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INTRODUCTION: Metabolomics may identify biological pathways predisposing children to the risk of overweight and obesity. In
this study, we have investigated the cord blood metabolic signatures of rapid growth in infancy and overweight in early childhood
in four European birth cohorts.
METHODS: Untargeted liquid chromatography-mass spectrometry metabolomic profiles were measured in cord blood from 399
newborns from four European cohorts (ENVIRONAGE, Rhea, INMA and Piccolipiu). Rapid growth in the first year of life and
overweight in childhood was defined with reference to WHO growth charts. Metabolome-wide association scans for rapid growth
and overweight on over 4500 metabolic features were performed using multiple adjusted logistic mixed-effect models and
controlling the false discovery rate (FDR) at 5%. In addition, we performed a look-up analysis of 43 pre-annotated metabolites,
previously associated with birthweight or rapid growth.
RESULTS: In the Metabolome-Wide Association Study analysis, we identified three and eight metabolites associated with rapid
growth and overweight, respectively, after FDR correction. Higher levels of cholestenone, a cholesterol derivative produced by
microbial catabolism, were predictive of rapid growth (p= 1.6 × 10−3). Lower levels of the branched-chain amino acid (BCAA) valine
(p= 8.6 × 10−6) were predictive of overweight in childhood. The area under the receiver operator curve for multivariate prediction
models including these metabolites and traditional risk factors was 0.77 for rapid growth and 0.82 for overweight, compared with
0.69 and 0.69, respectively, for models using traditional risk factors alone. Among the 43 pre-annotated metabolites, seven and five
metabolites were nominally associated (P < 0.05) with rapid growth and overweight, respectively. The BCAA leucine, remained
associated (1.6 × 10−3) with overweight after FDR correction.
CONCLUSION: The metabolites identified here may assist in the identification of children at risk of developing obesity and improve
understanding of mechanisms involved in postnatal growth. Cholestenone and BCAAs are suggestive of a role of the gut
microbiome and nutrient signalling respectively in child growth trajectories.
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INTRODUCTION
Childhood obesity has become a global epidemic in developed as
well as in developing countries [1], with significant long-term
consequences on both physical and psychological health, social
and economic outcomes [2]. Behavioural dimensions such as diet
and physical activity, and an ‘obesogenic environment’ that
shapes those behaviours, have contributed to the spread of
childhood obesity [3, 4]. In the last decades, there has been a
growing interest in the idea that the early life environment can
have lasting effects on the physiology and metabolism of the fetus

and is associated with the early metabolic programming of human
health [5–7]. Recent studies have revealed that several in utero
exposures such as maternal socioeconomic status, clinical and
environmental factors are associated with growth in infancy and
with the subsequent development of childhood overweight or
obesity [8–13]. The prenatal environment can affect fetus weight
homeostasis and may result in a ‘thrifty phenotype’ that stores
excess calories and predisposes children to weight gain [14].
Hence, a metabolic signature at birth may help elucidate the
mechanisms involved in metabolic health later in life.
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Metabolomics, the profiling of circulating small molecules, has
been increasingly applied to investigate biological mechanisms
associated with childhood obesity [15, 16]. However, few studies
have investigated metabolic changes in cord blood that may
predict subsequent infant growth and overweight and obesity
[17]. Isganaitis, Rifas-Shiman et al. [18] analysed the metabolome
in cord blood plasma from 26 cases and 26 controls differing in
their postnatal weight trajectories using targeted mass spectro-
metry (MS) analysis of 415 metabolites, nested in an American
cohort. There was a trend for lower levels of tryptophan
metabolites in children that followed a rapid growth to obesity
at 7 years trajectory. Sorrow, Maguire et al. [19] similarly applied a
targeted MS analysis of 384 metabolites in cord blood of 25 obese
and non-obese American children at 3–5 years. Children with
obesity had elevated lipid species, acetaminophen metabolites
and acylcarnitines compared with non‐obese children, although
no multiple testing correction was applied. Hellmuth, Uhl et al.
[20] applied a range of targeted LC-MS assays to assess 209
metabolites in cord blood of 700 German children in relation to
birthweight, postnatal weight gain and BMI throughout adoles-
cence. Although many metabolites were associated with weight at
birth, no associations with postnatal measures survived multiple
testing correction. Although initial studies have so far been based
on small numbers of children or limited numbers of molecules,
they reveal the potential of metabolic profiling in detecting
biomarkers and pathways related to rapid growth in infancy as
well as to overweight and obesity in early childhood. Identifying
markers that are predictive of obesity onset may assist in the
development of targeted intervention programmes for at-risk
groups of children.
In this study, we have investigated the cord blood metabolic

signatures of rapid growth in infancy and overweight in early
childhood in four European birth cohorts, using untargeted LC-
MS-based metabolic profiling. Our aims were twofold: firstly, to
identify markers associated with rapid growth and overweight risk
to provide mechanistic insight and elucidate causal pathways to
obesity; and secondly to improve prediction of obesity risk in
neonates through assessment of the predictive performance of
models incorporating identified metabolites, in comparison with
models based on traditional risk factors alone.

MATERIALS AND METHODS
Study population
The study population included participants from four population-based
birth participating in the STOP project: ENVIRONAGE [21] (Belgium), INMA
[22] (Spain), Piccolipiu [23] (Italy) and Rhea [24] (Greece). Ethical approval
was obtained from the local Research Ethics Committees from each centre.
Informed consent was obtained from the parents of the children. Further
details of blood sampling, clinical, dietary and socioeconomic data of
cohort individuals are given in the respective references and supporting
information 1.

Untargeted metabolomics
Cord blood samples were analysed in randomised order as a single
uninterrupted batch with a UHPLC-QTOF-MS system (Agilent Technolo-
gies), as previously described [25]. Further details of the acquisition and
structural annotation of features are given in supporting information 1.

Outcome assessment
Rapid growth in infants in the first 12 months was categorised based on
the definition of Ong et al. [25]. According to this definition, a clinically
significant increment that indicates rapid growth occurs when there is a
gain in weight of at least 0.67 standard deviations between different target
ages. In this study, length data at birth were not available. Hence, rapid
growth was defined as the weight z score change of >0.67 standard
deviations (SD) between birth and twelve months of age based on World
Health Organisation (WHO) growth charts [26]. A two-step prediction
approach was used for calculating sex- and age-specific weight at exactly

12 months, using fractional polynomials of age by gender in each cohort
[27] (supporting information 1).
To maintain sample size for the analysis of overweight in early

childhood, we used a single measurement at an age greater than four
years and as close to 6 years as available. The classification for healthy and
overweight was based on WHO sex-adjusted and age-adjusted BMI z
scores. WHO provides different classifications scheme for children under
the age of 5 years (0–5< years) [28] and over the age of 5 years (5–18 years)
[29]. Following the WHO proposed classification by De Onis and Lobstein
[30], children younger than 5 years were classified as overweight if they
had a BMI z scores >1 SD and children over 5 years were classified as
overweight if they had a BMI z-score greater than 2 SDs [30].

Statistical analysis
A Metabolome-Wide Association Study (MWAS) was applied to investigate
the association between cord blood metabolomics and infant rapid
growth/childhood overweight using multiple mixed-effect logistic regres-
sion models using the lme4 R package [31]. The basic model (Model 1) was
adjusted for sex and age of the child at outcome measurement, ethnicity
and we used a random-effect for cohort. To account for multiple testing, a
Benjamini–Hochberg false discovery rate (FDR) [32] was applied using a
cutoff of 5%.
We then applied additional covariate adjustment to significant features

identified in the MWAS analysis. A directed acyclical graph was used to
visualise assumptions regarding covariates for further model adjustment
(Figure S1). Covariates were chosen based on a bivariate analysis of their
correlation with outcomes (Logistic Regression). The resulting model
(Model 2) included Model 1 covariates and maternal BMI, paternal BMI,
gestational age, weight gained during pregnancy, paternal education,
passive and active smoking status during pregnancy, parity and mode of
delivery.
Pathway enrichment analysis on significant features was conducted

using the Mummichog programme [33], supplemented with manual
curation of the metabolite identities assigned by Mummichog (supporting
information 1).
A look-up analysis, using the same statistical approach as the MWAS

analysis (including 5% FDR), was conducted on 43 metabolites that had
been previously annotated in the same data set as used in this study, due
to their associations with birthweight [34, 35] or because they had
previously been reported to predict a rapid growth leading to overweight
in childhood trajectory, and could also be identified with high confidence
through retention time and MS/MS matching in our data set [18].
In sensitivity analyses, we re-ran Model 2 for metabolites associated with

rapid growth or overweight, stratified by cohort, sex and size for
gestational age and additionally adjusted for birthweight.
We further assessed how well rapid growth in infancy or overweight in

early childhood are predicted using metabolites in comparison with
traditional factors using Random Forest classification models [36]
(supporting information 1). We used three different sets of variables for
each of the outcomes: (1) traditional risk factors (sex, birthweight, ethnicity,
maternal BMI, paternal BMI, gestational age, maternal weight gain during
pregnancy, paternal education, maternal passive and active smoking status
during pregnancy, parity and mode of delivery), (2) significantly associated
metabolites from the MWAS analysis and (3) significantly associated
metabolites from MWAS analysis in combination with traditional risk
factors. A bootstrap method of 1000 repetitions was advocated to quantify
optimism and evaluate the generalisation of the model. A threefold cross-
validation routine was performed on the training set (random 80% of the
total observations) to each model to determine the optimum probability
threshold. The model performance was evaluated on the relevant test set
(remaining 20% of the total observations) using receiver operating
characteristic (ROC curve) and area under the curve or AUROC for
assessing the goodness-of-fit of the classifier. To further evaluate the
predictive model, we performed a leave‐one‐out analysis by repeating the
modelling process on a combined data set with one cohort retained as the
validation set (supporting information 1).

RESULTS
Participant Information and metabolomic data
Table 1 shows the characteristics of the population used in the
analysis of rapid growth in infancy and overweight in early
childhood (stratification by cohort, including available dietary
information, is presented in Table S1, S2. In bivariate analyses

E. Handakas et al.

2253

International Journal of Obesity (2021) 45:2252 – 2260

1
2
3
4
5
6
7
8
9
0
()
;,:



Table 1. Demographic, anthropometric and clinical outcome variables.

Rapid growth at 12 months analysis Overweight/obesity at early childhood
analysis

(n= 391) Missing p value (n= 272) Missing p value

Cohort

RHEA 100 (25.6%) 97 (35.7%)

ENVIRONAGE 109 (27.9%) - b

Piccolipiu 95 (24.3%) 79 (29.0%)

INMA 87 (22.3%) 96 (35.3%)

Gender 0 (0%) 0.910 0 (0%) 0.801

Male 204 (52.2%) 145 (53.3%)

Female 187 (47.8%) 127 (46.7%)

Birthweight (grams) 0 (0%) 3.34E-15 0 (0%) 0.191

Mean (SD) 3295 (445) 3265 (412)

Maternal parity before this pregnancy 3 (0.8%) 3 (1.1%)

Nulliparous 182 (46.5%) 0.043 114 (41.9%) 0.113

Uniparous 169 (43.2%) 0.417 120 (44.1%) 0.170

Multiparous 37 (9.5%) 35 (12.9%)

Maternal active smoking 1 (0.3%) 0.608 2 (0.7%) 0.045

No 324 (82.9%) 216 (79.4%)

Yes 66 (16.8%) 54 (19.9%)

Maternal passive smoking 8 (2.0%) 0.153 6 (2.2%) 7.10E-05

No 233 (59.6%) 123 (45.2%)

Yes 150 (38.4%) 142 (52.2%)

Maternal BMI (kg/m2) 1 (0.3%) 0.392 1 (0.4%) 7.93E-04

Mean (SD) 23.9 (4.58) 23.7 (4.51)

Maternal weight gain (kilograms) 12 (3.1%) 0.021 11 (4.0%) 0.090

Mean (SD) 13.6 (5.16) 13.3 (5.09)

Delivery 1 (0.3%) 0.040 1 (0.3%) 0.353

Vaginal 284 (72.6%) 170 (62.5%)

Caesarean 106 (27.1%) 101 (37.1%)

Gestational age (weeks) 0 (0%) 6.73E-11 0 (0%) 0.054

Mean (SD) 39.2 (1.61) 39.3 (1.56)

Mother born in cohort country 0 (0%) 0.930 1 (0.3%) 0.483

No 35 (9.0%) 13 (4.8%)

Yes 354 (90.5%) 259 (95.2%)

Father’s education 13 (3.3%) 3 (1.1%)

Primary school 70 (17.9%) 0.296 58 (21.3%) 0.202

Secondary school 189 (48.3%) 0.282 138 (50.7%) 0.019

University or higher 119 (30.4%) 73 (26.8%)

Paternal BMI (kg/m2) 7 (1.8%) 0.139 3 (1.1%) 1.09E-04

Mean (SD) 25.8 (3.46) 26.0 (3.62)

Rapid growth 0 (0%) 12 (4.4%) 1.13E-03

No 280 (71.1%) 168 (61.8%)

Yes 114 (28.9.0%) 92 (33.8%)

Overweight/obesity in childhoodc - 0 (0%)

No - 224 (82.4%)

Yes 48 (17.6%)

Age at childhood BMI measurement (years) - - 0 (0%)

Mean (SD) - - 5.43 (1.00)

Values are given in mean (standard deviation, SD) or percent (%).
ap value for association with rapid growth at 12 months of age and overweight in early childhood calculated from logistic regression.
bENVIRONAGE was not included in the analysis of overweight in childhood as follow-up assessment was only available until 2 years.
CThe classification for healthy and overweight was based on WHO sex-adjusted and age-adjusted BMI z scores.
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(Table 1), birthweight, parity, maternal weight gained during
pregnancy, mode of delivery and gestational age were all
significantly associated (P < 0.05) with rapid growth, while
maternal passive and active smoking during pregnancy, maternal
BMI, paternal education level, paternal BMI and rapid growth in
infancy were significantly associated with overweight in early
childhood. After data filtering procedures, 4714 metabolic features
were available for statistical analysis.

Cord blood metabolomics and rapid growth in the first year of
life
The analysis of rapid growth included 391 children, with 114
(28.9%) classed as rapid growers in the first year of life. In MWAS
analysis, adjusting for age at the outcome measurement, sex,
cohort and ethnicity (Model 1), six metabolic features were
significantly associated (FDR < 5%) with rapid growth in the first
year of life (Fig. 1A). Table S3 contains the retention time as well as
the exact mass of all significantly associated features, including
unassigned metabolites. The metabolic features were grouped
into four metabolites after grouping of ions originating from the
same molecule (matched by retention time and pairwise feature
correlation, Table S3). One metabolite could be identified as
cholestenone (4-cholesten-3-one; HMDB0000921), a steroid lipid
in the class of cholesterols. Upon adjustment for further covariates
(Model 2), three of the four associated metabolites, including
cholestenone, remained significantly associated with rapid growth
(Fig. 2A). Cholestenone levels were higher in the cord blood of
rapid growers, whereas levels of the rest of the metabolites were
lower in the cord blood of rapid growers.

In a look-up analysis, we analysed associations with 43 known
metabolites (retention time and m/z information given in Table
S4) in the metabolome data set that had been previously
annotated based on their associations with birthweight [34, 35],
or with rapid infancy weight gain and childhood obesity [18]
(including indolelactic acid, sphingosine, tryptophan and leucine)
(Table S5). Fourteen metabolites were associated with rapid
growth in the first year of life (Fig. 2B) after correcting for 5% FDR
in basic adjustment analyses (Model 1), including higher levels of
nine phosphatidylcholines (PCs) or LysoPCs, cholestenone, cho-
lesterol, progesterone and two acylcarnitines tetradecadiencarni-
tine (C14:2) and decenoylcarnitine (C10:1). In additionally adjusted
analyses (Model 2) cholestenone, two PCs (PC(34:2) and plasmalo-
gen PC(36:4)/PC(O-36:5)), two acylcarnitines, docosahexaenoic
acid (DHA), diacylglycerol (C36:4) and progesterone were nomin-
ally associated (P < 0.05) with rapid growth (Fig. 2B). Directions of
association with rapid growth were opposite to directions
observed previously with birthweight [34]. Correcting Model 2
for 5% FDR, only cholestenone remained associated with rapid
growth in the first year of life.
As shown in the network graph (Fig. 2C), cholestenone was

highly correlated with PC(34:2), moderately correlated with
unidentified metabolite U4 and had weaker, positive correlations
with the other rapid growth-associated metabolites. We noted
strong correlations between DHA and plasmalogen PC(36:4)/PC(O-
36:5) as well as between tetradecadiencarnitine (C14:2) and PC
(34:2).
Mummichog analysis indicated enrichment among rapid

growers in the ‘C21-steroid hormone biosynthesis and metabo-
lism’ and ‘Androgen and oestrogen biosynthesis and metabolism’
pathways, with weaker support for enrichment of the ‘Urea cycle/
amino group metabolism’ pathway (supporting information 1 and
2, Table S10).

Cord blood metabolomics and overweight in early childhood
The analysis of child overweight in early childhood included 272
children from the Piccolipiu, Rhea and INMA cohorts, of which 48
(17.6%) were classed as being overweight or obese (mean age at
weight status assessment: 5.12 years (SD:1.11)). In the MWAS,
adjusting for cohort and ethnicity (Model 1), 36 features were
significantly associated (FDR < 5%) with overweight in early
childhood (Fig. 1B). After grouping ions originating from the
same compound (Table S6), there were eight unique compounds
associated with overweight (Fig. 3A). One compound could be
annotated as valine, a branched-chain amino acid. Retention time
as well as exact mass of all significantly associated features,
including unassigned compounds, are available in Table S6. The
inverse association of valine with overweight was strengthened
upon additional covariate adjustment (Model 2) and remained
significant after FDR correction.
In an analysis of the 43 pre-annotated metabolites, leucine and

DHA were nominally associated (P < 0.05) with overweight in basic
analyses (Model 1) (Fig. 2B). In additionally adjusted analyses
(Model 2) lower levels of leucine, progesterone, indolelactic acid,
hexenoylcarnitine (C6:1), hexadecenoylcarnitine (C16:1) and DHA
were nominally associated (P < 0.05) with overweight in early
childhood (Table S7). Directions of association with overweight
were consistent with directions observed previously with birth-
weight [34]. Only leucine, a BCAA previously identified in relation
to rapid infancy weight gain and childhood obesity by Isganaitis,
Rifas-Shiman et al. [18], remained significant after FDR correction.
Valine was moderately correlated with DHA and had weaker

correlations with the unidentified compounds U4, U5 and U7 and
stronger correlations with U3 and hexadecenoylcarnitine (C16:1).
Leucine had a weak negative correlation with Valine and strong
negative correlations with U1, U4, U5 and U7. Strong correlations
were observed between progesterone and indolelactic acid as
well as between the compounds U1, U4, U5 and U7 (Fig. 3C).

Fig. 1 Metabolome wide associations with rapid growth and
overweight. Signed Manhattan-type plot presenting the analysis of
the 4714 UPLC-MS metabolic features for Model 1 for A rapid
growth at twelve months of age and for B overweight in early
childhood. The red dots represent the features that remain
significant after applying the FDR threshold of 5%, whereas blue
dots do not. The vertical axis shows the signed −log10 P value. The
horizontal axis represents the monoisotopic mass (in Da). UPLC-MS-
associated metabolic features are available in Table S3 and Table S6.
The dotted green line represents the mass density.
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Mummichog analysis did not provide strong support for
enrichment of specific pathways with childhood overweight
(supporting information 1 and 3, Table S11).

Multivariate prediction models
We next utilised Random Forest classification models to evaluate
the predictive performance of three different input variable sets
for each of the two outcomes (Fig. 4). The rapid growth prediction
model trained using only traditional risk factors exhibited a
moderate predictive ability of an AUROC value of 0.69 (bootstrap
95% confidence interval (CI):0.62–0.77) (Table S8). Adding the four
metabolites (cholestenone, U2, U4 and U8) identified in the MWAS
analysis into the prediction model, increased the AUROC to 0.77
(bootstrap 95% CI: 0.73–0.81) (Fig. 4A). For overweight, using
traditional risk factors alone, the AUROC was 0.69 (bootstrap 95%
CI: 0.63–0.75), while a model using only the eight metabolites,
Valine, U1, U2, U3, U4, U5, U7 and U9, identified in the MWAS
analysis had an AUROC of 0.77 (bootstrap 95% CI: 0.73–0.81)
(Table S8). The combined traditional risk factor and metabolite
model was strongly predictive of overweight with an AUROC of
0.82 (bootstrap 95% CI: 0.79–0.85) (Fig. 4B). The leave cohort out
analysis also showed improvement in predictive performance
using metabolites, in the majority of cohorts (Table S9).

Sensitivity analysis
To assess the robustness and consistency of our results, we
stratified our population by cohort and by sex and repeated the
adjusted models (Model 2) across each subpopulation. Regarding
rapid growth, results were generally consistent across cohorts for
all identified metabolites, including cholesterone (Figure S2).
However, opposite directions of effects were observed in the
Piccolipiu cohort for PC(34:2) and plasmalogen PC(36:4)/PC(O-
36:5). Regarding overweight, results were again consistent across
cohorts (Figure S3), although wide confidence intervals were
observed in Piccolipiu (related to the small number of overweight
cases available in this cohort). For valine, strong associations were
noted in both the INMA and Rhea cohorts. For rapid growth,
stronger associations were observed in boys with PC(34:2) and
diacylglycerol (C36:4), while in girls stronger associations with
rapid growth were observed with progesterone, tetradecadien-
carnitine (C14:2), decenoylcarnitine(C10:1) and DHA (Figure S4).
Very similar associations were seen with overweight upon
stratification by sex (Figure S5).
To assess the role of birthweight in observed associations, we

additionally adjusted our models for birthweight. There was some
attenuation in effect size in associations for rapid growth (Figure
S6), however, the attenuation with cholestenone was modest and

Fig. 2 Metabolite associations with rapid growth. A Regression coefficients per standard deviation (95% confidence interval) between
features and rapid growth at 12 months across all four cohorts (N= 391), identified in MWAS analysis. B Regression coefficients per standard
deviation (95% confidence interval) between 43 pre-annotated metabolites and rapid growth at twelve months across all four cohorts (N=
391). The solids lines represent the results of Model 1 (adjusted for cohort and ethnicity) and the dotted lines the results of Model 2 (Model 1
further adjusted for maternal BMI, paternal BMI, gestational age, weight gained during pregnancy, paternal education passive and active
smoking status during pregnancy, parity as well as a delivery mode). The * declares P < 0.05 while **FDR < 0.05. C Network graph (Pearson
correlations) of metabolites associated with rapid growth at 12 months of age.
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significance was retained. Adjustment for birthweight had little
effect on associations with overweight (Figure S7). Upon
stratification by size for gestational age (< and ≥33rd percentile
of birthweight for gestational age, Figure S8) we observed
stronger associations with cholestenone and rapid growth as well
as DHA and rapid growth among larger for gestational age (≥33rd
percentile) infants. We noted stronger associations with hexade-
cenoylacarnitine (C16:1), hexenoylcarnitine(C6:1), leucine and
valine and overweight among smaller for gestational age (<33rd
percentile) infants (Figure S9).

DISCUSSION
This is the first study to date that investigates the association between
untargeted metabolic profiles of cord blood and rapid growth at the
first year of life and overweight/obesity in early childhood. We
identified cholestenone and BCAA levels in cord blood as predictive
of rapid growth and overweight/obesity, respectively, among healthy
deliveries from four European populations. In multivariate analysis, we
found that the addition of metabolites substantially improved
prediction of both rapid growth and overweight compared with
models using traditional risk factors alone.

Higher levels of cholestenone were identified as predictive of
rapid growth in the MWAS analysis, with consistent effects noted
across the four included cohorts. Little is known about the effects
of cholestenone on health. It has previously been reported to be
associated with CpG sites that are differentially methylated in
relation to birthweight [35], however, birthweight did not appear
to be an important contributor to the relationship between
cholestenone and rapid growth in our study. Supplementation of
diet with cholestenone leads to growth retardation in rodents and
high levels cause hypertrophy of the adrenal glands, which may
suggest potential endocrine effects [37, 38]. Cholestenone is
produced by bacterial catabolism of cholesterol in the intestinal
tract [39]. It therefore may be serving as a proxy indicator of the
relative abundance of various microbiota present at birth,
although the infant gut microbiome is generally uniform and
under-developed at this stage [40]. Indeed, gestational age, which
is known to influence the composition of the neonatal gut
microbiome [41], was strongly associated with cholestenone levels
in our data. However, the strong association between choleste-
none and rapid growth remained after adjustment for gestational
age. The role of the gut microflora in obesity is increasingly
recognised [42] and differences in faecal microbiota composition

Fig. 3 Metabolite associations with overweight. A Regression coefficients per standard deviation (95% confidence interval) between
features with overweight in early childhood (N= 272), identified in MWAS analysis. B Regression coefficients per standard deviation (95%
confidence interval) between 43 pre-annotated metabolites with overweight in early childhood (N= 272). The solids lines represent the
results of Model 1 (adjusted for age of child at outcome measurement, cohort and ethnicity) and the dotted lines the results of Model 2
(Model 1 further adjusted for maternal BMI, paternal BMI, gestational age, weight gained during pregnancy, paternal education passive and
active smoking status during pregnancy, parity as well as delivery mode). The * declares P < 0.05 while **FDR < 0.05. C Network graph (Pearson
correlations) of metabolites associated in early childhood.
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measured during the first year of life have been found to be
associated with weight status in later childhood [43].
Lower levels of the BCAAs valine and leucine were associated

with overweight/obesity in early childhood, with consistent effects
across both the Rhea and INMA cohorts. Associations were
somewhat stronger with valine than leucine. Lower levels of cord
blood leucine were also identified as nominally associated with
children on a rapid growth trajectory by the study of Isganaitis,
Rifas-Shiman et al. [18]. This is in contrast with the study of
Hellmuth et al., where no associations were reported between
BCAAs in cord blood and weight status at 2 and 10 years, although
the authors speculated that the long storage period in their study
may have degraded certain metabolites such as amino acids.
BCAAs levels in cord blood represent the balance of supply, from
the mother and from protein degradation, and of clearance
through protein synthesis, excretion and BCAA catabolism and/or
oxidation. BCAAs have a complex relationship with overweight
and obesity. On one hand, higher levels in blood are consistently
associated with obesity, insulin resistance and type 2 diabetes.
Adjustment for maternal BMI, which would be expected to
increase maternal levels and the fetal supply of BCAAs,
strengthened the association between cord blood BCAA levels
and childhood overweight, suggesting some negative confound-
ing. On the other hand, numerous intervention studies and animal
studies have shown that increasing dietary intake of BCAAs has
beneficial signalling effects, with positive effects on parameters
including body composition, glycemia and satiety [44]. Multiple
mechanisms for these positive effects have been proposed
including direct effects on hypothalamic and brainstem processes
involved in satiety [44]. Cord blood BCAAs levels could therefore
influence later propensity for overweight through causal pro-
cesses such as control of food intake or alternatively serve as a

marker of other metabolic processes that influence both
propensity for weight gain and levels of BCAAs.
Apart from the association between leucine and overweight, no

other associations were observed for metabolites identified by
Isganaitis, Rifas-Shiman et al. [18]. Among metabolites previously
identified as associated with birthweight, we identified higher
levels of progesterone, PC(34:2), plasmalogen PC(36:4)/PC(O-36:5),
DHA, decenoylcarnitine (C10:1), tetradecadiencarnitine (C14:2) and
diacylglycerol (C36:4) as nominally associated with rapid growth,
although these did not pass multiple testing correction. Proges-
terone is the major progestational hormone involved throughout
all stages of pregnancy, and the pathway enrichment analysis also
highlighted the role of hormonal signalling in rapid growth. DHA
supplementation in milk has been shown to increase growth
among preterm infants [45]. For overweight in early childhood, we
noted nominal associations with lower levels of progesterone,
indolelactic acid, hexenoylcarnitine (C6:1), hexadecenoylcarnitine
(C16:1) and DHA. Indolelactic acid is a tryptophan catabolite that
has an important role in the pathophysiology of obesity [46, 47]
and is produced entirely by gut microbes [48]. Hexadecenoylcar-
nitine (C16:1) levels in the blood have been associated with
obesity in children [49], while positive effects of DHA on obesity
risk and metabolic health have been noted by multiple studies
[50, 51], with proposed mechanisms including suppression of
fatty-acid synthesis, enhancement of fatty-acid β-oxidation and
increase of the serum adiponectin level [52]. The relatively small
overlap in cord blood metabolites associated with birthweight and
with rapid growth and with obesity, suggests that different
mechanisms underlie these outcomes. Furthermore, despite the
established association with rapid growth in infancy and later
development of overweight, the different directions of effect in
birthweight-related metabolites, observed with these two out-
comes, suggest different contributory processes. Indeed, lower
birthweight was a strong predictor of rapid growth while there
was a trend for larger birthweight being associated with
overweight in childhood.
Our analysis using a Random Forest classification model

revealed that the coupling of the strongly associated molecules
and demographic and clinical factors has a high ability to predict
overweight/obesity in early childhood. Isganaitis, Rifas-Shiman
et al. [18] suggested that cord blood metabolic signatures could
be associated with early childhood obesity trajectories demon-
strating, in a similar way with our analysis, that prediction models
based on prenatal obesity factors (maternal age, pre-pregnancy
BMI and breastfeeding duration) can be improved by adding cord
blood associated metabolites. Although models would need to be
validated in cohorts that are independent of the selection of
metabolites, our results highlight a potential practical application
of metabolomics to identify children at risk of obesity and support
the potential merit of routine screening of cord blood [53].
A strength of our study includes the use of cord blood from

multiple birth cohorts, enabling assessment of the metabolome
prior to infant growth, limiting reverse causality. We included a
number of prenatal sociodemographic and clinical factors in our
analysis. However, we did not have complete data related to
maternal nutrition and physical activity that could be linked to
both the metabolome and the family environment later in life.
Nevertheless, we used paternal socioeconomic factors and
maternal clinical factors such as BMI that can reflect general
patterns of family nutrition [54] and physical activity [55–57].
Future studies, with high-quality dietary data available, should
explore the role of maternal nutrition on the cord blood
metabolome.
Although the samples were analysed within a single analytical

run in random order, we observed heterogeneity across the
cohort metabolomic signatures, mainly explained by the proces-
sing of cord blood into plasma or serum. This heterogeneity can
influence the observed associations, and for this reason, we added

Fig. 4 Multivariate prediction models of rapid growth and
overweight. ROC mean value of 1000 bootstrapped model of
threefolds for A rapid growth at 12 months of age after grouping
the ions (nine metabolites) (population size: N= 391) and
B overweight throughout early childhood (population size: N= 272).
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in the model a random effect variable for the cohort. Another
limitation was that the sample was selected from the general
population and we, therefore, had a relatively low number of
overweight children. Furthermore, the use of BMI z scores to
classify children as overweight is a blunter assessment of adiposity
than direct measures such as dual-energy X-ray absorptiometry
[58]. We used WHO obesity classification criteria, which have
higher sensitivity and lower specificity in identifying obese
subjects than the International Obesity Task Force cutoffs. The
untargeted approach is both a strength and limitation: while it
provides wide metabolome coverage [59], identification of the
features can be challenging. Indeed, we were also unable to
characterise all the significant features in the MWAS analysis.

CONCLUSION
We have demonstrated metabolic profiles associated with rapid
growth in infancy and overweight/obesity in early childhood,
highlighting the role of multiple metabolites in various pathways.
We presented evidence that cholestenone and BCAAs are associated
with rapid growth in infancy and overweight/obesity in early
childhood, respectively, and provide new insights on the potential
mechanism underlying overweight risk, particularly early in devel-
opment. Our findings present a potential route to the identification
of at-risk children for the provision of targeted interventions to
improve outcomes for children living in obesogenic environments.
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