds. The williams 
plots showing the standard residuals and the leverage are provided below. In William’s plot, the standard residu-
als value within the range of + 3 and − 3 are considered acceptable and the leverage value less than h* = 3(p + 1)/n 
where, p is the number of descriptors and n is the number of compounds.

Results
Molecular docking. The binding of the most active compound 42 with JAK1 was carried out to study the 
protein–ligand interaction. The Lamarckian Genetic algorithm in Autodock 4.2 was used to generate a maximum 
of 100 ligand conformations. Analysis of the result was carried out by clustering the conformations of the ligand-
based on root mean square deviation (RMSD) and a representative structure was selected based on nonbonded 
interactions and binding affinity score. The docking procedure was validated by docking the ligand (Tofacitinib) 
which was reported in a complex with JAK1 (PDB 3EYG) from an X-ray crystallography  experiment16. The 
docked pose of Tofacitinib overlapped closely with that of the crystalized structure. The overlap between the 
docked pose and crystal pose of Tofacitinib is shown in Fig. S1a (Supplementary Material). The compound 42 
was bound to JAK1 with a binding affinity score of − 10.2 kcal/mol. The interactions between compound 42 and 
JAK1 are shown in Fig. S1b (Supplementary Materials). The pyrrolopyridine moiety of the compound formed 
H-bond interactions with F958 and L959 at the hinge between the N-lobe and the C-lobe domains. The methyl 
group of the methyl piperidine moiety extended out of the binding pocket and was exposed to the bulk solvent. 
The chlorobenzyl moiety folded inward into the hydrophobic pocket formed by the residues from the activation 
loop, αC-helix, and the P-loop. This folding of the chlorobenzyl moiety towards the hydrophobic pocket was 
reminiscent of the conformation observed in the crystallographic structure of the selective JAK1 inhibitor LKT 
(PDB ID 6SM8) reported by Su et al.31. The binding conformation of compound 42 selected from the docking 
analysis was prepared for further molecular dynamics simulation study.

MD simulation and binding energy (BE) calculation. Molecular dynamics simulation was performed 
to explore the binding conformations and to analyze the stability of the inhibitors in binding with JAK1. The 
MD simulation of the most active compound 42 was carried out for 100 ns in explicit solvent. To analyze the 
binding interactions, an average protein–ligand complex structure was extracted from the last 2 ns of the simu-
lation trajectory. The binding interactions between compound 42 and JAK1 are shown in Fig. 1a. Root mean 
square deviation (RMSD) analysis suggested that the system converged at around 25 ns into the simulation. The 
RMSD of the ligand with respect to the conformations at the initial 1st ns as well as the 25th ns, 50th ns, 75th 
ns, and 100th ns of the trajectory are shown in Fig. 1b. During the simulation, the pyrrolopyridine of compound 
42 formed H-bond interactions with F958 and L959 at the hinge region of JAK1. The chlorobenzyl end of the 

Figure 1.  H-bond interactions of the most active compound (42) and JAK1 from the MD simulation. (a) 
Binding interactions between compound 42 (green) and JAK1 (grey). H-bond interactions are represented by 
brown dotted lines and residues forming H-bond interactions are shown in grey stick representations. Residues 
that formed hydrophobic interactions are shown in orange color lines. (b) Root mean square deviation (RMSD) 
of the ligand (compound 42) with respect to various snapshots (1 ns, 25 ns, 50 ns, 75 ns, and 100 ns) of the 
trajectory as references.
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compound was enclosed within the hydrophobic pocket under the P-loop and formed interactions with hydro-
phobic residues such as F886 and V889. This conformation of compound 42 was similar to the conformation 
of the selective JAK1 inhibitor (LKT) reported from the X-ray crystallography experiment by Su et al.31. The 
carboxamide moiety from pyrrolopyridine extended towards the bulk solved. Hydrophobic interactions were 
also observed between the inhibitor and the hydrophobic residues L881, F958, and L1010.

The BE of compound 42 was evaluated to estimate its binding affinity with JAK1 using the MM-PBSA method. 
Fifty snapshots of the protein–ligand complex were collected from the last 5 ns of the MD simulation trajectory and 
were used for the BE calculation. The most active compound was bound to JAK1 with a BE value of − 113.9 kJ/mol. 
The result of the BE calculation is shown in Table 4. The contribution of the Van der Waals, electrostatic, polar, and 
non-polar energy terms were  − 192.9 kJ/mol, − 42.7 kJ/mol, − 141 kJ/mol, and − 19.3 kJ/mol, respectively. Energy con-
tribution analysis for individual residues showed that the residues V889, L1010, L881, F958, L959, G882, E883, A906, 
M956, K979 were among the highest contributors to the total BE with each residue contributing more than − 2 kJ/mol. 
The non-bonded energy term, polar energy term, and total binding energy of the binding site residues that made vital 
interactions with the most active compound 42 are shown in Fig. 2. The non-bonded energy term which includes both 
hydrophobic and electrostatic interactions was represented in blue color. Polar solvation energy was represented in grey 
color and the total binding energy was shown in red color. The Van der Waal energy term made the biggest contribu-
tion to the binding of the inhibitor. This observation from the BE calculation corroborates the interaction study which 
showed that compound 42 formed only two polar interactions while forming multiple hydrophobic interactions with 
JAK1. These results suggested that hydrophobic interaction could play an important role in the binding of the JAK1 
inhibitor. For reference, we also evaluated the BE of Tofacitinib. Tofacitinib is an FDA-approved, pan JAK inhibitor 
that has been comprehensively studied and with structural data available in protein repository (PDB ID 3EYG). In the 
binding energy evaluation, Tofacitinib showed a high BE value of − 126 kJ/mol suggesting a tight binding with JAK1. 
To verify the simulation results of the compound 42-JAK1 interaction, the simulation of compound 42 was repeated 
and the results were compared with the results from the first simulation. In the second simulation of compound 42 
(simulation 2), the total BE was − 110 kJ/mol. The analysis showed that the binding conformation of compound 42 was 
similar to that of the conformation observed in simulation 1. The comparison between the binding poses of compound 
42 from the first and the second simulation is shown in Fig. S2a (Supplementary Material). The binding interaction of 
Tofacitinib with JAK1 from the MD simulation is shown in Fig. S2b (supplementary material).

3D-QSAR. For the 3D-QSAR study, the dataset compounds were sketched and minimized in Sybyl X 2.1 
(Tripos, St Louis, MO, USA). The alignment of the compounds was performed by superimposing the common 
substructure of the compounds with that of the structure of compound 42 from the MD study. The alignment 
of the compounds is shown in Fig. 3a. To develop a predictive model and validate its predictive ability, we used 
a stratified random sampling approach to split the dataset into a test set (15 compounds) and training set (35 
compounds) following a 1:2 ratio. By repeating the random sampling, we generated five different sets of the 
training set and test set pairs (Sets 1–5). For each of the five sets, five CoMFA models were developed using the 
five charge schemes namely Gasteiger, Gasteiger-Hückel, Delre, Pullman, and MMFF94. The statistical results of 
the CoMFA models for the different charge schemes are shown in Table S1 (Supplementary material). Finally, 
a final model was selected based on high internal and external predictive ability and a low optimal number of 
components (ONC). The CoMFA model based on the Gasteiger charge scheme showed relatively better statisti-
cal values than the models based on other charge schemes. The selected CoMFA model showed internal predic-
tive q2 values of 0.62 at an optimal number of component values of 3 and a non-validated r2 value of 0.82. When 
evaluated against the test set compounds, the model showed an r2pred value of 0.86, suggesting that the model can 
predict the activity values reasonably. The statistical results of the CoMFA models are shown in Table 2.

We also developed the CoMSIA models based on the training set and charge scheme used for the CoMFA 
model development. Several models were derived for each combination of the CoMSIA descriptors and the sta-
tistical results were evaluated (Table S2). The CoMSIA model based on hydrophobic descriptor with q2, r2, and 
ONC values of 0.52, 0.82, and 3 was selected since this model gave the highest external predictive value of 0.69. 
The statistical results of the CoMSIA models are shown in Table 2. The scatter plot between the actual and the 

Figure 2.  Residues that showed a high contribution to the total binding energy during the MD simulation of 
compound 42-JAK1 interaction. The energy values of non-bonded, polar, and total binding energy are shown in 
blue, grey, and red color respectively. Energy values are given in kJ/mol.
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predicted activity values from the CoMFA and CoMSIA models is shown in Fig. S3 (Supplementary Material). 
The analysis showed that the CoMFA and CoMSIA models were able to predict the activities of inhibitors with 
reasonable accuracy.

The CoMFA model showed a Q2 value of 0.54 while the CoMSIA model showed a slightly lower value of 0.52 
in progressive scrambling. The predictive ability of the selected CoMFA and CoMSIA models were tested using 
various external validation  techniques1 and the results are provided in Table 2. The CoMFA model showed Q2

F1 , 
Q2
F2 , Q

2
F3 , (CCC ), MAE, and r2m of 0.69, 0.67, 0.68, 0.94, 0.25 and 0.79 respectively. Similarly, The CoMSIA model 

showed Q2
F1 , Q

2
F2 , Q

2
F3 , (CCC ), MAE, and r2m of 0.69, 0.68, 0.69, 0.59, 0.25 and 0.83 respectively. These observations 

suggested that the CoMFA and CoMSIA models have reasonable predictive ability and reliability.
The williams plots for the CoMFA and CoMSIA models are provided in Fig. S6 (Supplementary materials). 

The predictions in both the models showed standard residual values between + 3 and − 3 and leverage values less 

Figure 3.  Alignment and contour maps from the CoMFA and CoMSIA models. (a) Alignment of the 
compounds inside the receptor. (b) Electrostatic contour map. Blue contour represents region favorable for 
electropositive substituents. (c) Steric contour map. Green contour represents a region favorable for bulky 
substituents. (d) Hydrophobic contour. Cyan contour represents regions favorable for hydrophobic substituents 
whereas, magenta color represent region favorable for non-hydrophobic substituents.

Table 2.  Statistical results of the CoMFA and CoMSIA models. q2: cross-validated correlation coefficient; 
ONC: Optimal number of components; SEP: Standard Error of Prediction; r2: non-cross-validated correlation 
coefficient; SEE: Standard Error of Estimation; F value: F-test value; r2; BS-r2: Bootstrapping r2 mean; BS-SD: 
Bootstrapping Standard deviation; r2pred : predictive correlation coefficient; S: Steric; E: Electrostatic; CCC : 
Concordance correlation coefficient; More details on Q2

F1, Q
2
F2,Q

2
F3 , MAE and r2m are given in Supplementary 

Material.

Parameters CoMFA CoMSIA

q2 0.62 0.52

ONC 3 3

SEP 0.45 0.52

r2 0.82 0.74

SEE 0.66 0.53

F value 48.39 30.08

BS r2 0.84 0.86

BS SD 0.22 0.30

Progressive scrambling (Q2) 0.54 0.52

r2pred 0.70 0.69

Q2
F1 0.69 0.69

Q2
F2 0.67 0.68

Q2
F3 0.68 0.69

CCC 0.94 0.59

MAE 0.25 0.25

r2m 0.79 0.83

Influence of different fields (%)

S 43 –

E 57 –

H – 100



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23051  | https://doi.org/10.1038/s41598-021-02364-2

www.nature.com/scientificreports/

than the threshold value of 0.25. These results indicated that the test set predictions are within the AD of the 
CoMFA and CoMSIA models. Hence, these predictions may be considered reliable.

Contour map analysis. The contour map analysis of the CoMFA and CoMSIA maps was carried out to 
study the favorable and unfavorable sites for various chemical substitutions. The electrostatic and steric contour 
maps from the CoMFA model and the hydrophobic contour map from the CoMSIA model are shown in Fig. 3. 
Blue contours in the electrostatic map represent regions favorable to positive substitutions. The green contours 
in the steric contour map indicate regions favorable for bulky substitutions. Cyan and magenta color contours in 
the hydrophobic map represent hydrophobic favorable and hydrophilic favorable regions.

Blue contours near the carboxamide and also near the meta-position of the chlorobenzyl suggested that 
electropositive substituents in those positions could enhance the inhibitory activity against JAK1 (Fig. 3b). From 
the analysis, we observed that bulky substitutions at the chlorobenzyl moiety and near the methyl group of the 
methyl piperidine could improve the inhibitory activity against JAK1 (Fig. 3c). Hydrophobic substitutions near 
the chlorobenzyl could enhance the activity against JAK1 whereas non-hydrophobic substituents are favored 
near the carboxamide (Fig. 3d). Taken together, these contour maps provide an overview of the regions favorable 
for various chemical substitutions.

Designing new compounds. Following the contour map analysis, an inhibitor design scheme was devel-
oped as shown in Table 3. Up to 150 compounds were designed by adding substituents based on the design 
scheme. The inhibitory activities of the designed compounds were predicted using the selected CoMFA and 
CoMSIA models and seventeen compounds that showed a higher predicted activity value than the most active 
compound (42) in the dataset were further analyzed. The structure and the predicted activity values of the sev-
enteen designed compounds are given in Table 3.

The interaction study from MD simulation and the contour maps were co-analyzed to explore the structural 
features necessary to improve the activity values against JAK1. Some of the compound fragments which were 
used as substituents were collected from published literature while some were taken from the in-house compound 
library. We performed the designing of new compounds by building upon the most active compound 42 as shown 
in Table 3. As a first step, we substituted the  R1 and  R2 with electropositive and bulky substituents while keeping 
the Cl substituent at the  R3 position unchanged. The 3D-QSAR prediction showed that the electropositive and 
bulky substituents at  R1 and  R2 improved the activity values as observed in compounds D01 and D05. Next, we 
also examined the  R3 position by adding bulky and hydrophobic substituents with three or four carbon atoms. 
The prediction showed that the substitution of bulky and hydrophobic substituents increased the activity values as 
seen in D129, D135, D62, etc. When we substituted the  R3 position with 3-NH2 or 4-NH2, we found the activity 
values of the compounds increased considerably higher than the compounds with methyl or ethyl groups as seen 
in compounds D108, D128, and D129. In D70 and D72, we have also substituted the Cl atom of the compound 
D01 and D05 with other heavy atoms such as N, and F atoms which increased the activity values. We also sub-
stituted the  R3 position with aromatic rings such as five and six-membered rings, which showed a decrease in 
the activity value. Similarly, aromatic substituents in  R1 and  R2 positions also lead to a decrease in activity values. 
Hence we deduce that, though bulky substituents are favorable at  R1,  R2, and  R3, very large substituents are not 
favorable. The SMILES structures of the 150 compounds were provided in Table S5 (supplementary material).

Molecular dynamics simulation and BE calculation of the seventeen designed compounds were carried out 
to study the binding interactions and the binding affinity with JAK1. The binding energy values are shown in 
Table 4. The binding interactions of compounds D01, D07, D64, D108, D127, and D135 showed higher binding 
affinity than the reference compound Tofacitinib (− 126 kJ/mol) and are further analyzed and shown in Fig. 4. 
Of the selected design compounds, compound D127 showed the highest binding affinity with a binding energy 
value of − 137 kJ/mol (Fig. 4e).

The compound D01 (Fig. 4a), like compound 42, has a chlorine atom at the benzyl moiety and formed a con-
formation similar to that of compound 42. The pyrrolopyridine moiety formed H-bond interactions with E957 
and L959. The tert-butyl moiety from the piperidine extended out into the bulk solvent while the chlorobenzyl 
moiety folded into the hydrophobic pocket. The compound D07 (Fig. 4b), formed H-bond with the E957 and 
L959 at the hinge region while, the benzyl moiety extended into the hydrophobic pocket, similar to compound 
42. Compound D07 which has a methyl group at the benzyl moiety also exhibited a similar binding pattern with 
42 and folded in-ward into the hydrophobic pocket. Compound D64 also formed H-bond interactions with 
the hinge at E957 and L959. However, the dimethyl benzyl moiety extended out of the hydrophobic pocket and 
formed non-bonded interactions with K956, R1007, and N1008 (Fig. 4c). The compound D108, which possessed 
an amine group at the benzyl moiety, also folded toward the hydrophobic pocket. D108 formed three H-bond 
interactions at the hinge with E957 and L959. The amine group at the benzyl formed H-bond interaction with 
N1008 at the activation loop and D1021 at the DFG motif. The methyl group at the piperidine extended up and 
out towards the glycine-rich loop (Fig. 4d). Interaction studies of the D127-JAK1 interaction in Fig. 4e showed 
that the pyrrolopyridine of D127, like compound 42, was able to form H-bond interaction at the hinge with 
E957 and L959. However, the diethyl benzyl moiety of compound D127 extended outward of the hydrophobic 
pocket and formed non-bonded interactions with E966 and K965 of the αD-helix and R007 of the activation 
loop. The H-bond interactions with the hinge residues were also observed in all the designed compounds. The 
compound D135 which showed the third-highest binding affinity with a BE value of − 126 kJ/mol showed an 
additional H-bond interaction with Leu959 at the hinge (Fig. 4f). In addition to the non-bonded interactions at 
the αD-helix, the compound D135 also interacted with the R1007 via a cation-pi interaction. The energy values 
of the individual residues that make significant contributions are given in Table S4 (Supplementary Materials). 
The interactions of the compounds D05, D16, D62, D63, D66, D70, D72, D118, D126, D128, and D129 showed 
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Table 3.  Structure of the designed compounds along with the predicted  pIC50 values.
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Table 4.  The energy contribution of the various energetic terms (van der Waals energy, electrostatic energy, 
polar solvation energy, and non-polar solvation energy/SASA) to the total binding energy. The energy values 
are given in kJ/mol.

Compounds
Van der Waals (kJ/
mol)

Electrostatics (kJ/
mol)

Polar solvation (kJ/
mol) SASA (kJ/mol)

Total binding 
energy (kJ/mol)

Compound 42 (most 
active compound)  − 192.9  − 42.7 141.0  − 19.3  − 113.9

Tofacitinib  − 205  − 74.2 170.5  − 17.3  − 126

Designed compounds

Compound D01  − 230.4  − 51.1 177.4  − 23.6  − 127.2

Compound D05  − 210.8  − 40.9 150.8  − 21.3  − 122.2

Compound D07  − 225.2  − 40.9 162.2  − 22.0  − 125.9

Compound D16  − 217.3  − 47.8 162.5  − 21.0  − 124.2

Compound D62  − 184.5  − 46.3 135.1  − 20.0  − 115.7

Compound D63  − 203.5  − 45.7 151.3  − 20.4  − 118.2

Compound D64  − 202.2  − 50.3 145.4  − 19.5  − 126.6

Compound D66  − 209.2  − 78.0 193.9  − 22.3  − 115.6

Compound D70  − 232.7  − 55.9 188.0  − 23.3  − 123.8

Compound D72  − 198.7  − 53.5 148.9  − 19.2  − 122.5

Compound D108  − 214.0  − 69.8 175.7  − 21.3  − 129.4

Compound D118  − 201.6  − 38.5 147.2  − 22.1  − 115.0

Compound D126  − 205.8  − 54.8 160.4  − 20.8  − 120.9

Compound D127  − 200.2  − 43.1 127.0  − 20.9  − 137.2

Compound D128  − 224.0  − 55.4 185.7  − 23.8  − 117.5

Compound D129  − 206.1  − 51.3 166.3  − 21.9  − 113.1

Compound D135  − 218.1  − 50.9 164.2  − 21.5  − 126.3

Figure 4.  H-bond interactions of the designed compounds with JAK1 from the MD simulation. (a) D01-JAK1 
interactions, (b) D07-JAK1 interactions, (c) D64-JAK1 interactions, (d) D108-JAK1 interactions, (e) D127-JAK1 
interactions, (f) D135-JAK1 interactions. The inhibitors are shown in green color stick representations. H-bond 
interactions are represented by brown dotted lines and residues forming H-bonds are shown in grey stick 
representations. Residues that formed hydrophobic interactions are shown in orange color lines.
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binding energy values lower than − 113 kJ/mol are given in Fig. S4 (Supplementary Materials). The ligand and 
protein RMSD for all the compounds are given in Fig. S5 (Supplementary Materials).

Discussion
The dataset compounds shared a common substructure consisting of a fused pyrrolopyridine and a benzyl moiety 
which are linked together by either piperidine, a pyrrolidine, an azabicyclo[3.2.1]octane, or an azepane ring. The 
pyrrolopyridine moiety, as seen in the most active compound 42, was anchored at the hinge while the piperidine 
was bound between the activation loop and glycine-rich loop through hydrophobic interactions. The benzyl end 
(chlorobenzyl in compound 42) of the compound took an inward turn and occupied the hydrophobic pocket 
formed by residues from the P-loop, the αC-helix, and the activation loop.

The conformational analysis of compounds D01, D07, D64, D108, D127, and D135 showed that these designed 
compounds were able to bind to the hinge via H-bond interactions with the E957 and L959. This interaction with 
the hinge is considered to be important for anchoring the inhibitors inside the  kinase32,33. However, the benzyl 
end of the designed compounds adopted either a fold-in conformation, or a fold-out conformation. The designed 
compounds D01 and D05 adopted the inward fold-in conformation in which the benzyl moiety occupied the 
hydrophobic pocket, similar to the observation in compound 42 (most active compound). On the other hand, the 
compounds D64, D127, and D135 adopted the fold-out conformation and extended the substituted benzyl end 
toward the bulk solvent. This fold-out conformation is reminiscent of the conformation of the selective inhibitor 
EYQ –JAK1 interaction (PDB ID 6GGH). This conformation contradicts the observation made in compound 
42-JAK1 interaction (Fig. 1a) in which the chlorobenzyl folded into the hydrophobic pocket. The reason behind 
the difference in the conformation of the designed compounds could not be verified. However, further analysis 
of compounds D64, D108, and D135 showed that all these compounds possessed bulky substituents at the benzyl 
ring and adopted the fold-out conformation. The bulky substituents at the benzyl may cause steric clash at the 
hydrophobic pocket in a fold-in conformation, while the fold-out conformation may allow non-bonded interac-
tions with residues from the αD-helix and the activation loop. These observations suggested that compounds 
with small substituents tend to occupy the hydrophobic pocket whereas the compounds with bulky substituents 
tend to extend outward. Earlier computational studies by our group and also by other experimental researchers 
have shown that, while the interactions with the hinge of kinases are stable, the interactions at the hydrophobic 
pocket are more  flexible21,34–36. This flexibility allows for variation in inhibitor binding and is considered to be 
a mechanism for selective inhibition. The high binding affinity with JAK1 and their unique binding conforma-
tion make these compounds interesting potential candidates for JAK1 inhibition. Further assessment through 
experimental studies is essential to verify the potential of the designed compounds.

Taken together, the protein–ligand interaction studies suggested that these pyrrolopyridine based JAK1 inhibi-
tors can adopt two distinct conformations. The structure–activity analysis revealed vital structural properties to 
improve inhibitory activity against JAK1. At least six of the compounds showed a higher binding affinity against 
JAK1 as compared to the approved JAK1 inhibitor Tofacitinib. The outcome of this study could provide vital 
information for the development of more potent JAK1 inhibitors.

Data availability
All relevant data are contained within the manuscript and the supplementary material. Additional raw data will 
be available upon request.
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