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The Comparative Toxicogenomics Database (CTD) is a freely available public resource that curates and inter-
relates chemical, gene/protein, phenotype, disease, organism, and exposure data. CTD can be used to address
toxicological mechanisms for environmental chemicals and facilitate the generation of testable hypotheses
about how exposures affect human health. At CTD, manually curated interactions for chemical‐induced pheno-
types are enhanced with anatomy terms (tissues, fluids, and cell types) to describe the physiological system of
the reported event. These same anatomy terms are used to annotate the human media (e.g., urine, hair, nail,
blood, etc.) in which an environmental chemical was assayed for exposure. Currently, CTD uses more than 880
unique anatomy terms to contextualize over 255,000 chemical‐phenotype interactions and 167,000 exposure
statements. These annotations allow chemical‐phenotype interactions and exposure data to be explored from a
novel, anatomical perspective. Here, we describe CTD’s anatomy curation process (including the construction
of a controlled, interoperable vocabulary) and new anatomy webpages (that coalesce and organize the curated
chemical‐phenotype and exposure data sets). We also provide examples that demonstrate how this feature can
be used to identify system‐ and cell‐specific chemical‐induced toxicities, help inform exposure data, prioritize
phenotypes for environmental diseases, survey tissue and pregnancy exposomes, and facilitate data connec-
tions with external resources. Anatomy annotations advance understanding of environmental health by provid-
ing new ways to explore and survey chemical‐induced events and exposure studies in the CTD framework.
1. Introduction

The Comparative Toxicogenomics Database (CTD; http://ctdbase.
org/) provides information that advances the understanding of how
environmental exposures affect human heath (Davis et al., 2021).
Since 2004, CTD has spearheaded the manual curation of environmen-
tal chemical data from the scientific literature by coding and contextu-
alizing chemical‐gene, chemical‐disease, gene‐disease, chemical‐
phenotype, and chemical‐exposure interactions in a structured format
using controlled vocabularies and ontologies (Davis et al., 2015). This
helps standardize and harmonize information reported by different
laboratories published in a variety of journals over the decades, makes
the information computable, and facilitates data exchange with other
resources. The use of controlled vocabularies enables CTD data to be
computationally integrated internally with other curated data sets
and with select external public data sets to generate inference net-
works connecting heterogeneous data types, which, in turn, can be
used to construct testable hypotheses to elucidate environmental dis-
eases (Davis et al., 2008).

We introduce CTD Anatomy as a vocabulary used to contextualize
curated chemical‐phenotype interactions and exposure data with tis-
sue and cell descriptions to provide the anatomical context for the
reported chemical‐induced toxicities (Davis et al., 2013, 2018).
Encoding anatomy details using a controlled vocabulary makes the
inference
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information computable and adds yet another data type to act as a
nexus for connecting with the diverse research community (Dahdul
et al., 2015). Here, we describe the construction, interoperability,
implementation, visualization, and incorporation of the CTD Anatomy
module into CTD, including online tools. As well, we provide several
examples demonstrating how CTD Anatomy content can be leveraged,
especially with its integration to CTD Exposure, a curated module
relating real‐life environmental exposure study data and biomarker
measurements (Grondin et al., 2016, 2018), to help generate testable
hypotheses and inform environmental health studies.

Gene‐environment interactions are suggested to have a more sub-
stantial influence, compared to genes alone, on chronic human dis-
eases (Rappaport, 2016), and chemical exposure is a key component
of the environment, diet, and metabolism (Barabasi et al., 2020;
Smith and Perfetti, 2020). Recently, numerous laboratories have suc-
cessfully integrated CTD chemical content with genome‐wide associa-
tion studies to identify environmental chemicals associated with
colorectal cancer (Tan et al., 2020), psychiatric disorders (Cheng
et al., 2020), breast cancer (Gong et al., 2020), immune dysfunction
(Wang et al., 2020), insomnia (Kafle et al., 2020), epilepsy (Brennan
et al., 2020), and altered metabolic traits (Lu et al., 2020). Another
critical component to understanding the development of human dis-
ease is the recognition of the diverse molecular and genetic milieu
of different tissues, including the expression and interaction of
tissue‐specific gene networks, and how their regulated expression
and restriction can relate to tissue‐centric diseases (Kitsak et al.,
2016; Gokhman et al., 2017). Thus, understanding how environmental
chemicals interact in physiology‐specific mechanisms at different
anatomical sites should further inform the etiology of environmental
diseases (Taboureau et al., 2020). We demonstrate how CTD Anatomy
can be leveraged to help resolve knowledge gaps between environ-
mental exposure and human health outcomes.
2. Materials and methods

2.1. Data version

Analysis was performed using CTD public data released November
2020 (revision 16353). CTD is updated with new content on a monthly
basis (http://ctdbase.org/about/dataStatus.go); consequently, results
derived in this text may vary over time.
2.2. CTD phenotypes vs. diseases

CTD curation paradigms, practices, and database load/publishing
architecture have been previously described in detail (Davis et al.,
2011). At CTD, “phenotypes” are defined as chemical‐induced aberra-
tions (e.g., toxicities) curated from the toxicology literature and are
operationally distinguished from “diseases” (Davis et al., 2013),
wherein a phenotype refers to a non‐disease biological event: e.g., “de-
creased neuron differentiation” is a phenotype, while “amyotrophic
lateral sclerosis” is a disease; “abnormal cardiac muscle cell prolifera-
tion” is a phenotype, while “myocardial ischemia” is a disease; “in-
creased apoptosis” is a phenotype, while “microcephaly” is a disease,
etc. Two separate vocabularies are used to curate this distinction: for
diseases, CTD biocurators use terms from MEDIC (Davis et al.,
2012), a MErged DIsease voCabulary that combines the terms, acces-
sions, and gene‐disease content from the Online Mendelian Inheri-
tance in Man resource (Amberger et al., 2019) with the terms,
accessions, and navigable hierarchy of Medical Subject Headings
(MeSH) “Disease” branch (https://meshb.nlm.nih.gov/treeView);
however, if the reported outcome does not exist as a term in MEDIC,
then, by definition, it is considered a phenotype and curated
using terms from the Gene Ontology (GO) (Ashburner et al., 2000)
to describe the biological event and is constructed as a
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chemical‐induced toxicity (Davis et al., 2018). Data integration is a
key feature at CTD, allowing the discovery of novel data connections.
Phenotypes can be inferred to diseases based upon shared chemicals
and/or genes (Davis et al., 2013, 2020). Thus, if chemical C1 is
reported to interact with phenotype P1 and independently with
disease D1, then phenotype P1 can be inferred to disease D1 based
upon a shared Chemical Inference Network (CIN) that includes C1.
Similarly, if gene G1 is independently associated with both pheno-
type/GO term P1 and disease D1, then phenotype P1 can be inferred
to disease D1 based upon a shared Gene Inference Network (GIN).

2.3. CTD Anatomy

To build a comprehensive, interoperable anatomical vocabulary,
we started with descriptor and supplementary concept terms from
MeSH “Anatomy [A]” (Coletti and Bleich, 2001). MeSH, as a con-
trolled thesaurus, offers many practical advantages: it is freely avail-
able, reliable, and easy to programmatically access, being
professionally maintained by the U.S. National Library of Medicine;
it provides term definitions, synonyms, and stable accession identifiers
allowing for data interoperability and FAIRness (Wilkinson et al.,
2016); it is robust, including terms for physiological systems, tissues,
fluids, cell types, and sub‐cellular components; it is organized as a dis-
playable, navigable hierarchy, facilitating easy data exploration and
meta‐analysis; and, importantly, it is used to index scientific articles
in PubMed (Sayers et al., 2020), simplifying the querying/retrieval
of scientific publications. We started with MeSH “Anatomy” tree
branch (https://meshb.nlm.nih.gov/treeView) as the core; next, we
computationally excluded several organism‐specific sub‐branches that
relate to species not curate in CTD: “Plant Structures”, “Fungal Struc-
tures”, “Bacterial Structures”, and “Viral Structures”, yet retained the
“Cellular Structures” sub‐branch that includes component terms typi-
cally not found in other anatomical vocabularies (e.g., axons, nucleus,
mitochondria, lysosome, adherens junctions, etc.). Other terms (1103)
mapping to both “Anatomy” and “Disease”MeSH trees (e.g., Adactylia,
Unilateral [MeSH:C562417]) were removed from CTD Anatomy (but
retained in CTD MEDIC). CTD collects, stores, and displays the MeSH
Heading (“Name”), Entry Term(s) (“Synonyms”), Scope Note (“Defini-
tion”), Unique ID (“MeSH ID”), Tree Numbers, and Parent Tree Num-
bers. To enhance its practicality and promote interoperability with
other resources, we mapped these MeSH terms to two other anatomy
vocabularies: Uberon (Mungall et al., 2012), which focuses exclusively
on organs and tissues, and the Cell Ontology (CL), which is limited to
in vivo cell‐types (Diehl et al., 2016). MeSH terms were compared
against Uberon (http://uberon.org) and CL (https://github.com/
obophenotype/cell-ontology), independently, to look for potential
term matches. A designed algorithm evaluated matches between
vocabularies (MeSH vs. Uberon or CL) by four criteria: direct term‐
to‐term match, MeSH term to Uberon/CL synonym match, MeSH syn-
onym to Uberon/CL term match, and MeSH term accession to Uberon/
CL cross‐reference accession match. Matching results can differ based
upon the order‐of‐use of the match algorithms; three different match
order options were performed, and the outputs were manually
reviewed, validated, and corrected when necessary to optimize map-
pings. Matching Uberon/CL terms (and their internal synonyms) were
merged and made “External Synonyms” to the matching MeSH term;
synonyms were only created in cases where they augmented the exist-
ing MeSH synonyms.

2.4. Data collection and analysis

CTD query (http://ctdbase.org/search/) and analyses tools (http://
ctdbase.org/tools/) were used to retrieve and analyze all data sets.
Chemical, phenotype, and exposure curation were collected from the
relevant data‐tabs on anatomy webpages‐of‐interest and transferred
to spreadsheets using the “Download” feature at the bottom of CTD
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Anatomy webpages; data were sorted and filtered to find the number
of unique terms. All CTD curated content is freely available as struc-
tured data files for downloading and programmatic analysis by users
(http://ctdbase.org/downloads/)

For example 1: “Chemical‐Phenotype Interactions” data‐tabs on
CTD Anatomy pages (accession ID) were downloaded for Liver
(MeSH:D008099), Kidney (MeSH:D007668), Brain (MeSH:D001921),
and Heart (MeSH:D006321); data associated with descendant terms
were subsumed and used in the analysis. Unique chemical, phenotype,
and chemical‐phenotype dyads were compared using Venny 2.1
(https://bioinfogp.cnb.csic.es/tools/venny/index.html). Specific
immune system cell terms or accession IDs were input into CTD’s Batch
Query to retrieve associated chemical‐phenotype data using the filter
to return data for exact input term and any descendant. Data were
transferred to spreadsheets and then sorted and filtered to find the
number of unique chemicals and phenotypes for each cell type. For
visualization, an edited, schematic diagram of the “Immune System”
was drawn based upon its hierarchy in CTD Anatomy (http://ctd-
base.org/detail.go?type=anatomy&acc=D007107), and the unique
number of chemicals and phenotypes were overlaid for each surveyed
immune cell. The top reported chemicals and phenotypes were broken
out and graphed for each distinct immune cell type.

For example 2: “Chemical‐Phenotype Interactions” and “Exposure
Studies” data‐tabs on CTD Anatomy page Tibia (MeSH:D013977) were
used to combine bone‐related phenotypes and bone‐related exposure
outcomes. The Inference Network provides gene sets connecting lead
to the phenotypes of osteoclast and bone development. Next, “Pheno-
types” data‐tabs on CTD Disease pages were downloaded for Stomach
Neoplasms (MeSH:D013274) and Autistic Disorder (MeSH:D001321),
including phenotype data associated with their descendant disease
terms, and then, independently, were sorted to collect only the pheno-
types inferred by both a CIN and GIN. “Chemical‐Phenotype Interac-
tions” data‐tabs on CTD Anatomy pages were downloaded for
Stomach (MeSH:D013270), Neurons (MeSH:D009474), and Brain
(MeSH:D001921), and lists of unique phenotypes for each anatomical
term were resolved.

For example 3: “Exposure Studies” and “Exposure Details” data‐
tabs were downloaded, sorted, and analyzed to identify unique num-
bers of studies, measurements, chemicals, and genes for the following
CTD Anatomy pages: Urine (MeSH:D014556), Serum (MeSH:
D044967), Plasma (MeSH:D010949), Blood Cells (MeSH:D001773),
Hair (MeSH:D006197), Saliva (MeSH:D012463), Adipose Tissue
(MeSH:D000273), Semen (MeSH:D012661), Tears (MeSH:D013666),
Sweat (MeSH:D013542), Fetal Blood (MeSH:D005312), Milk Human
(MeSH:D008895), and Placenta (MeSH:D010920).
3. Results and discussion

3.1. CTD Anatomy

CTD Anatomy includes 1799 unique terms, of which 1326 (74%)
are mapped to and enhanced with synonyms and cross‐reference iden-
tifiers from 1227 Uberon and 265 CL terms (Fig. 1A). All merged syn-
onyms and accession identifiers are searchable in CTD, and cross‐
references are provided on CTD Anatomy webpages to the respective
ontologies using resource‐specific accession identifiers. CTD Anatomy
is freely available as a downloadable data file (http://ctdbase.
org/downloads/#allanatomy).
3.2. Curating to CTD Anatomy

CTD Anatomy is used as a controlled vocabulary to annotate data in
two curation modules: CTD Phenotype and CTD Exposure. CTD Pheno-
type describes chemical‐induced, non‐disease phenotypes from the sci-
entific literature (Davis et al., 2013, 2018), typically derived from
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laboratory experiments, and these interactions are contextualized with
anatomical terms to enable users to survey the system in which the
toxicological event was reported. CTD Exposure provides real‐world
human exposure science statements (Grondin et al., 2016), using over
50 data fields to describe the exposure stressor (chemical, source cat-
egory), human receptor demographics (description, age, gender, smok-
ing status, race), exposure event (methods, biomarker assay,
geographic location, statistics), and outcome (phenotype, disease).
For biomarker measurements, CTD Exposure captures the concentra-
tions of environmental chemicals assayed in human fluids, tissues,
and cells, and for exposure outcomes, stressor‐induced phenotypes
are contextualized with anatomy terms (Grondin et al., 2018).

Multiple anatomy terms can be combined to provide greater speci-
ficity, such as linking together individual terms to annotate a
chemical‐induced phenotype reported in the mitochondria of hindlimb
muscle fibroblasts (Fig. 1B). This multiplexing allows for exponential
combinations, such as annotating cell types (e.g., Epithelial Cells) to
any tissue (e.g., Lung, Kidney, Liver, Aorta) without the need to create
individualized cell sub‐types for every organ. Currently, over 880 anat-
omy terms are used to help contextualize more than 255,000 chemical‐
phenotype interactions and 167,000 exposure statements in CTD
(http://ctdbase.org/about/dataStatus.go).
3.3. Accessing and viewing CTD Anatomy

CTD Anatomy webpages enable users to survey and explore the
associated curated data sets from an anatomical perspective and are
now seamlessly integrated as a component of the database. Terms
can be accessed either by drilling down the navigable main hierarchy
(http://ctdbase.org/voc.go?type=anatomy) or by using the CTD Key-
word Search Box (Fig. 2). The vocabulary is organized by 17 top‐level
categories, reflecting anatomical structures and regions, fluids and tis-
sues, cells, sub‐cellular components, and physiological systems. It is a
navigable hierarchy, displaying both “Ancestors” (parent) and
“Descendants” (children) terms. Nodes are indented to indicate their
relative level in the displayed tree, and a node marked by a plus‐
symbol has descendants in at least one of the hierarchical paths dis-
played on the current page. Granular terms often map to multiple
physiological systems because CTD Anatomy is structured as a poly-
hierarchic tree in which a term may appear as a node in more than
one branch, and a term may have different descendant terms in each
branch in which it appears. For example, searching with the phrase
“blood cells” brings back the page Blood Cells (Fig. 2), which traces
back to two ancestor terms (Cells and Hemic and Immune Systems)
and down to multiple descendants (e.g., Blood Buffy Coat, Blood Pla-
telets, Erythrocytes, etc.) and is externally linked (CL_0000081) to the
corresponding CL term “blood cell”.

CTD Anatomy webpages are partitioned into five data‐tabs that par-
allel the content seen on other CTD pages: “Basics” lists the official
term name, definition, synonyms, accession identifier, and external
links; “Chemical‐Phenotype Interactions” provides a tabular format
of the curated chemical‐induced phenotypes interaction that can be
sorted by chemical, phenotype, co‐mentioned term, organism, anat-
omy, and gene inference network column headers, as previously
described (Davis et al., 2020); “Exposure Studies” provides a summary
statement and a broad view of the reported exposure project, while
“Exposure Details” itemizes marker levels, measurements, statistics,
and outcome relationships (Grondin et al., 2016); and “References”
collates all curated articles and their cited terms.
3.4. Using CTD Anatomy

In the examples below, we demonstrate how CTD Anatomy pages
can be used to survey and leverage curated chemical‐phenotype and
exposure data sets, and how this information can help apprise and
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Anatomical term pathways:

Fig. 1. Building and implementing CTD Anatomy. (A) MeSH “Anatomy” files were downloaded and computationally edited to exclude organism-specific sub-
branches for species not curated in CTD (plants, fungi, bacteria, and viruses). Next, the terms, synonyms and cross-reference accession identifiers (x-ref IDs) for
1227 organs/tissues from Uberon and 265 cell types from Cell Ontology (CL) were programmatically mapped (and then manually reviewed) into the vocabulary,
building an interoperable resource that currently includes 1799 primary terms. CTD Anatomy is freely available as a downloadable file (http://ctdbase.
org/downloads/#allanatomy). (B) CTD biocurators use an online tool (Interaction Entry Page) to generate interactions, which can be contextualized with CTD
Anatomy terms. Anatomy curation is expandable, allowing terms from different branches to be multiplexed, adding specificity and enabling the data to be
ultimately surveyed by users from multiple anatomical term pathways.
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inform environmental health studies and initiate the generation of tes-
table hypotheses.

3.4.1. Example 1: surveying chemical toxicities via anatomy
Improving the prediction of chemical toxicity is a common goal for

both environmental health research and pharmaceutical drug develop-
ment (Davis et al., 2013; Pelletier et al., 2016). Exploring CTD
chemical‐phenotype interactions from an anatomical perspective facil-
itates the identification of system‐specific chemical actions and pheno-
types, which, in turn, can help inform toxicity, side effects, and
potential areas of interaction between environmental chemicals and
therapeutic drugs (Fardel et al., 2012). CTD Anatomy permits easy
visualization of the distribution of chemical‐induced phenotypes
(i.e., toxicities) for liver, kidney, brain, and heart (Fig. 3). At CTD, a
chemical‐phenotype interaction is constructed as a dyad, consisting
of a chemical and the phenotype that it modulates. We compared
not just the number and type of unique chemicals and phenotypes
independently, but also the chemical‐phenotype dyads.

In total, 3615 chemicals, 2207 phenotypes, and 22,581 dyads are
distributed across the four anatomical terms, with many environmen-
tal chemicals, such as air pollutants (carbon monoxide, nitrogen diox-
ide, particular matter, ozone, soot, vehicle emissions, and sulfur
131
dioxide) affecting all four systems (Fig. 3). As well, each organ has
unique data not present in any of the other three, providing potential
sets of system‐specific chemical actions and modulated processes.
Some of the toxicities (and the chemicals that induce them) unique
to the liver include effects on lipid homeostasis (quercetin, tobacco
smoke, diisononyl phthalate) and hepatic stellate cell activation
(lipopolysaccharides, tetramethylpyrazine, curcumin, methyl feru-
late); kidney‐restricted phenotypes include aberrations in glomerular
basement membrane development (dietary fats, caffeine), ferroptosis
(vitamin E), misregulation of glomerular filtration (particular matter,
cadmium, lead, nitric oxide), and renal tubular secretion (rifampin,
notoginsenoside R1); brain‐restricted toxicities include defects in
dopamine metabolism (rotenone, geraniol, baicalein), excitatory post-
synaptic potential (nicotine, sulfur dioxide, lead acetate), and neuroge-
nesis (cadmium, manganese, perfluorooctane sulfonic acid); and heart
toxicities include modulations in cardiac muscle cell contraction
(bisphenol A, caffeine, paraquat), heart rate (endotoxins, fentanyl,
methylatropine), and heart looping (flame retardants, mannitol, tetra-
chlorodibenzodioxin). Many chemical‐phenotype dyads are associated
with all four tissues, and these represent toxicities in basic metabolic
processes common to most cell‐types, such as lipid oxidation, glu-
tathione metabolism, and superoxide dismutase activity.
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Anatomy No. Chemicals No. Phenotypes No. Dyads

sodium  arsenite lipid oxidation
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Fig. 3. Using CTD Anatomy to identify organ toxicities. The numbers and distribution of unique chemicals, phenotypes, and chemical-phenotype dyads are shown
for liver, kidney, brain, and heart. Venn analysis discovers unique and shared data types for each anatomical location, such as ambient air pollutants (carbon
monoxide, ozone, nitrogen dioxide, soot, sulfur dioxide, vehicle emissions, and particulate matter) affecting different subsets, and environmental chemicals
(sodium arsenite, cadmium, bisphenol A) affecting toxicities related to basic cellular metabolism in all four organs.
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Surveying chemicals and outcomes from an anatomical perspective
provides insight about potential chemical‐induced toxicities that inter-
act in different, shared, and unique physiological systems (Taboureau
et al., 2020). For example, the ambient air pollutant particulate matter
affects over 30 phenotypes in the heart. Interestingly, many of these
induced toxicities (e.g., calcium‐mediated signaling, activation of pro-
tein kinase B, cardiac muscle contraction, regulation of heart rate) are
modulated in this same tissue by known cardiovascular therapeutics
(e.g., propranolol, esmolol, nifedipine, nitroprusside, and prazosin).
Molecular mechanistic models now can be developed to study poten-
tial interactions between air pollutants and pharmaceutical drugs to
explore how these interactions could affect human health in medicated
patients (Tumiatti et al. 2018). A critical facet, and challenge, to
understanding environmental health is to recognize the influence of
toxicant mixtures and combined exposures (Martins et al., 2019).
Towards that end, identifying system‐specific chemical‐induced phe-
notypes (and the genes shared between the dyads) should help facili-
Fig. 2. Accessing and viewing CTD Anatomy. The drill-down main hierarchy for C
top-level categories, including animal structures, cells, body regions, fluids, sense o
data available for each term (‘eye’ for chemical-induced phenotypes and ‘lifesaver’
that term. Alternatively, users can perform a keyword search (picking ‘Anatomy’ fro
has five data-tabs. The default tab (“Basics”) provides a definition, list of synon
descendant terms.
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tate the development of co‐exposure mechanistic hypotheses for
potential interactions between two or more chemicals that synergize
in the same tissue at low doses to produce an outcome not seen in a
single exposure, as described for interactions between bisphenol A
and environmental chemicals (Sonavane and Gassman, 2019).

In addition to tissues and organs, cells can be surveyed for
chemical‐induced toxicities. For example, multiple terms can be
searched simultaneously using CTD’s Batch Query (http://ctdbase.
org/tools/batchQuery.go) to identify chemical‐phenotype dyads asso-
ciated with a variety of specific immune cells (Fig. 4). Here, results
show a strong chemical influence of lipopolysaccharides on macro-
phages (triggering over 100 phenotypes) and tetradecanoylphorbol
acetate on mast cells (25 phenotypes). The most reported chemical‐
induced toxicities relate to apoptosis and cell proliferation (in all
immune cells) and abnormal histamine secretion (in basophils and
mast cells), mitochondrial membrane potential, and cell cycle irregu-
larities (Fig. 4). This strategy elucidates chemical toxicities in different
TD Anatomy (http://ctdbase.org/voc.go?type=anatomy) is organized into 17
rgans, tissues and 10 physiological systems. Icons indicate the type of curated
for exposures); clicking any icon will take the user to the specific data-tab for
m the drop-list), and results highlight the query terms. Every anatomy webpage
yms and link-out accession IDs, and navigable hierarchy with ancestor and
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Fig. 4. Using CTD Anatomy to identify cell toxicities. CTD’s Batch Query (http://ctdbase.org/tools/batchQuery.go) accepts anatomy terms as input values (official
terms, synonyms, or interoperable accessions). Downloading the associated chemical-phenotype interaction data identifies the unique number of chemicals and
induced phenotypes associated with each cell type to enable users, for example, to build immunotoxicology models at the cell level. A schematic drawing of the
immune system hierarchy is overlaid with the retrieved number of unique chemicals and phenotypes for each surveyed immune cell. Some of the top chemical
toxicants (e.g. lipopolysaccharides, resveratrol, arsenic trioxide, bisphenol A) and top induced-phenotypes (e.g., apoptosis, cell proliferation, histamine secretion,
cell cycle) are graphed based upon the type of immune cell in which the toxicity was reported (bottom box).
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immune system cell compartments and might help build models for
environmental toxicology (Thompson et al., 2015).

3.4.2. Example 2: informing environmental diseases with anatomical-based
phenotypes

Anatomy curation enables users to discover environmental factors
and molecular mechanisms associated with environmental diseases
without a priori knowledge of any chemical, gene, phenotype, or dis-
ease outcome. Two cases are described showing how CTD Anatomy
can be used to inform the understanding of the pathogenesis of envi-
ronmental diseases.

First, CTD Phenotype and CTD Exposure are two independent cura-
tion modules that use CTD Anatomy for annotations, connecting exper-
imental laboratory results with real‐world exposure information that,
in turn, can help inform environmental health studies. For example,
a shared anatomy annotation (Tibia) connects two independent find-
ings: a mouse study showing how lead modulates osteoclast and bone
development phenotypes in the tibia (Beier et al., 2016), and a human
exposure study (Arora et al., 2009) correlating increased lead levels in
the tibia with excessive tooth loss (Fig. 5). The shared entities (Lead
and Tibia) link these two independent studies, allowing anatomical‐
based phenotypes to help inform a hypothetical environmental health
study; here, testable hypotheses about potential molecular mecha-
nisms can be generated for lead interacting with any of the 20
134
genes/proteins to influence bone phenotypes (osteoclast and bone
development) contributing to tooth loss in exposed humans; such data
models can be used to help propose and refine formal adverse outcome
pathways (Ankley and Edwards, 2018).

Second, anatomical‐based phenotypes can help inform and priori-
tize mechanistic models for anatomical‐based diseases, such as
tissue‐specific cancers or brain‐related disorders (Fig. 6). For example,
967 phenotypes can be inferred to Stomach Neoplasms based upon
both the shared set of chemicals (Chemical Inference Network, CIN)
and genes (Gene Inference Network, GIN). One method to help prior-
itize this set is to filter them by phenotypes independently reported to
be chemically induced in the corresponding tissue, i.e., stomach. CTD’s
anatomy page for Stomach provides 167 chemical‐induced phenotypes
reported in stomach cells/tissue, and when compared against the 967
inferred phenotypes, refines the list to 92 phenotypes that are both
inferred to stomach cancer by CIN and GIN and shown to occur in
stomach cells/tissue. These prioritized phenotypes provide potential
mechanistic steps to build testable models for chemical‐induced stom-
ach cancer, such as response to oxidative stress, altered cellular signal-
ing (JUN kinase, NF‐kappaB, and ERK1/ER2), and de‐stabilization of
cell growth and gastrointestinal epithelium (Fig. 6). Many of these
computed phenotypes are validated in the literature as playing a role
in chemical‐induced stomach cancer, including altered cell signaling
by NF‐kappaB (Sokolova and Naumann, 2017), ERK1/2 (Khoi et al.,

http://ctdbase.org/tools/batchQuery.go
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Fig. 5. Using CTD Anatomy to help inform exposure data. The same anatomy vocabulary is used to annotate both chemical-phenotype and exposure data, and CTD
Anatomy webpages coalesce this heterogeneous information, allowing experimental results to be connected to and help inform real-world outcomes. On the Tibia
webpage, the “Chemical-Phenotype Interactions” data-tab (top) describes the role of lead in osteoclast and bone development in the tibia of mice, while the
“Exposure Studies” data-tab (bottom) report how long-term cumulative lead exposure in humans (24.9 µg per gram tibia) correlates with excessive tooth loss.
Users can leverage these data to generate testable hypotheses (middle) for potential molecular mechanisms and adverse outcome pathways to help fill in the
knowledge gaps for environmental health; in this example, lead interacts with 20 known genes (from the Inference Network) to modulate bone phenotypes, which
in turn could be related to tooth loss.
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2014), and JUN (Li et al., 2013). This is not to suggest that the other
phenotypes do not necessarily play a role in stomach cancer. The pri-
oritized phenotypes enable users to initiate the design of testable
hypotheses, especially since these 92 refined phenotypes also have
associated CIN and GIN. This permits the construction of chemical‐
gene‐phenotype‐disease (CGPD)‐tetramers that fill in knowledge gaps
and help assemble chemical‐disease pathways (Davis et al., 2020).
Similarly, the inferred phenotypes for non‐cancer environmental dis-
eases like autistic disorder can be first filtered with phenotypes from
tissues predicted to play a role in the disease (e.g., neurons and brain)
to refine potential mechanistic processes (e.g., action potentials,
autophagy, dendrite arborization, olfactory behavior, etc.) to design
environmental models for autism (Fig. 6).

3.4.3. Example 3: tissue-based exposomes
The ‘exposome’ concept represents all exposures of an individual

(e.g., chemical, biological, physical, behavioral, societal, psychologi-
cal, etc.) across their life course since conception and how those expo-
sures relate to health effects and outcomes (Wild, 2005). One facet to
understanding exposomes and their relationship to human health is to
identify and quantify the metabolites, biomarkers, and biological pro-
cesses in response to environmental chemical exposures from air pol-
lution, diet, cosmetics, fragrances, drinking water, flame retardants,
135
etc. (Vermeulen et al., 2020). Measuring and defining anatomy‐
specific exposomes, such as for blood (Rappaport et al., 2014), urine
(Gao, 2013;), lung (Wheelock and Rappaport, 2020), and kidney
(Dupre et al., 2020), has been proposed to help understand the gene‐
environment interactions associated with human environmental dis-
eases. In the CTD Exposure module, chemical and genes/protein
biomarkers are curated for exposure events from the literature
(Grondin et al., 2016), and these measurements are annotated with
anatomical terms for the biological media assayed. These media, in
turn, are integrated to CTD Anatomy, allowing exposure measure-
ments captured from different articles to be coalesced from an anatom-
ical perspective (Fig. 7). Thus, users can explore on‐the‐fly tissue‐
specific exposomes for any part of the human body, including well‐
studied fluids such as urine (681 studies, 48,800 measurements, 463
chemicals) and serum (397 studies, 22,600 measurements, 253 chem-
icals), as well as less commonly studied exposomes, e.g., semen (24
chemicals), saliva (9 chemicals), and sweat (5 chemicals).

Anatomical terms related to pregnancy (e.g., human milk, fetal
blood, placenta) allow the infant/newborn exposome to be surveyed
for early life events. For example, more than 15 polybrominated flame
retardants have been detected in breast milk (http://ctdbase.org/de-
tail.go?type=anatomy&acc=D008895&view=expConsol). Median
values for the retardant PBDE‐47 range between 0.1 and 32 ng per

http://ctdbase.org/detail.go%3ftype%3danatomy%26acc%3dD008895%26view%3dexpConsol
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Anatomy Studies Measurements Chemicals Genes

urine 681 48,887 463 14
serum 397 22,613 253 133
plasma 153 6,261 166 43
blood cells 113 731 13 130
hair 81 4,409 62 0
saliva 18 181 9 2
adipose 16 518 42 2
semen 13 286 24 5
tears 2 12 2 0
sweat 1 18 5 0
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fetal blood 132 3,501 141 41

human milk 65 6,041 134 0
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Fig. 7. Using CTD Anatomy to survey exposomes. The “Exposure Studies” and “Exposure Details” data-tabs on CTD Anatomy pages coalesce (from different
publications) all curated measurements for chemicals and gene/protein markers assayed in humans in response to exposures, such as pesticides, air pollution,
environmental contaminants, household products, diet, flame retardants, etc. In human serum, 397 exposure studies have been curated that report more than
22,000 measured values for 250 chemicals and 130 genes/proteins. Anatomy terms related to pregnancy, such as human milk, provide a snapshot of the early life
exposome.

A.P. Davis et al. Current Research in Toxicology 2 (2021) 128–139
gram lipid, as reported by 26 studies from 13 countries, with one study
correlating PBDE‐47 levels in breast milk with congenital cryp-
torchidism in newborn boys (Main et al., 2007). As well, numerous
polychlorinated biphenyls (PCBs) have been measured in the fetal
blood exposome (http://ctdbase.org/detail.go?type=anatomy&acc=
D005312&view=expConsol), with several correlating to decreased
developmental growth (PCB‐138), fetal growth retardation (PCB‐
153), and decreased cognition (PCB‐118). These exposome chemicals
can be further explored in CTD to discover interacting genes and
induced phenotypes to help construct testable models for prenatal
exposure delayed effects.

3.5. Bringing other resources into the chemical environment via shared
anatomy

Gene‐environment interactions are paramount to understanding
biological traits and diseases, and while numerous public databases
Fig. 6. Using CTD Anatomy to prioritize phenotypes for environmental disease
anatomical-based environmental diseases. Here, CTD Anatomy describes 167 chem
anatomical phenotypes with the 967 phenotypes inferred to stomach cancer identifi
(boxes), since they represent phenotypes that are both known to be chemical-indu
chemicals and genes). Similar analysis can be performed for other environmental di
terms (e.g., neurons and brain).

◂
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focus on genetic and genomic information, relatively fewer resources
catalog the environmental components or their influences
(Mattingly, 2009). Using informatics to integrate environmental expo-
sure data with human genomic resources is a community‐recognized
need and challenge for elucidating the environmental risk factors for
disease (Thessen et al., 2020). CTD currently uses community‐
accepted vocabularies and identifiers when curating chemical, gene,
phenotype, disease, and taxon data, and these can be used as accession
points for external resources (Davis et al., 2019). Adding interoperable
identifiers for Uberon and CL into CTD Anatomy provides yet another
way to establish connections between CTD and external resources, fur-
ther enabling CTD chemicals and environmental exposures to be
brought into genomic databases to explore gene‐environment interac-
tions. For example, the CTD Anatomy page for Lung is identified by the
primary accession MeSH:D008168 (http://ctdbase.org/detail.go?-
type=anatomy&acc=D008168) but includes the matched external
identifier UBERON:0002048 to promote interoperability with
s. Phenotypes annotated with anatomy terms can be used to help inform
ical-induced phenotypes studied in stomach tissue/cells. Comparing these 167
es a subset of 92 that can be prioritized for generating mechanistic hypotheses
ced in stomach tissue as well as being inferred to stomach cancer (by shared
seases, like autism, filtered against phenotypes for disease-relevant anatomical

http://ctdbase.org/detail.go?type=anatomy%26acc=D005312%26view=expConsol
http://ctdbase.org/detail.go?type=anatomy%26acc=D005312%26view=expConsol
http://ctdbase.org/detail.go%3ftype%3danatomy%26acc%3dD008168
http://ctdbase.org/detail.go%3ftype%3danatomy%26acc%3dD008168
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resources that employ other anatomical vocabularies.
UBERON:0002048 is used to annotate ‘lung’ to a plethora of genes,
transcriptomes, and genomic regions in resources such as Monarch Ini-
tiative (Shefchek et al., 2020), FANTOM5 (Kawaji et al., 2017),
ENCODE (Malladi et al., 2015), GeneWeaver (Baker et al., 2016),
and GEO DataSets (Barrett et al., 2013), among others. CTD’s content
for Lung includes 1300 chemicals affecting 800 phenotypes curated
from more than 1600 articles, and this information can be integrated
with these genomic databases via the shared interoperable accession
identifier for anatomy. Discovering and combining diverse public data
sources helps fill in knowledge gaps and facilitates the computational
design of pathways to support systems toxicology applications (Kosnik
et al., 2019; Ives et al., 2017) and environmental exposure models
(Thessen et al., 2020). CTD’s chemical‐induced toxicities, already iden-
tified by specific anatomical sites, should help further support and
refine these models and molecular mechanisms.
4. Conclusion

We present and describe CTD Anatomy, a new type of contextual-
izing information that allows users to explore curated chemical‐
phenotype and exposure data from a unique anatomical perspective.
We provide numerous examples highlighting how this feature can be
used to approach environmental health studies, including identifying
tissue‐specific toxicities and immune cell dysregulation, generating
testable hypotheses that fill in knowledge gaps to connect lead expo-
sure to excessive tooth loss, prioritizing tissue‐related phenotypes for
environmental diseases such as stomach cancer and autism, surveying
tissue‐specific and pregnancy‐related exposomes, and exploiting the
interoperability of anatomy terms to exchange data with and add con-
tent to external genetic/genomic resources to help integrate them into
the chemical environment provided by CTD.

Currently, users can leverage CTD anatomy data to survey
chemical‐induced toxicities, either by anatomy‐specific webpages
(http://ctdbase.org/voc.go?type=anatomy), batch queries (http://ct-
dbase.org/tools/batchQuery.go), or single queries (http://ctdbase.
org/query.go?type=phenotype). Additional new tools are planned,
including a web‐based application that generates on‐the‐fly CGPD‐
tetramers (Davis et al., 2020), enabling a user to input a term‐of‐
interest (i.e., chemical, gene, phenotype, or disease) and the tool auto-
matically computes the possible CGPD‐tetramers to fill in the knowl-
edge gaps. Selecting an anatomy term as an additional parameter
will refine the output to tissue‐specific pathways.
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