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USP30 sets a trigger threshold for PINK1–PARKIN
amplification of mitochondrial ubiquitylation
Emma V Rusilowicz-Jones1,* , Jane Jardine1,* , Andreas Kallinos1 , Adan Pinto-Fernandez2, Franziska Guenther3 ,
Mariacarmela Giurrandino3, Francesco G Barone1 , Katy McCarron1, Christopher J Burke4, Alejandro Murad4,
Aitor Martinez1 , Elena Marcassa1, Malte Gersch5,6, Alexandre J Buckmelter4, Katherine J Kayser-Bricker4,
Frederic Lamoliatte10, Akshada Gajbhiye10, Simon Davis2 , Hannah C Scott2, Emma Murphy3, Katherine England3,
Heather Mortiboys7 , David Komander8,9, Matthias Trost10, Benedikt M Kessler2, Stephanos Ioannidis4,
Michael K Ahlijanian4, Sylvie Urbé1 , Michael J Clague1

The mitochondrial deubiquitylase USP30 negatively regulates the
selective autophagy of damaged mitochondria. We present the
characterisation of an N-cyano pyrrolidine compound, FT3967385,
with high selectivity for USP30. We demonstrate that ubiq-
uitylation of TOM20, a component of the outer mitochondrial
membrane import machinery, represents a robust biomarker for
both USP30 loss and inhibition. A proteomics analysis, on a
SHSY5Y neuroblastoma cell line model, directly compares the
effects of genetic loss of USP30 with chemical inhibition. We have
thereby identified a subset of ubiquitylation events consequent
to mitochondrial depolarisation that are USP30 sensitive. Within
responsive elements of the ubiquitylome, several components of
the outer mitochondrial membrane transport (TOM) complex are
prominent. Thus, our data support a model whereby USP30 can
regulate the availability of ubiquitin at the specific site of mi-
tochondrial PINK1 accumulation following membrane depolar-
isation. USP30 deubiquitylation of TOM complex components
dampens the trigger for the Parkin-dependent amplification of
mitochondrial ubiquitylation leading to mitophagy. Accordingly,
PINK1 generation of phospho-Ser65 ubiquitin proceeds more
rapidly in cells either lacking USP30 or subject to USP30
inhibition.
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Introduction

Damaged mitochondria are removed from the cell by a process of
selective autophagy termed mitophagy. Defects in mitochondrial
turnover have been linked to a number of neurodegenerative
conditions, including Parkinson’s disease (PD), Alzheimer’s disease,
andmotor neuron disease (Sorrentino et al, 2017; Fritsch et al, 2019).
This process is best understood in the context of PD, for which loss
of function mutations in the mitophagy promoting genes PINK1 and
PRKN (coding for the Parkin protein) are evident (Pickrell & Youle,
2015; Bingol & Sheng, 2016). Mitochondrial depolarisation leads to
the accumulation of the PINK1 kinase at the mitochondrial surface,
which then phosphorylates available ubiquitin moieties at Ser65
(Kane et al, 2014; Koyano et al, 2014; Ordureau et al, 2014;
Kazlauskaite et al, 2014b; Wauer et al, 2015b). Phospho-Ser65
ubiquitin (pUb) recruits the ubiquitin E3 ligase Parkin to mito-
chondria, where it is fully activated by direct PINK1-dependent
phosphorylation at Ser65 of its ubiquitin-like (UBL) domain (Jin
& Youle, 2013; Kazlauskaite et al, 2014a; Wauer et al, 2015a; Gladkova
et al, 2018). This triggers a feed-forward mechanism that coats
mitochondria with ubiquitin, leading to selective engulfment by
autophagosomal membranes (Harper et al, 2018; Pickles et al, 2018).

The deubiquitylase (DUB) family of enzymes plays a role in most
ubiquitin-dependent processes, by promoting ubiquitin flux or

1Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK 2Target Discovery Institute, Nuffield
Department of Medicine, University of Oxford, Oxford, UK 3Alzheimer’s Research UK, Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of
Medicine, University of Oxford, Oxford, UK 4FORMA Therapeutics, Watertown, MA, USA 5Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology,
Dortmund, Germany 6Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany 7Sheffield Institute for Translational
Neuroscience (SITraN), University of Sheffield, Sheffield, UK 8Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
9Department of Medical Biology, University of Melbourne, Melbourne, Australia 10Laboratory for Biological Mass Spectrometry, Newcastle University Biosciences Institute,
Faculty of Medical Sciences, University of Newcastle, Newcastle, UK

Correspondence: urbe@liv.ac.uk; clague@liv.ac.uk
Christopher J Burke’s present address is Yumanity Therapeutics–Discovery Biology, Cambridge, MA, USA
Alejandro Murad’s present address is Skyhawk Therapeutics, Neurobiology, Waltham, MA, USA
Katherine J Kayser-Bricker’s present address is Halda Therapeutics, Branford, CT, USA
Alexandre J Buckmelter’s present address is Morphic Therapeutic, Waltham, MA, USA
Stephanos Ioannidis’s present address is H3 Biomedicine, Cambridge, MA, USA
Michael K Ahlijanian’s present address is Pinteon Therapeutics, Newton, MA, USA
*Emma V Rusilowicz-Jones and Jane Jardine contributed equally to this work

© 2020 Rusilowicz-Jones et al. https://doi.org/10.26508/lsa.202000768 vol 3 | no 8 | e202000768 1 of 14

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.202000768&domain=pdf
https://orcid.org/0000-0001-7496-3318
https://orcid.org/0000-0001-7496-3318
https://orcid.org/0000-0002-7646-9636
https://orcid.org/0000-0002-7646-9636
https://orcid.org/0000-0001-8771-963X
https://orcid.org/0000-0001-8771-963X
https://orcid.org/0000-0002-7920-7877
https://orcid.org/0000-0002-7920-7877
https://orcid.org/0000-0003-4382-9313
https://orcid.org/0000-0003-4382-9313
https://orcid.org/0000-0003-1648-9448
https://orcid.org/0000-0003-1648-9448
https://orcid.org/0000-0001-7840-2411
https://orcid.org/0000-0001-7840-2411
https://orcid.org/0000-0001-6439-0579
https://orcid.org/0000-0001-6439-0579
https://orcid.org/0000-0003-4735-9814
https://orcid.org/0000-0003-4735-9814
https://orcid.org/0000-0003-3355-9479
https://orcid.org/0000-0003-3355-9479
https://doi.org/10.26508/lsa.202000768
mailto:urbe@liv.ac.uk
mailto:clague@liv.ac.uk
https://doi.org/10.26508/lsa.202000768


suppressing ubiquitylation of specific substrates (Clague et al, 2013,
2019). USP30 is one of only two DUBs that possess a trans-
membrane domain. Its localisation is restricted to the outer mi-
tochondrial membrane (OMM) and to peroxisomes (Nakamura &
Hirose, 2008; Urbe et al, 2012; Marcassa et al, 2018; Riccio et al, 2019).
USP30 can limit the Parkin-dependent ubiquitylation of selected
substrates and depolarisation-induced mitophagy in cell systems
that have been engineered to overexpress Parkin (Bingol et al, 2014;
Cunningham et al, 2015; Liang et al, 2015; Hoshino et al, 2019). We
have recently shown that it can also suppress a PINK1-dependent
component of basal mitophagy, even in cells that do not express
Parkin (Marcassa et al, 2018). Thus, USP30 may represent an ac-
tionable drug target relevant to PD progression and other pa-
thologies to which defective mitophagy can contribute (Bravo-San
Pedro et al, 2017; Tsubouchi et al, 2018; Miller & Muqit, 2019). One
attractive feature of USP30 as a drug target in this context is that its
loss is well tolerated across a wide range of cell lines (Meyers et al,
2017).

The ubiquitin-specific protease (USP) DUB family are cysteine
proteases and comprise around 60 members in humans (Clague
et al, 2019). Early academic efforts to obtain specific small molecule
inhibitors were only partially successful (Ritorto et al, 2014). More
recently, industry-led efforts have generated some highly specific
inhibitors, exemplified by compounds targeting USP7, an enzyme
linked to the p53/MDM2 signalling axis (Kategaya et al, 2017;
Lamberto et al, 2017; Turnbull et al, 2017; Gavory et al, 2018; Schauer
et al, 2019). Some N-cyano pyrrolidines, which resemble known
cathepsin C covalent inhibitors, have been reported in the patent
literature to be dual inhibitors of UCHL1 and USP30 (Laine et al,
2011). High-throughput screening has also identified a racemic
phenylalanine derivative as a USP30 inhibitor (Kluge et al, 2018).
However, the specificity and biological activity of this compound
has so far been only characterised superficially.

Here, we introduce FT3967385 (hereafter FT385), a modified
N-cyano pyrrolidine tool compound USP30 inhibitor. We carefully
correlate its effects upon the proteome and ubiquitylome of
neuroblastoma SH5YSY cells, expressing endogenous Parkin. We
also show that this compound can recapitulate effects of USP30
deletion on mitophagy and regulate the ubiquitylation status of
translocase of the outer mitochondrial membrane (TOM) complex
components. The TOM complex functions as a common entry portal
for mitochondrial precursor proteins (Wiedemann & Pfanner, 2017).
We propose that associated ubiquitin may provide nucleating sites
at which PINK1 phosphorylation sets in train a feed-forward loop of
further Parkin-mediated ubiquitylation (Marcassa et al, 2018). Ac-
cordingly, pUb generation after mitochondrial depolarisation is
enhanced by both USP30 deletion and by inhibitor treatment.

Results

We developed a tool compound inhibitor (FT385) for investigation
of USP30 biology (Fig 1A). It shows a calculated IC50 of ~1 nM in vitro
using purified USP30, together with ubiquitin–rhodamine as a
fluorogenic substrate (Fig 1B and E). Bio-layer interferometry ex-
periments show binding behaviour that is consistent with covalent

modification of USP30 (Fig 1C) as indicated by other studies of cyano
pyrrolidine inhibitors of USPs (Bashore et al, 2020). Progress curves
for ubiquitin–rhodamine processing by USP30 were used to de-
termine KI and kinact (Fig 1D and E). To test for selectivity of the
inhibitor within the USP family of enzymes, we used the Ubiquigent
DUB profiler screen, which tests inhibitory activity against a broad
panel of USP enzymes. At the indicated concentrations (up to 200
nM), the inhibitor was highly selective for USP30 (Fig 1F). Only one
other family member, the plasma membrane–associated USP6,
showed a significant degree of inhibition (Urbe et al, 2012). This
particular deubiquitylase shows a highly restricted expression
profile (Barretina et al, 2012). It is not found in any of our deep
proteome data sets nor was it identified in two recent studies that
used state-of-the-art enrichment with active site probes to gen-
erate an inventory of cellular DUBs (Hewings et al, 2018; Pinto-
Fernandez et al, 2019).

We used the competition between FT385 and Ub-propargylamide
(Ub-PA), which covalently binds to the USP30 active site, to assess
target engagement (Ekkebus et al, 2014). Binding of the probe to a
DUB leads to an up-shift in apparent molecular weight on SDS–PAGE
gels (Fig 2). If a drug is present that occupies or otherwise occludes
this site, probe modification is inhibited and the protein mass is
down-shifted accordingly. Our results demonstrate target engage-
ment and allow us to determine a suitable concentration range for
further experiments (Fig 2). In SHSY5Y neuroblastoma cells, effective
competition of drug towards added probe is seen at concentrations
>100 nM when added to cell lysates (Fig 2A) or pre-incubated with
cells prior to lysis (Fig 2B).

To be able to compare compound activity to USP30 loss, we used
CRISPR/Cas9 to generate YFP-Parkin-RPE1 (retinal pigment epi-
thelium) and SHSY5Y (neuroblastoma) USP30 KO cells (Fig S1). We
have previously shown that USP30 physically interacts with TOM20,
a component of the OMM transport complex that recognises mi-
tochondrial targeting sequences (Liang et al, 2015; Wiedemann &
Pfanner, 2017). USP30 represses both depolarisation-induced
mitophagy and the specific ubiquitylation of TOM20 in cells
overexpressing Parkin (Bingol et al, 2014; Cunningham et al, 2015;
Liang et al, 2015; Gersch et al, 2017). Application of FT385 to RPE1 cells
overexpressing YFP–Parkin results in enhanced ubiquitylation and
apparent loss of TOM20 without affecting PINK1 protein levels (Fig
3A). Enhancement of TOM20 ubiquitylation by FT385 under depo-
larising conditions is more clearly shown in Fig 3B. In this exper-
iment, a shorter depolarisation time (1 h) has been used, at which
there is minimal TOM20 loss tomitophagy or other pathways. USP30
KO and inhibitor-treated cells show similar elevation of ubiquity-
lated TOM20, whereas no further enhancement is achieved by
inhibitor treatment of KO cells (Fig 3B). Thus, the TOM20 ubiq-
uitylation response depends on USP30 catalytic activity and rep-
resents an on-target effect of the drug.

We confirmed that both USP30 deletion and inhibition can also
lead to the accumulation of ubiquitylated TOM20 in SHSY5Y cells,
both in whole cell lysates and in crude mitochondrial fractions
(MFs) (Figs 3C and D and S2A–F). Here, we are detecting this
modification without Parkin overexpression. TOM20 is atypical in
the respect that we do not observe USP30-dependent changes to
the ubiquitylation pattern of another mitochondrial Parkin sub-
strate mitofusin 2 (MFN2) (Figs 3A, C, and D and S2A). To determine
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effects of USP30 inhibition on basal mitophagy, we used SHSY5Y
cells expressing a tandem mCherry–GFP tag attached to the OMM
localisation signal of the protein FIS1 (mitoQC) (Allen et al, 2013). A
clear increase in the number of mitolysosomes per cell, indicative
of increased mitophagic flux, is apparent after USP30 inhibition
over a 96 h time period (Fig 3E).

Trypsin digestion of ubiquitylated proteins generates peptides
with a residual diGly motif, which provides a characteristic mass
shift and can be used for enrichment by immunoprecipitation (Peng
et al, 2003). Several studies have used this approach to define
Parkin substrates through proteomic analysis, after mitochondrial
depolarisation in cell lines overexpressing Parkin (Sarraf et al, 2013;
Ordureau et al, 2014, 2018). To search for potential substrates and/
or biomarkers beyond TOM20, we decided to take an unbiased view

of USP30 control of the cellular proteome and ubiquitylome in
SHSY5Y cells, which endogenously express Parkin. Our experi-
mental design, using triplexed combinations of SILAC labels,
allowed quantitative comparison of both USP30 inhibitor treated
(200 nM) and USP30 KO relative to parental untreated cells in basal
conditions (proteome) or following mitochondrial depolarisation
(proteome + ubiquitylome) (Fig 4A). We quantitated 6,423 proteins
and 9,536 diGly peptides (which indicate specific sites of ubiq-
uitylation), derived from 2,915 proteins (Table S1). We had hoped
that the proteome might provide a biomarker that could be used in
preclinical models for testing drug efficacy. Despite obtaining deep
proteome coverage, we identified few proteins that responded to
both genetic deletion and inhibition of USP30 (24 h) in a consis-
tent manner across experiments. No impact of USP30 on total

Figure 1. FT3967385 is a selective covalent USP30
inhibitor.
(A) Chemical structure of FT3967385 (FT385).
(B) Concentration-dependent inhibition of recombinant
USP30 activity using ubiquitin–rhodamine as a
substrate. (C) Bio-layer interferometry traces showing
no significant off-rate at indicated concentrations. Red
line indicates removal of the inhibitor after 180 s.
(D) Progress curves characteristic of a covalent inhibitor
(0–6.67 μM), these are fitted to obtain KI and kinact.
(E) Data table of inhibitory properties. (F) DUB specificity
screen (DUB profiler; Ubiquigent) with 2, 20, and 200 nM
FT385.

USP30 sets a mitophagy trigger Rusilowicz-Jones et al. https://doi.org/10.26508/lsa.202000768 vol 3 | no 8 | e202000768 3 of 14

https://doi.org/10.26508/lsa.202000768


mitochondrial or peroxisomal mass after 24 h depolarisation is
apparent (Fig 4B). This is in keeping with our observations and
previous findings that in cell lines expressing endogenous levels of
Parkin, the extent of depolarisation-induced mitophagy is low
(Rakovic et al, 2013). In this experiment, we find that USP30 influ-
ences the ubiquitylation status of a small minority of proteins after
depolarisation (Fig 4C). Most prominent among them are members
of the voltage-dependent anion channel (VDAC) family. VDAC1,
VDAC2, and VDAC3 show enhanced ubiquitylation at specific sites in
the absence of USP30 activity without any change at the proteome
level. In general, the effect is stronger in the USP30 KO cells but the
pattern is conserved with USP30 inhibitor treatment (Figs 4C–E and
S3A and B). Some proteins show a response to inhibitor but not to
genetic loss of USP30 (for details see Table S1 and Fig S3C). There is
no obvious connection between these proteins or enrichment for
mitochondrial annotation, and they likely represent off-target ef-
fects. One conclusion from these data is that the global impact of
USP30 activity at both the proteome and ubiquitylome levels is
subtle. This makes pharmacology in both terminally differentiated

cellular models (e.g., primary cultured rodent neurons or human in-
duced pluripotent stem cell-derived neurons) and in vivo experiments
challenging. However, it is consistent with low impact on cell viability
seen in CRISPR screens (Hart et al, 2017) and may in fact be a
desirable feature of a drug target for a neurodegenerative disease.

To obtain information on the early USP30-dependent changes to
the mitochondrial ubiquitylation profile that follow depolarisation,
we compared two USP30 KO SHSY5Y clones with wild-type cells,
using a shorter depolarisation period (4 h, Fig 5A). No systematic
changes in mitochondrial or peroxisomal protein abundance were
observed (Fig 5B). For the ubiquitylome arm of this experiment, we
used crude MFs to increase coverage of specific mitochondrial
components. This is evident in Fig 5C and D, which summarise the
major changes in ubiquitylation we have identified at specific sites
in both sets of experiments (Figs 4A, 5A, S3D and E, and Tables S1
and S2). Multiple responsive VDAC peptides were once again
identified. Strong outliers are found in ganglioside-induced dif-
ferentiation associated protein 1 (GDAP1), an OMM protein, muta-
tions of which are linked to Charcot–Marie–Tooth neuropathy and
mitochondrial dysfunction (Barneo-Munoz et al, 2015) and the
mitochondrial outer membrane protein synaptojanin 2-binding
protein (SYNJ2BP, Fig 5D and E) (Nemoto & De Camilli, 1999). Also
prominent is peptidyl-tRNA hydrolase 2 (PTRH2), a mitochondrial
protein linked to the release of non-ubiquitylated nascent chains
from stalled ribosomal complexes (Kuroha et al, 2018). The im-
proved coverage now also reveals USP30-dependent ubiquitylation
of multiple TOM complex components, including the two translo-
case receptors, TOM20 and TOM70, the TOM40 channel and an
accessory subunit TOM5 within this set of strong outliers.

In healthy mitochondria, PINK1 is imported through the TOM
complex and subsequently cleaved and released for proteasomal
degradation in the cytosol. In depolarised mitochondria, it is no
longer imported and degraded but remains associated with TOM
complex components on the OMM (Lazarou et al, 2012; Okatsu et al,
2013, 2015; Sekine & Youle, 2018). At this point, it becomes trans-
activated and initiates a signalling cascade by phosphorylating
ubiquitin on Ser65 (generating pUb). This accumulation of pUb can
be readily visualised by Western blotting using a specific antibody.
We find that genetic loss of USP30 or USP30 inhibition both lead to a
more rapid accumulation of pUb after mitochondrial depolarisa-
tion, without an evident increase in total PINK1 nor Parkin levels at
mitochondria (Figs 6A–D and S4).

Discussion

Here, we provide a comprehensive analysis of the impact of USP30
on mitochondrial ubiquitylation dynamics after mitochondrial
membrane depolarisation. Our principal analysis is conducted on
cells expressing endogenous levels of Parkin and we directly
compare the effects of genetic loss with a specific inhibitor. This
allows us to clearly attribute molecular signatures to catalytic
activity for the first time. We have extended USP30 linkage to the
mitochondrial import (TOM) complex to now include subunits
beyond TOM20, which has been previously characterised (Liang
et al, 2015; Bingol & Sheng, 2016; Gersch et al, 2017). We also identify

Figure 2. Activity-based ubiquitin probe assay shows that FT385 engages
USP30 in cells at low nanomolar concentrations.
(A, B) SHSY5Y cell homogenates or (B) intact SHSY5Y cells were incubated with
FT385 for 30 min or 4 h, respectively, at the indicated concentrations, and then
incubated with Ub-PA probe for 15 min at 37°C and immunoblotted as shown.
Samples in (A) were analysed using an automated Western blot (WES) system.
Source data are available for this figure.
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a further substrate, SYNJ2BP, whose enhanced ubiquitylation can
be monitored by Western blotting. Based on our studies, FT385
emerges as a promising tool compound for the study of USP30
biology. When used at appropriate concentrations, a high degree of

specificity amongst DUB family members can be achieved. On the
other hand, there are some inevitable liabilities; after inhibitor
treatment, we identified several proteins with enhanced ubiq-
uitylation that are not evident with genetic loss of USP30.

Figure 3. Pharmacological inhibition of USP30 phenocopies
USP30 KO in enhancing basal mitophagy and promoting
ubiquitylation of TOM20 upon depolarisation.
(A) Inhibition of USP30 enhances the ubiquitylation and
degradation of TOM20 in YFP–Parkin overexpressing hTERT-
RPE1 cells in response to mitophagy induction. Cells were
treated for 4 h with DMSO or antimycin A and oligomycin A (AO;
1 μM each) in the absence or presence of 200 nM FT385,
lysed, and analysed by Western blotting. (B) USP30 inhibitor
(FT385) treatment of parental YFP-Parkin overexpressing
hTERT-RPE1 cells phenocopies USP30 deletion (KO1E) by
promoting TOM20 ubiquitylation. In contrast, TOM20
ubiquitylation is unaffected by FT385 in the USP30 KO (KO1E)
cells. Cells were treated for 1 h with or without AO (1 μM) in
the absence or presence of 200 nM FT385, lysed, and samples
analysed by immunoblotting. (C) TOM20 ubiquitylation is
enhanced by USP30 inhibition and deletion in SHSY5Y cells
expressing endogenous Parkin. SHSY5Y with or without FT385
(200 nM) and USP30 CRISPR/Cas9 KO cells (KO11 and KOD, two
distinct sgRNAs) were treated with AO (1 μM each) for 4 h as
indicated. Cells were then lysed and samples analysed by
immunoblotting as shown. Graph shows quantification of
ubiquitylated TOM20 normalised to unmodified TOM20 for
two independent experiments with individual data points
shown in dark and light blue. Error bars indicate the range.
(D) SHSY5Y (mitoQC) andUSP30KOcells (KO11)were treated for
24 h with AO (1 μM each) in the presence or absence of FT385
(100 nM). Cells were subjected to subcellular fractionation
and the mitochondrial fraction (MF) was analysed by
immunoblotting as indicated. Bar chart shows quantification
of ubiquitylated TOM20 normalised to unmodified TOM20.
(A, B, C, D) Black and red arrowheads indicate unmodified
and ubiquitylated TOM20 or MFN2 species, respectively (high exp,
higher exposure). (E) Quantification of the number of
mitolysosomes in SHSY5Y-mitoQC cells, treated with DMSO
or FT385 (200 or 500 nM) for 96 h before imaging. Average ± SD;
n = 3 independent experiments; 80 cells per experiment;
one-way ANOVA with Dunnett’s multiple comparisons test,
**P < 0.01, ****P < 0.0001.
Source data are available for this figure.
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Previous studies have suggested that the overall pattern of
depolarisation-induced ubiquitylation of mitochondria is largely
unchanged following USP30 knock-down, with TOM20 being an
exception (Liang et al, 2015; Gersch et al, 2017). We see enhanced
pUb accumulation in the absence of USP30 activity, despite the
published observations that pUb-modified chains provide a poor
substrate for USP30 (Wauer et al, 2015b; Gersch et al, 2017). How then
might USP30 suppress mitophagy, as previously reported in several
studies (Bingol et al, 2014; Cunningham et al, 2015; Liang et al, 2015;
Marcassa et al, 2018)? We have previously shown that USP30 de-
pletion enhances PINK1-dependent basal mitophagy even in the
absence of Parkin (Marcassa et al, 2018). We and others have
proposed that USP30 may regulate the availability of ubiquitin on
specific trigger proteins that are most readily available for phos-
phorylation by PINK1. In other words, USP30 may determine the
probability that a local accumulation of PINK1 can trigger feed-
forward mechanisms that lead to mitophagy (Clague & Urbe, 2017;
Gersch et al, 2017; Marcassa et al, 2018). The prominence of TOM
complex components within the limited set of USP30-responsive
diGly-peptides, and the known interaction with both USP30 (Liang
et al, 2015) and with PINK1 (Lazarou et al, 2012; Okatsu et al, 2013,
2015; Sekine & Youle, 2018) suggest that this may be a critical pUb
nucleation site regulated by USP30 (Fig 7).

While our manuscript was in preparation, two complementary
studies have been published that also highlight the centrality of the
TOM complex to USP30 function (Ordureau et al, 2020; Phu et al,
2020). All three studies use global proteome and ubiquitylome
profiling. Ordureau et al (2020) examine the impact of USP30 ge-
netic loss in iNeurons ± AO. Phu et al (2020) focus on basal con-
ditions (no depolarisation agents) and use HEK293 cells to compare
genetic loss with a USP30 inhibitor that is related to the one we
describe here. Note that, in that latter study, a much higher con-
centration of inhibitor has been used (5 μM versus 200 nM). We
identify an overlapping set of USP30-sensitive ubiquitylation sites
with these studies. Our findings are more directly comparable with
Ordureau et al (2020), as our data derive from AO-treated cells. For
the majority (15/16) of USP30-sensitive mitochondrial proteins we
describe in our ubiquitylome analysis (Fig 5C), corresponding in-
creases have also been found in USP30 KO iNeurons, albeit the
specific sites differ in some instances (Ordureau et al, 2020). Both
studies find greater prevalence, than we do here, of elevated
ubiquitylation of mitochondrial matrix and inner mitochondrial
membrane proteins, although we do see a few examples of the
same phenomenon (e.g., MDH2, GRSF1, and MTLN). Although
ubiquitylation can occur within mitochondria (Lavie et al, 2018),
USP30 is an OMM protein whose catalytic activity is facing towards

Figure 4. Comparison of proteome and ubiquitylome
changes in USP30 KO versus USP30 inhibitor treated
SHSY5Y cells.
(A) Schematic flow chart of SILAC based quantitative
ubiquitylome and proteome analysis comparing
USP30 KO and USP30 inhibition. SHSY5Y (USP30 wild-
type) and SHSHSY USP30 KO (KO11) cells were
metabolically labelled by SILAC as shown. Cells were
then treated for 24 h with DMSO or antimycin A and
oligomycin A (AO; 1 μM each) and/or FT385 (200 nM) as
indicated. Cells were lysed and processed for mass
spectrometry analysis. (B, C) Graphs depicting the fold
change (log2) in the proteome (B) or ubiquitylome (C) of
AO-treated SHSY5Y cells ± FT385 treatment (y-axis)
and ± USP30 (x-axis). Mitochondrial (Integrated
Mitochondrial Protein Index database; http://www.mrc-
mbu.cam.ac.uk/impi; “known mitochondrial” only)
and peroxisomal proteins (peroxisomeDB; http://
www.peroxisomedb.org) proteins are highlighted in
orange and purple, respectively. Inset in (C) shows
enlarged section of ubiquitylome data for peptides
enriched in USP30 KO and inhibitor treated cells.
(B)Within proteome graphs (B) each dot represents a
single protein identified by at least two peptides and
the ratio shows the average of two experiments.
(C)Within ubiquitylome graphs (C) each dot represents
a single diGly peptide (localisation ≥ 0.75) and the ratio
shows the average of two experiments. (D) Heat
map showing diGly peptides that are increased
consistently by log2 ≥ 0.8 in both USP30 KO and USP30
inhibitor (FT385) treated cells. Grey indicates the protein
was not seen in that condition, * indicates ambiguity
of peptide assignment between family members
(OSBPL3, OSBPL7, and OSBPL6), # indicates an increase
at proteome level in KO11. VDAC3 K53 and K54
correspond to equivalent lysines in two distinct
isoforms. (E) Fold change (log2) in proteome and
individual diGly peptides (localisation ≥ 0.75) by site
in VDAC1 proteins. (D) See Fig S3 for corresponding data
sets for VDAC2 and 3 and proteome data for hits shown
in (D).
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the cytosol (Nakamura & Hirose, 2008; Marcassa et al, 2018). Hence,
it has been suggested that this reflects ubiquitylation of newly
synthesised proteins engaging with the TOM complex (Ordureau
et al, 2020; Phu et al, 2020). Thus, USP30 might sit at the gate of the
import complex pore and strip off ubiquitin as a prerequisite for
entry. This provides a striking parallel with the action of protea-
somal deubiquitylases, which control entry to the proteasome
core (Lee et al, 2011). Ribosomes themselves interact directly with
the TOM complex (Gold et al, 2017), and ribosomal quality control
mechanisms have extensive links to the ubiquitin system (Joazeiro,
2017). Perturbation of these pathways, could also lead to a higher
representation of ubiquitylated peptides derived from nascent
imported proteins. Our finding that the mitochondrial peptidyl-
tRNA hydrolase PTRH2 is a USP30 substrate provides a first link to
ribosomal quality control. PTRH2 can cleave nascent chain tRNA on
stalled ribosomes and provide a release mechanism for non-
ubiquitylated nascent chains (Kuroha et al, 2018).

The USP30-dependent suppression of mitophagy is well
established for events which rely on the overexpression of Parkin,
together with acutemitochondrial depolarisation (Bingol et al, 2014;
Cunningham et al, 2015; Liang et al, 2015). In fact, in a recently
published whole genome screen for mitophagy regulators in Parkin

overexpressing C2C12 myoblasts, USP30 is the most prominent
mitochondrial annotated negative regulator (Hoshino et al, 2019).
Our study contributes to a body of evidence that translates these
findings to systems with endogenous Parkin expression levels
(Marcassa et al, 2018; Ordureau et al, 2020; Phu et al, 2020). The
physiological defects associated with PINK1/Parkin loss of function
in PD are likely to accumulate slowly. The benign effects of USP30
loss or inhibition make it a target candidate that can be considered
for long-term therapy. The availability of specific tool compounds,
such as described here, will enable preclinical assessment of this
strategy.

Materials and Methods

Cell culture

hTERT-RPE1-YFP-PARKIN (Liang et al, 2015), SHSY5Y, and SHSY5Y-
mitoQC (mCherry-GFP-Fis1(101-152)) (Allen et al, 2013) cells were
routinely cultured in Dulbecco’s Modified Eagle’s medium DMEM/
F12 supplemented with 10% FBS and 1% non-essential amino acids.

Figure 5. Proteomic analysis of the mitochondria-
enriched ubiquitylome in USP30 KO SHSY5Y cells.
(A) Schematic flow chart of SILAC based quantitative
ubiquitylome and proteome analysis comparing two
USP30-KO clones (KOD-sgRNA#1 and KO11-sgRNA#2) to
wild-type SHSY5Y cells. Cells were metabolically labelled
by SILAC as shown and treated for 4 h with AO (1 μM). Cells
were then either lysed for total proteome analysis or
further processed by subcellular fractionation. The
mitochondrial fraction was used as the starting material
for the ubiquitylome analysis. (B) Graphs depicting the
fold change (log2) in the proteome of AO-treated USP30
KOD versus wild-type SHSY5Y (SH) (y-axis) andUSP30 KO11
compared with SHSY5Y cells (x-axis). Mitochondrial
(IntegratedMitochondrial Protein Index database; http://
www.mrc-mbu.cam.ac.uk/impi; “known mitochondrial”
only) and peroxisomal proteins (peroxisomeDB; http://
www.peroxisomedb.org) proteins are highlighted in
orange and purple, respectively. Each dot represents a
single protein identified by at least two peptides and
the ratio shows the average of three experiments.
(C) Heat map showing diGly containing peptides that
are increased consistently in at least four of six
experimental conditions by log2 ≥ 0.8. The corresponding
data from the total ubiquitylome experiment shown in
Fig 4 are also indicated. Grey indicates the protein was
not seen in that condition. VDAC3 K53 andK54 correspond
to equivalent lysines in two distinct isoforms. (D)Depiction
of the localisation of USP30 sensitive depolarisation-
induced ubiquitylated proteins within mitochondria
(enriched proteins shown in (C)). Defined as outer
mitochondrial membrane (green), inner mitochondrial
membrane (blue), or matrix (pink). (E) Western blot
showing the appearance ofmono-ubiquitylated species of
SYNJ2BP in both USP30 KO clones (KO11 and KOD) and
in USP30 inhibitor (FT385) treated cells. Cells were treated
for 4 hwith AO (1μM) in thepresence or absence of 200nM
FT385, then lysed in urea lysis buffer and analysed by
Western blot. Black and red arrowheads indicate
unmodified and ubiquitylated SYN2BP (high exp, higher
exposure).
Source data are available for this figure.
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Generation of USP30 KO cells

USP30 KO cells were generated using CRISPR-Cas9 with USP30-
specific sgRNAs targeting exon 3 of isoform 1 (sgRNA1: AGTT-
CACCTCCCAGTACTCC, sgRNA2: GTCTGCCTGTCCTGCTTTCA). sgRNAs
were cloned into the pSpCas9(BB)-2A-GFP (PX458) vector (plasmid
#48138 46; Addgene) or PX330-Puro (kind gift from Prof Ciaran
Morrison, NUI Galway). hTERT-RPE1-YFP-Parkin USP30 KO Clone 1E
and SHSY5Y clones KOC and KOD were engineered by transfecting
the parental lines with pSpCas9(BB)-2A-GFP-sgRNA1, followed by
FACS 24 h later (selection for GFP positive cells) and single cell

dilution. SHSY5Y-mitoQC Clone 11 was engineered by transfection
with PX330-Puro-sgRNA2 followed by selection with 1–1.5 μg/ml
puromycin and single cell dilution. The positive clone (KO11) has
lost expression of the mitoQC fluorophore. Individual clones of
SHSY5Y KO cells were amplified and multiple alleles sequenced
(Fig S1).

Antibodies and reagents

Antibodies and other reagents used were as follows: anti-USP30
(HPA016952, 1:500; Sigma-Aldrich), anti-USP30 (PA5-53523, 1:1,000;

Figure 6. USP30 KO and USP30 Inhibition enhance
phospho-Ser65 ubiquitin levels on mitochondria of
SHSY5Y cells.
(A) Comparison of depolarisation induced phospho-
Ser65 ubiquitin (pUb) generation in SHSY5Y cells
treated with FT385 and in USP30 KO SHSY5Y (KO11).
Shown is a Western blot and corresponding line graph
for the pUb signal, of lysates from cells treated for 4 h
with AO (1 μM) with or without FT385 (200 nM). Black and
red arrowheads indicate unmodified and ubiquitylated
TOM20 species, respectively (high exp, higher
exposure). (B) Graph shows quantification of the pUb
signal in the 17–76 kD range for two independent
experiments (A, and Fig S4A) with individual data
points shown in dark and light blue. Error bars indicate
the range. (C) A post-nuclear supernatant and
mitochondrial fractions were obtained from SHSY5Y
cells treated in the presence or absence of FT385 (100
nM, 24 h), with DMSO or AO (1 μM). Samples were
analysed by Western blotting and a line graph
depicting the pUb signal is shown. Bar chart shows
quantification of the total pUb signal (left) and the pUb
signal in the 38–76 kD range (right). (D) SHSY5Y cells
and two USP30 KO clones (KOD and KO11) were treated
for 1 h with AO (1 μM). Cells were homogenised and
mitochondrial fractions prepared and analysed as
indicated. Graphs show quantification of the total pUb
signal and the ubiquitylated TOM20 (red arrowheads)
normalised to unmodified TOM20 (black arrowheads)
for two independent experiments with individual data
points shown in dark and light blue. Error bars indicate
the range. High exp, higher exposure.
Source data are available for this figure.
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Thermo Fisher Scientific), anti-USP30 (MRC PPU, 1:1,000), anti-USP30
(sc-515235, 1:1,000; Santa-Cruz), anti-PINK1 (D8G3, 6946S, 1:1,000;
Cell Signalling Technology), anti-TOM20 (HPA011562, 1:1,000; Sigma-
Aldrich), anti-PARK2 (sc32282, 1:250; Santa-Cruz), anti-MFN2 (ab56889,
1:1,000; Abcam), anti-ubiquitin (VU101, 1:2,000; Lifesensor), anti-FIS1
(10956-1-AP, 1:1,000; ProteinTech), anti-phospho-ubiquitin Ser65
(ABS1513-I, 1:1,000; Millipore), anti-phosphoubiquitin Ser65 (62802,
1:1,000; Cell Signalling Technology), anti-VDAC1 (ab15895, 1:1,000;
Abcam), mouse anti-actin (ab6276, 1:10,000; Abcam), mouse anti-
actin (66009-1-Ig, 1:10,000; ProteinTech), rabbit-anti-actin (20536-1-
AP, 1:10,000; ProteinTech), anti-SYNJ2BP (HPA000866, 1:1,000; Sigma-
Aldrich), oligomycin A (75351; Sigma-Aldrich), and antimycin A (A8674;
Sigma-Aldrich).

Preparation of cell lysates and Western blot analysis

Cultured cells were either lysed with urea buffer (Fig 6E, 9 M urea
and 20 mM Hepes–NaOH, pH 7.4) supplemented with 2-chloro-
acetamide (CAA; Sigma-Aldrich) or NP-40 (0.5% NP-40, 25 mM
Tris–HCl, pH 7.5, 100 mM NaCl, and 50 mM NaF) lysis buffer and
routinely supplemented with mammalian protease inhibitor (MPI)
cocktail (Sigma-Aldrich) and Phostop (Roche), with the exception of
data presented in Fig 2. Proteins were resolved using SDS–PAGE
(Invitrogen NuPage gel 4–12%), transferred to nitrocellulose
membrane, blocked in 5% milk, 5% BSA or 0.1% fish skin gelatin
in TBS supplemented with Tween-20, and probed with primary
antibodies overnight. Visualisation and quantification of Western
blots were performed using IRdye 800CW and 680LT coupled
secondary antibodies and an Odyssey infrared scanner (LI-COR
Biosciences).

Subcellular fractionation

SHSY5Y cells were washed with ice-cold PBS and then collected by
scraping and centrifugation at 1,000g for 2 min. Cell pellets were
washed with HIM buffer (200 mM mannitol, 70 mM sucrose, 1 mM
EGTA, and 10 mM Hepes–NaOH, pH 7.4) and then resuspended in
HIM buffer supplemented with MPI. Cells were mechanically dis-
rupted by shearing through a syringe with a 27G needle, followed by
passing three times through an 8.02-mm-diameter “cell cracker”
homogeniser using an 8.01-mm-diameter ball bearing (Aubry &

Klein, 2006) or passage through a 27G needle (Fig 2A). The resulting
homogenate was cleared from nuclei and unbroken cells by
centrifugation at 600g for 10 min to obtain a post-nuclear super-
natant (PNS). The PNS was separated into the post-mitochondrial
supernatant and crude MF by centrifugation at 7,000g for 15 min.
The MF pellet was resuspended in HIM buffer + MPI.

Activity probe assay

Cells were mechanically homogenised in HIM buffer supplemented
with 1mMDTT (Fig 2A) or 1 mM Tris(2-carboxyethyl)phosphine (TCEP,
Fig 2B) to obtain the PNS. Homogenates were incubated with Ub-
propargyl (Ub-PA) probe at 1:100 (w/w) for 15 min at 37°C (Ekkebus
et al, 2014). The reaction was stopped by the addition of sample
buffer and heating at 95°C. To test drug engagement, either intact
cells or cell homogenate (PNS, without addition of protease in-
hibitors) were treated with FT385. Intact cells were treated for 4 h at
37°C before homogenisation, and the homogenate was pre-incubated
for 30 min at room temperature before probe incubation. Samples
were either processed using a WES system and transformed to a
virtual Western blot (Fig 2A, Protein Simple, Biotechne) or analysed
by standard Western blot (Fig 2B).

SILAC labelling

SHSY5Y and SHSY5Y-KO11 cells were grown for at least eight pas-
sages in SILAC DMEM/F12 supplemented with 10% dialysed FBS, 200
mg/l L-proline, and either L-lysine (Lys0) together with L-arginine
(Arg0), L-lysine-2H4 (Lys4) with L-arginine-U-13C6 (Arg6), or L-lysine-
U-13C6-15N2 (Lys8) with L-arginine-U-13C6-15N4 (Arg10) at final con-
centrations of 28 mg/l arginine and 146 mg/l lysine.

Proteomics methods

For the experiments shown in Fig 4, SILAC labelled cells were lysed
by sonication in 9 M urea, 20 mM Hepes, pH 8.0, 1 mM sodium
orthovanadate, 2.5 mM sodium pyrophosphate, and 1 mM glycerol-
3-phosphate. In experiments 1 and 2 the “medium” samples (Fig 4A)
are derived from the same lysate. For total proteome and ubiquitylome,
700 μg and 20 mg, respectively, of each sample was combined at a
1:1:1 ratio. For the experiments shown in Fig 5, MFs (ubiquitylome)

Figure 7. Working model depicting USP30 action
upstream of PINK1.
Under depolarising conditions, PINK1 becomes
activated but remains associated with TOM complex
components. TOM complex associated ubiquitylation
provides the nucleating substrate for PINK1-dependent
phosphorylation of ubiquitin on Ser65. This leads to
recruitment and activation of the E3 ligase Parkin,
which can then amplify the signal. By opposing TOM
complex ubiquitylation, USP30 suppresses the trigger
for mitophagy.
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were obtained by homogenisation in HIM buffer supplemented
with MPI, 50 mM CAA, and Phostop from SILAC labelled cells. Cell
pellets (proteome) or MFs were lysed by sonication in 9 M urea,
20 mM Hepes, pH 8.0, 1.15 mM sodium molybdate, 1 mM sodium
orthovanadate, 4 mM sodium tartrate dihydrate, 5 mM glycerol-
3-phosphate, and 1 mM sodium fluoride, and then reduced and
alkylated with either 4.5 mM dithiothreitol/10 mM iodoacetamide
(Fig 4) or 10 mM TCEP/10 mM CAA (Fig 5). Urea was then diluted
fourfold by the addition of 20 mM Hepes, pH 8.0, buffer before
trypsinisation overnight. The resultant tryptic peptides were
acidified with trifluoroacetic acid and purified on a C18 Sep-Pak
column before lyophilisation (Fig 4) or drying with a SpeedVac
(Fig 5).

For ubiquitylome samples, modified peptides were enriched by
immunoprecipitation using a diGly specific antibody in accordance
with the manufacturer’s instructions (PTMScan Ubiquitin Remnant
Motif [K-GG] Kit #5562; Cell Signalling Technology). Eluted peptides
were purified using C18 stage tips (Fig 4) or C18 Sep-Pak columns
(Fig 5). Samples were then dried in a SpeedVac before resuspension
and analysis by nano ultra-performance liquid chromatography
tandemmass spectrometry (LC–MS/MS). Ubiquitylome (Fig 4) samples
were analysed (total five technical replicates) on an Orbitrap Fusion
Lumos (one replicate) and Orbitrap Q Exactive HF (four replicates).
Ubiquitylome (Fig 5) samples were analysed on an Orbitrap Fusion
Lumos.

For proteome samples, peptides were separated by fraction-
ation. For Fig 4, samples were fractionated by off-line high-pH
reverse-phase pre-fractionation as previously described (Davis
et al, 2017), with the exception that eluted peptides were concat-
enated down to 10 fractions. Briefly, digested material was fraction-
ated using the loading pump of a Dionex Ultimate 3000 HPLC with
an automated fraction collector and an XBridge BEH C18 XP column
(3 × 150mm, 2.5 μmparticle size, Waters no. 186006710) over a 100-min
gradient using basic pH reverse-phase buffers (A: water, pH 10 with
ammonium hydroxide; B: 90% acetonitrile, pH 10 with ammonium
hydroxide). The gradient consisted of a 12-min wash with 1% B, then
increasing to 35% B over 60 min, with a further increase to 95% B in
8 min, followed by a 10-min wash at 95% B and a 10-min re-
equilibration at 1% B, all at a flow rate of 200 μl/min with frac-
tions collected every 2 min throughout the run. 100 μl of the
fractions was dried and resuspended in 20 μl of 2% acetonitrile/
0.1% formic acid for analysis by LC–MS/MS. Fractions were loaded
on the LC–MS/MS (Orbitrap Q Exactive HF) after concatenation of 50
fractions into 10, combining fractions in a 10-fraction interval (F1 + F11 +
F21 + F31 + F41… to F10 + F20 + F30 + F40 + F50). For Fig 5, samples were
fractionated by off-line reverse-phase pre-fractionation using a
Dionex Ultimate 3000 Off-line LC system. Briefly, digested material
was fractionated using the loading pump of a Dionex Ultimate 3000
HPLC with an automated fraction collector and with a Gemini C18
(3 μmparticle size, 110A pore, 3 mm internal diameter, 250mm length,
#00G-4439-Y; Phenomenex) over a 39-min gradient using the fol-
lowing buffers: A: 20mMammonium formate, pH = 8; B: 100%ACN. The
gradient consisted of a 1-min wash with 1% B, then increasing to
35.7% B over 28min, followed by a 5-minwash at 90%Band a 5-min re-
equilibration at 1% B, all at a flow rate of 250 μl/minute with fractions
collected every 45 s from 2 to 38 min for a total of 48 fractions. Non-
consecutive concatenation of every 13th fraction was used to obtain 12

pooled fractions (Pooled Fraction 1: Fraction 1 + 13 + 25 + 27, Pooled
Fraction 2: Fraction 2 + 14 + 26 + 38…) that were analysed by LC-MS/MS
(Orbitrap Q Exactive HF).

Orbitrap Q Exactive HF LC–MS/MS parameters

Peptide fractions were analysed by nano-UPLC-MS/MS using a
Dionex Ultimate 3000 nano-UPLC with EASY spray column (75 μm ×
500 mm, 2 μm particle size; Thermo Fisher Scientific) with a 60-min
gradient (Fig 4), a 140 min gradient (Fig 5 Exp1), or a 120 min gradient
(Fig 5 Exp2/3) of 2–35% acetonitrile, 0.1% formic acid in 5% DMSO at
a flow rate of ~250 nl/minute (Fig 4), or 0–28% acetonitrile, 0.1%
formic acid in 3% DMSO at a flow rate of ~300 nl/minute (Fig 5). Mass
spectrometry (MS) data were acquired with an Orbitrap Q Exactive
HF instrument in which survey scans were acquired at a resolution
of 60,000 (Fig 4) or 120,000 (Fig 5) at 200 m/z, and the 20 most
abundant precursors were selected for higher energy collisional
dissociation (HCD) fragmentation with a normalised collision en-
ergy of 28% (Fig 4) or 25% (Fig 5 Exp1) or 30% (Fig 5 Exp2/3).

Orbitrap Fusion Lumos LC–MS/MS parameters

Ubiquitome samples were analysed by LC–MS/MS on a Dionex
Ultimate 3000 connected to an Orbitrap Fusion Lumos. For ex-
periments presented in Fig 4, peptides were separated using a 60-
min linear gradient from 2 to 35% acetonitrile in 5% DMSO and 0.1%
formic acid at a flow rate of 250 nl/minute on a 50-cm EASY spray
column (75 μm × 500 mm, 2 μm particle size; Thermo Fisher Sci-
entific). For experiments presented in Fig 5, peptides were sepa-
rated using 140 (Fig 5 Exp1) or 240 (Fig 5 Exp2/3) minute linear
gradients from 0 to 28% acetonitrile in 3% DMSO, 0.1% formic acid at
a flow rate of 300 nl/minute on a 50-cm EASY spray column (75 μm ×
500 mm, 2 μm particle size; Thermo Fisher Scientific). MS1 scans
were acquired at a resolution of 120,000 between 400 and 1,500 m/z
with an AGC target of 4 × 105. Selected precursors were fragmented
using HCD at a normalised collision energy of 28% (Fig 4) or 30% (Fig
5 Exp1) or 32% (Fig 5 Exp2/3), an AGC target of 4 × 103 (Figs 4 and 5,
Exp2/3) or 1 × 104 (Fig 5 Exp1), a maximum injection time of 35ms (Fig
4) or 45ms (Fig 5 Exp1) or 50ms (Fig 5 Exp2/3), a maximum duty cycle
of 1 s (Fig 4) or 3 s (Fig 5), and a dynamic exclusion window of 60 s
(Fig 4) or 35 s (Fig 5). MS/MS spectra were acquired in the ion trap
using the rapid scan mode.

MS data analysis

All rawMS files from the biological replicates of the SILAC-proteome
experiments were processed with the MaxQuant software suite;
version 1.6.7.0 using the Uniprot database (retrieved in July 2019) and
the default settings (Tyanova et al, 2016). Cysteine carbamidomethylation
was set as a fixed modification, whereas oxidation, phospho(STY),
GlyGly (K), and acetyl N terminal were considered as variable
modifications. Data were requantified. ProteinGroup text files
(proteome) or GlyGly (K) site files were further processed using
Excel (see Table S1) and Perseus (version 1.6.10.50). Graphs were
plotted using JMP13. Heat maps were generated using Morpheus
(Broad Institute).
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In vitro USP30 activity assay

Fluorescence intensity measurements were used to monitor the
cleavage of a ubiquitin–rhodamine substrate. All activity assays
were performed in black 384-well plates in 20 mM Tris–HCl, pH 8.0,
0.01% Triton-X, 1 mM L-glutathione, and 0.03% bovine gamma
globulin with a final assay volume of 20 μl. Compound IC50 values
for DUB inhibition were determined as previously described
(Turnbull et al, 2017). Briefly, an 11-point dilution series of com-
pounds were dispensed into black 384-well plates using an Echo
(Labcyte). USP30, 0.2 nM (#E-582 residues 57-517; Boston Biochem),
was added and the plates pre-incubated for 30 min. 25 nM
ubiquitin–rhodamine 110 (Ubiquigent) was added to initiate the
reaction, and the fluorescence intensity was recorded for 30 min on
a Pherastar FSX (BMG Labtech) with a 485-nm excitation/520-nm
emission optic module. Initial rates were plotted against compound
concentration to determine IC50.

kinact/KI determination

A kinact/KI assay was carried out using 0.2 nM USP30 and 180 nM
ubiquitin–rhodamine 110 as described above with the omission of
the 30-min pre-incubation step. Upon addition of the substrate,
fluorescence intensity was monitored kinetically over 30 min.
Analysis was performed in GraphPad Prism. Kinetic progress curves
were fitted to equation y = (vi/kobs) (1 − exp(−kobsx)) to determine
the kobs value. The kobs value was then plotted against the inhibitor
concentration and fitted to the equation y = kinact/(1 + (KI/x)) to
determine kinact and KI values.

Bio-layer interferometry

Bio-layer interferometry was performed on an Octet RED384 system
(ForteBio) at 25°C in a buffer containing 50 mM Hepes buffer (pH 7.5),
400 mM NaCl, 2 mM TCEP, 0.1% Tween, 5% glycerol, and 2% DMSO.
Biotinylated USP30 (residues 64-502Δ179-216 & 288-305; Viva Biotech
Ltd.) was loaded onto SuperStreptavidin (SSA) biosensors. Association
of defined concentrations of FT385 (0–6.67 μM) was recorded over 180
s followedby dissociation in buffer over 600 s. Traceswere normalised
by double subtraction of baseline (no USP30, no compound) and
reference sensors (no USP30, association and dissociation of com-
pound) to correct for non-specific binding to the sensors. Traces were
analysed using Octet Software (Version 11.2; ForteBio).

Live-cell imaging and basal mitophagy quantification

SHSY5Y cells stably expressing mCherry-GFP-Fis1 (101-152) (SHSY5Y
mitoQC) (Allen et al, 2013) were treated every 24 h over a 96-h time
course with 200 and 500 nM of FT385. Cells were re-plated onto an
IBIDI μ-Dish (2 × 105) 2 d before live-cell imaging with a 3i Marianas
spinning disk confocal microscope (63× oil objective, NA 1.4, Pho-
tometrics Evolve EMCCD camera, Slide Book 3i v3.0). Cells were
randomly selected using the GFP signal and images acquired se-
quentially (488 nm laser, 525/30 emission; 561 nm laser, 617/73
emission). Analysis of mitophagy levels was performed using the
“mito-QC Counter” implemented in FIJI v2.0 software (ImageJ; NIH)
as previously described (Montava-Garriga et al, 2020), using the

following parameters: radius for smoothing images = 1.25, ratio
threshold = 0.8, and red channel threshold = mean + 0.5 SD. Mitophagy
analysis was performed for three independent experiments with 80
cells per condition. One-way ANOVAs with Dunnett’s multiple com-
parisons were performed using GraphPad Prism 6. P-values are rep-
resented as **P < 0.01, ****P < 0.0001. Error bars denote SD.

Data Availability

The MS data from this publication have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository and
assigned the identifier PXD019692 (Data in Fig 4) and PXD018640
(Data in Fig 5).
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Supplementary Information is available at https://doi.org/10.26508/lsa.
202000768.
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