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ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is an idiopathic interstitial lung disease. At present, the 
pathogenesis of IPF has not been fully elucidated, which has affected the development of 
effective treatment methods. Here, we explored the function and potential mechanism of long 
noncoding RNA (lncRNA) CDKN2B antisense RNA 1 (CDKN2B-AS1) in IPF.Transforming growth 
factor-β (TGF-β) and bleomycin (BLM) were used to induce IPF in cells and animal models. Real 
Time quantitative Polymerase Chain Reaction (RT-qPCR) showed the expression of CDKN2B-AS1, 
miR-199a-5p and Sestrin-2 (SESN2) in cells and tissues. The double luciferase reporter gene assay 
confirmed the targeting relationship among CDKN2B-AS1, miR-199a-5p, and SESN2. Related 
protein levels were detected by Western blot combined with Cell Counting Kit-8 (CCK-8), 
wound healing, and flow cytometry to analyze cell proliferation, migration, and apoptosis. The 
pathological characteristics of mouse lung tissue were determined by Hematoxylin-eosin (HE) and 
Masson staining. We found that the expression of CDKN2B-AS1 was decreased in TGF-β-treated 
cells and BLM-treated mice. Overexpression of CDKN2B-AS1 inhibited cell proliferation and 
migration, promoted apoptosis, decreased the expression of fibrosis-related proteins and pro-
moted autophagy. In addition, overexpression of CDKN2B-AS1 alleviated pulmonary fibrosis in 
BLM-treated mice. Mechanistically, CDKN2B-AS1 acts as a miR-199a-5p sponge to regulate SESN2 
expression. Our results indicate the importance of the CDKN2B-AS1/miR-199a-5p/SESN2 axis.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a serious 
fibroproliferative lung disease characterized by 
the accumulation of lung fibroblasts and extracel-
lular matrix (ECM) deposition. Approximately 
thousands of new patients are diagnosed with 
IPF every year, and the median survival period 
after IPF diagnosis is 3 to 5 years, with a 5-year 
survival rate of only 20% [1,2]. Although the new 
antifibrotic drugs pirfenidone and nintedanib are 
approved for IPF treatment, neither is capable of 
stabilizing or improving lung function status in 
patients [3]. Therefore, the development of bio-
markers associated with both the diagnosis and 
progression of IPF might improve personalized 
care, observations and treatment decisions and 
could broadly affect the approach to the early 
diagnosis of IPF [4].

Long noncoding RNAs (lncRNAs) are defined as 
transcripts that are greater than 200 nucleotides in 
length and do not encode proteins. lncRNAs have 
rich biological functions and are widely involved in 
various physiological processes in organisms [5]. 
Their fine molecular regulation mechanisms have 
been widely revealed to be involved in cell apoptosis, 
proliferation and other biological processes. Studies 
have shown that lncRNAs play significant roles in 
the occurrence and evolution of diseases [6,7]. 
LncRNA CDKN2B-AS1, as a potential lncRNA, 
has been demonstrated to be abnormally expressed 
in various malignant tumors [8], including gastric 
cancer, lung cancer, and breast cancer, with impli-
cations in the proliferation and migration of tumor 
cells [9,10]. Moreover, CDKN2B-AS1 is related to 
many nonmalignant diseases [11,12]. Therefore, 
CDKN2B-AS1 is a therapeutic target and prognostic 
biomarker of human diseases. In addition, studies 
have shown that, through high-throughput sequen-
cing and bioinformatics analysis, the expression of 
CDKN2B-AS1 in peripheral blood of IPF patients is 
significantly reduced compared with that of healthy 
controls [13]. However, the role of CDKN2B-AS1 in 
IPF is not clear. We thoroughly investigated the 
functions and associated mechanisms of CDKN2B- 
AS1 in IPF.

Matrix overremodeling is a dynamic, complex 
pathological process in IPF. In this process, prein-
flammation, mitochondrial reactive oxygen species 

(ROS) generation, ECM accumulation and fibroblast 
foci formation occur. Normal lung tissues are 
replaced by fibrotic tissue, thus causing decreased 
exchange and impaired pulmonary homeostasis 
[14]. Many fibroblasts are activated to form lesions, 
and inflammatory cells infiltrate and release multi-
tudinous inflammatory factors [15], which irreversi-
bly abolish the normal physiological functions of lung 
tissue. Severe pulmonary fibrosis causes difficulty 
breathing, respiratory failure or even death. 
Consequently, suppressing the activation of fibro-
blasts and maintaining lung cell homeostasis are key 
to the treatment of IPF.

Autophagy is a self-consumption catabolic pro-
cess by which damaged proteins and organelles are 
lysosomally degraded and plays a crucial role in the 
maintenance of cellular homeostasis, especially dur-
ing cell starvation or other stress stimulation [16]. 
Increased ratios of LC3-II/I and LC3-II/p62 are 
believed to be hallmarks of autophagy generation. 
In IPF research, the role of autophagy has received 
attention [17]. Most factors that promote pulmon-
ary fibrosis, such as oxidative stress, endoplasmic 
reticulum stress, and hypoxia, can induce autophagy 
[18]. Autophagic flow is reduced when lung tissue 
exhibits fibrotic lesions in bleomycin (BLM) and 
TGF-β-induced IPF mouse models, as well as in a 
TGF-β-mediated fibroblast-to-myofibroblast differ-
entiation (FMD) in vitro model [19]. Hill et al. [20] 
found that autophagy inhibition induces the epithe-
lial–mesenchymal transition (EMT) of alveolar 
epithelial cells and contributes to fibrosis. In addi-
tion to regulating cell survival, apoptosis, and EMT 
and FMD in fibroblasts, autophagy is involved in 
collagen degradation.

This study aimed to clarify the expression char-
acteristics, potential roles and mechanisms of 
CDKN2B-AS1 in IPF. We hypothesized that 
CDKN2B-AS1 was decreased in TGF-β-treated 
cells and BLM-treated mice. Overexpression of 
CDKN2B-AS1 can inhibited cell proliferation and 
migration, promoted cell apoptosis, reduced the 
expression of fibrosis-related proteins, and pro-
moted cell autophagy. We also hypothesized that 
CDKN2B-AS1 acts as a Mir-199a-5p sponge to reg-
ulate SESN2 expression. Our work may reveal an 
important role of CDKN2B-AS1 in alleviating the 
development of IPF, which may provide a new 
promising molecular target for the treatment of IPF.
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Materials and methods

Cell culture

Human fetal lung fibroblast 1 (HFL-1) cells were 
purchased from American Type Culture 
Collection (ATCC, USA) and cultured in Ham’s 
F-12 K (Kaighn’s) medium (Gibco, USA) contain-
ing 10% fetal bovine serum (FBS, Gibco, USA) and 
1% penicillin–streptomycin (Sigma–Aldrich, USA) 
at 37°C in a 5% CO2 environment. The model cell 
group cultured at 37°C for 8–12 hours and then 
incubated with 10 ng/ml human recombinant 
TGF-β1 (Sigma-Aldrich, USA) for 24 h.

Cell transfection

HFL-1 cells were seeded into 6-well plates at 1 × 105 

cells/well. When the cell density was approximately 
90%, Lipofectamine 3000 (Thermo Fisher Scientific, 
USA) was applied to transfect the CDKN2B-AS1 
overexpression plasmid, miR-199a-5p mimic/inhi-
bitor, or SESN2 inhibitor (Oligobio, China) into 
the cells according to the manufacturer’s instruc-
tions, and the control group was transfected with 
an empty plasmid. Total RNA or total protein were 
extracted 48 hours after transfection to complete the 
detection of subsequent experimental indicators.

RT–qPCR

TRIzol (Thermo Fisher Scientific, USA) was used 
to extract total RNA from cells and tissues, and 
cDNA was synthesized with a reverse transcription 
kit (Promega, USA). SYBR Green Master Mix 
(Thermo Fisher Scientific, USA) was used to mea-
sure the expression levels of lncRNAs, miRNAs 
and mRNAs. Initial activation was performed at 
95°C for 2 min, followed by 40 cycles of denatura-
tion at 95°C for 15s, annealing at 60°C for 25s, and 
extension at 72°C for 60s. GAPDH was used as an 
endogenous control for lncRNAs and mRNAs, and 
U6 was used as an endogenous control for 
miRNAs. The 2−ΔΔCT method was used to analyze 
relative expression among samples [21]. The pri-
mer sequences were (5’-3’) CDKN2B-AS1 Forward 
(F): TCATCATCATCATCATCATC and Reverse 
(R): TGCTTCTGTCTCTTCATA�; miR-199a-5p 
F: GCCCAGTGTTCAGACTACCTG and R: 
GTGCAGGGTCCGAGGTATTC; GAPDH F 

ACAACTTTGGTATCGTGGAAGG and R: GC 
CATCACGCCACAGTTTC; and U6 F: GGGC 
AGGAAGAGGGCCTAT and R: TATGGCTAG 
CATGACTGGT.

Cell Counting Kit-8 (CCK-8)

The analysis was performed with a Cell Counting 
Kit-8 (MedChem Express, USA) according to the 
manufacturer’s protocol. Cells were cultured in 96- 
well plates at 103 cells/well. After 24 h of incuba-
tion, 10 μL CCK-8 solution was added to the 
medium, and the cells were incubated at 37°C for 
2 h. The absorbance was measured at 450 nm on a 
microplate reader (Mairui, China), and the cell 
proliferation rate was calculated [22,23].

Flow cytometry

Cell apoptosis was analyzed by flow cytometry 
(Beckman Coulter, USA). Briefly, cells in the loga-
rithmic growth phase were inoculated into a 96- 
well plate. After overnight incubation, the cells 
were washed and resuspended in binding buffer. 
The cells were incubated with Annexin V-FITC 
(Procell, China) for 15 min at room temperature 
in the dark. Then, PI staining solution was added, 
and the binding liquid was replenished [24].

Western blot

RIPA buffer (Thermo Fisher Scientific, USA) was 
used to extract the total protein from the tissues and 
cells in each group, and a BCA kit (Beytime, China) 
was used to detect the protein concentration and 
purity. The proteins were separated by 10% SDS– 
polyacrylamide gel electrophoresis (PAGE), and the 
protein bands were transferred to polyvinylidene 
difluoride (PVDF) membranes. After blocking in 
TBST solution containing 5% skimmed milk for 
2 h at room temperature, SESN2, α-SMA, 
COL1A1, COL3A1, LC3I, LC3II, and p62 primary 
antibodies (1:1000, Cell Signaling Technology, USA) 
were added and incubated with the cells overnight at 
4°C. Next, horseradish peroxidase-coupled second-
ary antibody (1:5000, Cell Signaling Technology, 
USA) was added, and the cells were incubated at 
room temperature for 2 h. The ECL chemilumines-
cent reagent (Beytime, China) was used to visualize 
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the bands, grayscale analysis was performed with 
ImageJ software, and protein values were calculated 
in combination with GAPDH expression [25].

Wound healing

Cells were seeded into a 6-well plate at 106 cells/ 
well and cultured until they were fully confluent. A 
20 μL pipette tip was used to make wounds in the 
cell monolayer. After 48 h, the cells were washed 
to remove nonadhered cells, and images were cap-
tured to compare the widths of the scratches and 
evaluate cell migration.

Dual-luciferase reporter gene

The ‘starBase’ biological information database was 
used to predict the targeted binding sequence of 
miR-199a-5p and CDKN2B-AS1/SESN2, and the 
binding sequence was inserted into the pMIR-report 
plasmid (Ambion, USA). A pMIR-report-CDKN2B- 
AS1/SESN2-WT wild-type plasmid and pMIR-report 
-CDKN2B-AS1/SESN2-MUT binding site-mutant 
plasmid were constructed. Cells were seeded into 24- 
well cell culture plates and cotransfected with the wt/ 
mut plasmid and miR-21 mimic/NC mimic after 
12 hours. After 48 h, luciferase activity was detected 
with the dual luciferase reporter gene kit.

Animal model

Male C57BL/6 mice of 8–10 weeks old were 
obtained from the Experimental Animal Center 
of Kunming Medical University. The pulmonary 
fibrosis model was established by the tracheal 
instillation of bleomycin, with 6–8 mice in each 
group. The model group was injected with bleo-
mycin (BLM, 5 mg/kg), and the control group was 
injected with the same amount of normal saline 
[26,27]. To observe the therapeutic effect of 
CDKN2B-AS1 on idiopathic pulmonary fibrosis 
in mice, the overexpressed CDKN2B-AS1 plasmid 
(1 nmol/mouse) was injected through the tail vein 
on day 10 after BLM stimulation, and then every 
4 days after that, the mice were sacrificed on day 
28. The mouse experiment was approved by the 
Animal Ethics Committee of Kunming Medical 
University (NO. Kmmu2021744) and carried out 
in accordance with the ‘Guidelines for the Care 

and Use of Laboratory Animals’ published by the 
National Institutes of Health.

Hematoxylin–eosin (HE) and Masson staining

Mouse lung tissue samples were fixed with 4% 
paraformaldehyde (PFA, DingGuo, China), dehy-
drated in an ethanol gradient, embedded in paraf-
fin and sectioned (5 μm). HE and Masson staining 
were separately performed. HE staining involved 
dewaxing, hematoxylin staining, hydrochloric acid 
ethanol treatment, ammonia treatment, eosin 
staining, ethanol gradient dehydration, xylene 
penetration, and neutral resin mounting. 
Morphological changes in lung tissue were 
observed under a microscope, and images were 
collected. Masson staining involved dewaxing, 
hematoxylin staining, Ponceau staining after wash-
ing, glacial acetic acid treatment, molybdopho-
sphoric acid treatment, aniline blue staining, 
alcohol dehydration, xylene penetration, and neu-
tral resin mounting. Fibrosis degrees were 
observed under a microscope, and images were 
collected.

Statistical analysis

All experimental data were processed using 
GraphPad Prism 5, and results are expressed as 
the mean ± standard deviation (SD). Comparisons 
of two groups were performed by two-tailed 
Student’s t tests, and comparisons of multiple 
groups were performed by one-way analysis of 
variance (ANOVA). Result with p < 0.05 were 
considered statistically significant.

Results

We suspect that the inhibition of IPF by 
CDKN2B-AS1 acts through a ceRNA mechanism 
and is related to the activation of autophagy. In a 
TGF-β-induced IPF cell model, we performed pro-
liferation, Wound healing, and apoptosis assays to 
evaluate the biological behavior of cells, and to 
detect the expression of pulmonary fibrosis- 
related proteins and autophagy-related proteins. 
In the bleomycin-induced IPF animal model, HE 
and Masson staining were used to observe the 
effect of CDKN2B-AS1 on pulmonary fibrosis in 
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mice. We found that CDKN2B-AS1 inhibited the 
proliferation of pulmonary fibrotic cells by regu-
lating the miR-199a-5p/SESN2 axis, and promoted 
the occurrence of apoptosis and activated autop-
hagy, and finally alleviated the occurrence of pul-
monary fibrosis in mice.

CDKN2B-AS1 decreased during fibrosis in vivo 
and in vitro

To explore the role of CDKN2B-AS1 in pulmonary 
fibrosis, we established a TGF-β-induced fibrosis cell 
model and a BLM-induced pulmonary fibrosis 
mouse model. RT–qPCR was used to analyze the 
expression of CDKN2B-AS1 in cells and tissues. 
The results showed that the expression of CDKN2B- 
AS1 in HFL-1 cells induced by TGF-β gradually 
decreased over time and reached a minimum at 
48 h (Figure 1a). The expression of CDKN2B-AS1 
in BLM-induced pulmonary fibrosis mice was con-
sistent with the results obtained in cells, with 
CDKN2B-AS1 gradually decreasing over time and 
reaching a low point at 14 d (Figure 1b). These 
results indicate that CDKN2B-AS1 is decreased in 
lung fibrosis in vivo and in vitro.

CDKN2B-AS1 overexpression inhibits fibroblast 
activation

To investigate the functions of CDKN2B-AS1 in 
IPF, we transfected the CDKN2B-AS1 overexpres-
sion plasmid into TGF-β-induced cells. The 
expression of CDKN2B-AS1 decreased after TGF- 
β induction, and the level of CDKN2B-AS1 
increased after overexpression of CDKN2B-AS1 
(Figure 2a). CCK-8 and wound healing assays 
confirmed that CDKN2B-AS1 significantly inhib-
ited cell proliferation and migration and reversed 
the effect of TGF-β (Figure 2b,c). Cell apoptosis 
decreased after TGF-β treatment, while overex-
pression of CDKN2B-AS1 increased cell apoptosis 
(Figure 2d,e). We also analyzed the expression 
levels of fibrosis-associated proteins. CDKN2B- 
AS1 abolished the activation of fibroblasts treated 
with TGF-β and decreased the expression of α- 
SMA, COL1A1 and COL3A1 (Figure 2f,G). 
Moreover, we evaluated the changes in the autop-
hagy-related proteins LC3I, LC3II and p62. 
Overexpression of CDKN2B-AS1 increased 

LC3II/LC3I and decreased p62 (Figure 2h). Our 
results show that CDKN2B-AS1 overexpression 
inhibited the activation of fibroblasts and acted 
through autophagy.

Overexpression of CDKN2B-AS1 relieves 
bleomycin-induced pulmonary fibrosis in mice

We verified whether CNKN2B plays a role in 
pulmonary fibrosis in mice. After bleomycin 
(BLM) treatment, adenovirus carrying CNKN2B 
was injected, and CNKN2B expression was 
detected. The expression level of CNKN2B was 
decreased after BLM induction, and the expression 
level of CNKN2B was increased after adenovirus 
injection (Figure 3a). The results of HE and 
Masson staining illustrated that BLM induced sig-
nificant thickening of the alveolar septum, which 
was filled with fibrous tissue, and the deposition of 
collagen fibers increased; thus, overexpression of 
CNKN2B extenuated lung fibrosis in mice (Figure 
3b). We examined the changes in the fibrosis- 
related proteins α-SMA, COL1A1, and COL3A1 
and the autophagy-related proteins LC3I, LC3II, 
and p62. CNKN2B reversed the BLM-induced up- 
regulation of fibrosis-related proteins α-SMA, 
COL1A1 in α-SMA, COL1A1, COL3A1, up- 
regulation of autophagy associated protein p62 
and down-regulation of LC3II/LC3I. In addition, 
the expression level of SESN2 decreased in BLM- 
induced mice, and SESN2 was upregulated after 
CDKN2B-AS1 overexpression. Our results suggest 
that the upregulation of CDKN2B-AS1 inhibits the 
development of lung fibrosis in mice.

CDKN2B-AS1 is the sponge of miR-199a-5p

To discover the mechanism of action of CDKN2B- 
AS1 in pulmonary fibrosis, we analyzed the rela-
tionship between CDNK2B and miRNA by using 
the bioinformatics website ‘StarBase’ and found 
that a binding site between CDNK2B and miR- 
199a-5p exists (Figure 4a), which means that miR- 
199a is the target of CDNK2B. RT–qPCR was used 
to detect the function of the miR-199a-5p mimic, 
and the expression of miR-199a-5p increased sig-
nificantly after transfection of the miR-199a-5p 
mimic (Figure 4b). The dual luciferase reporter 
assay confirmed that luciferase activity was 
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decreased with the cotrensfection of the CDKN2B- 
AS1 wild-type (WT) and miR-199a-5p mimic 
compared with the cotransfection of the 
CDKN2B-AS1 wild-type (WT) and negative con-
trol (NC) mimic (Figure 4c). In addition, after 
overexpression of CDKN2B-AS1, the level of 
miR-199a-5p was obviously reduced (Figure 4d). 
This evidence indicates that CDKN2B-AS1 can be 
used as a sponge for miR-199a-5p.

CDKN2B-AS1 negatively regulates the profibrotic 
function of miR-199a-5p

We transfected miR-199a-5p mimics on the basis 
of CDKN2B-AS1 overexpression in TGF-β- 
induced HFL-1 cells. The detection of the expres-
sion of miR-199a-5p indicated that the level of 
miR-199a-5p increased after TGF induction; the 
level of miR-199a-5p decreased after overexpres-
sion of CDKN2B-AS1; and the level of miR-199a- 
5p was restored after transfection of the miR-199a- 
5p mimic (Figure 5a). Cell proliferation and 
migration were measured by CCK-8 and wound 
healing assays, and the results showed that miR- 
199a-5p promoted cell proliferation and migration 
(Figure 5b,c). Cell apoptosis also changed signifi-
cantly, and fibroblast apoptosis decreased after 
transfection with the miR-199a-5p mimic (Figure 
5d). The detection of α-SMA, COL1A1, and 
COL3A1 protein expression showed that miR- 
199a-5p promoted α-SMA, COL1A1, and 
COL3A1 levels (Figure 5e). The detection of 
LC3I, LC3II, and p62 protein expression showed 
that miR-199a-5p decreased LC3II/LC3I levels and 

increased p62 levels (Figure 5f). Our findings 
demonstrate that miR-199a-5p promotes fibrosis 
and is negatively regulated by CDKN2B-AS1.

miR-199a-5p negatively regulates SESN2 
expression

Furthermore, ‘StarBase’ predicted that the miR- 
199a-5p target gene is SESN2, which is related to 
the regulation of autophagy. The binding sites of 
miR-199a-5p and SESN2 are shown in Figure 6a. 
Next, the dual luciferase reporter gene assay 
showed that luciferase activity under the SESN2- 
WT and miR-199a-5p mimic combination was 
lower than that under the combination of SESN2- 
WT and the NC mimic, while no differences were 
found in the group that received the combination 
of SESN2-MUT and the miR-199a-5p/NC mimic 
(Figure 6b). The effects of the miR-199a-5p mimic 
and inhibitor on the expression of SESN2 mRNA 
and protein were detected by RT–qPCR and 
Western blotting. The miR-199a-5p mimic inhib-
ited the expression level of SESN2, while the miR- 
199a-5p inhibitor promoted the level of SESN2 
(Figure 6c,d). Our results reveal that miR-199a- 
5p inhibits SESN2 expression.

miR-199a-5p regulates fibrogenesis by directly 
targeting the expression of SESN2

To understand the mechanism by which miR-199a- 
5p and SESN2 are involved in pulmonary fibrosis, we 
investigated the behavioral transformation of TGF-β- 
induced cells by inhibiting miR-199a-5p and SESN2. 

Figure 1. CDKN2B-AS1 expression is reduced in mouse and cell fibrosis models. a: RT–qPCR revealed the levels of CDKN2B-AS1 in 
cells treated with TGF-β at 0, 12, 24, and 48 hours. ***p < 0.001 compared with 0 h. b: RT–qPCR revealed the levels of CDKN2B-AS1 
in mice treated with BLM on days 0, 7, 14, 21, and 28 days (n = 5). ***p < 0.001 compared with 0 d. h: hour, d: day.
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The RT–qPCR results showed that the expression of 
miR-199a-5p was downregulated after transfection 
with the miR-199a-5p inhibitor, and the expression 

of miR-199a-5p was upregulated after cotransfection 
with the miR-199a-5p inhibitor and SESN2 inhibitor 
(Figure 7a). Measurement of the expression of SESN2 

Figure 2. Overexpression of CDKN2B-AS1 alleviates TGF-β-induced fibroblast activation. a: The expression of CDKN2B-AS1 was 
determined by RT–qPCR. b: HFL-1 cell viability was analyzed by a CCK-8 assay and compared with that under TGF-β treatment. c: The 
HFL-1 cell migration ability was evaluated by a wound healing assay. d, e: Flow cytometric detection of HFL-1 cell apoptosis. f, g: 
Western blot verification of α-SMA, COL1A1, and COL3A1 protein expression levels. h: Western blot verification of LC3I, LC3II, and 
p62 protein expression levels. ***p < 0.001 and **p < 0.01 compared with the CONTROL group; ***p < 0.001, **p < 0.01, and 
*p < 0.05 compared with the TGF-β group. TGF-β: TGF-β-induced group, CDKN2B-AS1: TGF-β-induced with CDKN2B-AS1- 
overexpression group. Data are presented as means ± SD (n = 3).
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Figure 3. Increasing CDKN2B-AS1 mitigated pulmonary fibrosis under BLM treatment. a: RT–qPCR detection of CDKN2B-AS1 
expression in mice. b: HE and Masson staining were used to discover the effect of CDKN2B-AS1 on BLM-induced lung fibrosis in 
mice. c: α-SMA, COL1A1, and COL3A1 protein expression levels were measured by Western blotting. d: Western blotting verification 
of LC3I, LC3II, and p62 protein expression. e: The expression level of the SESN2 protein was detected by Western blotting. 
***p < 0.001 and **p < 0.01 compared with the NC group; ***p < 0.001, **p < 0.01, and *p < 0.05 compared with the BLM 
group. NC: negative control group, BLM: BLM-induced group, and CDKN2B-AS1: BLM-induced with CDKN2B-AS1-overexpression 
group. Data are presented as means ± SD (n = 3).
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protein indicated that the level of SESN2 increased 
after miR-199a-5p inibition, and the level of SESN2 
decreased after simultaneous miR-199a-5p and 
SESN2 inhibition (Figure 7b). The detection of cell 
viability, migration and apoptosis revealed that cell 
viability and migration ability decreased and apopto-
sis increased with the inhibition of miR-199a-5p; 
moreover, the inhibition of miR-199a-5p and SESN2 
restored cell viability and migration ability, and apop-
tosis was subsequently reduced (Figure 7c-e). Western 
blot analysis was used to determine the protein 
expression of α-SMA, COL1A1, COL3A1, LC3I, 
LC3II, and p62. We discovered that inhibiting 
SESN2 abolished the suppression of fibrosis-related 
proteins and autophagy-related proteins by miR- 
199a-5p. Together, these findings suggest that miR- 
199a-5p is involved in autophagy and the regulation 
of fibrogenesis through SESN2.

Discussion and conclusion

In this study, we found that CDKN2B-AS1 was 
expressed at low levels in TGF-β-induced cells and 
BLM-induced mice. Overexpression of CDKN2B- 

AS1 inhibited cell proliferation and migration and 
promoted cell apoptosis and autophagy. In addi-
tion, overexpression of CDKN2B-AS1 significantly 
alleviated lung fibrosis in BLM-treated mice. More 
importantly, CDKN2B-AS1 acts as a sponge of 
miR-199a-5p to regulate the expression of 
SESN2, thereby affecting fibrogenesis. It is worth 
noting that SESN2 is involved in the positive reg-
ulation of autophagy, and SESN2 is a target gene 
of miR-199a-5p. These results suggest that autop-
hagy activity mediates the development and pro-
gression of pulmonary fibrosis. In general, after 
CDKN2B-AS1 overexpression, pulmonary fibrosis 
is improved and autophagy is inhibited via the 
miR-199a-5p/SESN2 axis, which provides a new 
direction for the diagnosis and treatment of IPF.

Cumulative studies [28,29] have shown the 
importance of the abnormal expression or func-
tion of lncRNAs in the development of fibrotic 
diseases. For example, the expression of lncRNA 
DNM3OS is upregulated in PF cells, and 
DNM3OS can specifically regulate the expression 
of miR-199a-3p/5p and miR-214-3p, affect 
SMAD and non-SMAD components in TGF-β 

Figure 4. miR-199a-5p is the target miRNA of CDKN2B-AS1. a: CDKN2B-AS1 and miR-199a-5p binding site sequences, including the 
CDKN2B-AS1 wild type (WT) and mutant type (MUT). b: The expression of miR-199a-5p was examined by RT–qPCR; **p < 0.01 
compared with the NC mimic. c: The targeting relationship between CDKN2B-AS1 and miR-199a-5p was confirmed by a dual 
luciferase reporter assay. **p < 0.01 compared with the contransfection CDKN2B-AS1-WT and the NC mimic. d: RT–qPCR was used to 
detect the level of miR-199a-5p after overexpression of CDKN2B-AS1. ***p < 0.001 compared with the TGF-β group. Data are 
presented as means ± SD (n = 3).
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Figure 5. The CDKN2B-AS1/miR-199a-5p axis regulates the evolution of fibrosis. a: RT–qPCR was used to determine the expression 
level of miR-199a-5p. b, c: CCK-8 and wound healing assay detection of cell proliferation and migration ability. d: Flow cytometric 
analysis of cell apoptosis. e, f: The protein expression levels of α-SMA, COL1A1, COL3A1, LC3I, LC3II, and p62 were determined by 
Western blotting. ***p < 0.001 and **p < 0.01 compared with the CONTROL group; ***p < 0.001, **p < 0.01, and *p < 0.05 
compared with the TGF-β group; ***p < 0.001, **p < 0.01, and *p < 0.05, compared with the CDKN2B-AS1 group. TGF-β: TGF-β- 
induced group, CDKN2B-AS1: TGF-β-induced with CDKN2B-AS1-overexpression group, and CDKN2B-AS1+ miR-199a-5p: TGF-β- 
induced with CDKN2B-AS1- and miR-199a-5p-overexpression group. Data are presented as means ± SD (n = 3).
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signaling, and then participate in PF progression 
[30]. lncRNA H19 is highly expressed in the lung 
tissues and cells of PF rats. Knockdown of H19 
can significantly inhibit the expression of α-SMA 
and collagen I and III in HBE and A549 cells 
induced by TGF-β1 and inhibit PF in vitro [31]. 
CDKN2B-AS1 is a newly identified lncRNA that 
is related to many types of diseases. However, the 
underlying mechanism by which CDKN2B-AS1 
participates in the regulation of IPF needs further 
investigation. We determined that CDKN2B-AS1 
expression was decreased compared with that in 
control cells. Similarly, CDKN2B-AS1 expression 
was decreased in mice with IPF. Therefore, we 
speculated that CDKN2B-AS1 may be a major 
element in the development of IPF.

lncRNAs regulate the expression of downstream 
miRNAs, and the dysregulation of miRNAs has 
been shown to be related to a variety of lung 
diseases [32], including lung cancer, asthma and 
PF. The expression of lncRNA ATB is increased in 
TGF-β-induced cells, and ATB downregulates 

miR-200c, promotes the expression of ZEB1, and 
then promote the processes of epithelial- 
mesenchymal transition (EMT) and renal fibrosis 
[33]. Ligustrazin upregulates the expression of 
miR-193a, inhibits the activation of the PI3K/ 
AKT/mTOR signaling pathway, promotes autop-
hagy in lung epithelial cells, and relieves paraquat- 
induced PF [34]. We discovered the targeting rela-
tionship between CDKN2B-AS1 and miR-199a-5p 
by using a bioinformatics database. miR-199a-5p is 
highly expressed in TGF-induced cells, which is 
consistent with the findings of Lino Cardenas et al 
[35]. The results of overexpression of CDKN2B- 
AS1 and miR-199a-5p indicate that CDKN2B-AS1 
negatively regulates the fibrosis-promoting func-
tion of miR-199a-5p.

Previous studies [36] have revealed that autop-
hagy is a significant link in PF. Hill et al [20]. 
reported that the inhibition of autophagy pro-
motes the epithelial–mesenchymal transition and 
fibroblast differentiation. Liu et al. [37] verified 
that the increased expression of BBC3 in 

Figure 6. SESN2 is the target gene of CDKN2B-AS1 and its site of interaction. a: SESN2 and miR-199a-5p binding site sequences, 
including SESN2-WT and MUT. b: The targeting relationship between SESN2 and miR-199a-5p was detected by a dual luciferase 
reporter assay. **p < 0.01 compared with the cotransfection of SESN2-WT and the NC mimic. c: RT–qPCR was used to determine the 
mRNA expression level of SESN2. d: The expression of SESN2 was determined by Western blotting. **p < 0.01 compare with the NC 
group. Data are presented as means ± SD (n = 3).
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Figure 7. The miR-199a-5p/SESN2 axis regulates fibrogenesis via autophagy. a: The expression of miR-199a-5p was determined by 
RT–qPCR. b: The expression level of SESN2 protein was detected by Western blotting. c: Cell viability was analyzed by a CCK-8 assay. 
d: Cell migration ability was evaluated by a wound healing assay. e: Flow cytometric detection of cell apoptosis. f- h: Western 
blotting verification of α-SMA, COL1A1, COL3A1, LC3I, LC3II, and p62 protein expression levels. ***p < 0.001 and **p < 0.01 
compared with the TGF-β group; ***p < 0.001, **p < 0.01, and *p < 0.05 compared with the miR-199a-5p-inhibition group. TGF-β: 
TGF-β-induced group, inhibit miR-199a-5p: TGF-β-induced with miR-199a-5p-inhibition group, inhibit miR-199a-5p+SESN2: TGF-β- 
induced with miR-199a-5p- and SESN2-inhibition group. Data are presented as means ± SD (n = 3).
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macrophages promotes silica-induced autophagy 
and the proliferation and migration of fibroblasts, 
thereby accelerating the development of PF. We 
found that miR-199a-5p inhibits SESN2 expres-
sion. Perhaps more importantly, SESN2 partici-
pates in autophagy with a positive regulatory 
effect, and siRNA interference with SESN2 can 
inhibit autophagy induced by a variety of stimuli 
[38]. The role of SESN2 in IPF exerted through 
autophagy regulation remains elusive. In this 
study, we have verified the molecular mechanism 
of CDKN2B-AS1 alleviating idiopathic pulmonary 
fibrosis by regulating the miR-199a-5p/SESN2 
molecular axis in animal experiments and cell 
experiments, but there is still a shortcoming that 
there is no clinical application to further verify our 
proposed molecular mechanism, follow-up 
research will be carried out in this direction, so 
that our research can be practically applied to the 
clinical treatment of idiopathic pulmonary fibrosis.

Conclusions

We found that the expression of CDKN2B-AS1 
was decreased in TGF-β-treated cells and BLM- 
treated mice. In the end, we demonstrated that 
overexpression of CDKN2B-AS1 targets down- 
regulation of miR-199a-5p, facilitated the expres-
sion of SESN2 and induced autophagy, thus inhi-
bits IPF.
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