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EDITORIAL COMMENT
Can AI Find the Needle in a Haystack?
The Ongoing Search for Undiagnosed Cardiac Amyloidosis
Timothy J. Poterucha, MD,a Christopher M. Haggerty, PHD,b,c Pierre Elias, MDa,b,c
A n accurate diagnosis is the sine qua non of
medicine. With it, treatment and everything
else follows. Without it, we are groping in

the dark.
The story of cardiac amyloidosis has been one of

relentless progress.1 Two decades ago, the disease
was thought to be both vanishingly rare and a death
sentence. Increased awareness coupled with
improved diagnostics has revealed the disease to be
far more common than previously thought. Trans-
thyretin cardiac amyloidosis (ATTR-CA), the most
common subtype, is present in up to 11% of hospi-
talized patients with heart failure with preserved
ejection fraction and may be present in upward of 1%
to 2% of the general elderly population.2 Improved
understanding of the biology of ATTR-CA has
unlocked new and successful therapeutics. These
range from transthyretin stabilization using tafamidis
or acoramidis to gene silencing using patisiran or
inotersen to even gene therapy to delete the causa-
tive gene entirely.3-5 However, all these therapies are
inherently stabilizing in nature and no success has
yet been had in treatments to remove amyloid that
has already deposited. Thus, early recognition of the
disease at its most treatable stage remains para-
mount. The field has increasingly asked the following
question: could artificial intelligence (AI) play a role
in identifying those patients with the early-stage
disease most amenable to treatment?
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In this issue of JACC: Advances, Vrudhula et al6

attempt to answer this question and more fully
understand how certain patient selection may
impact the accuracy of AI models. In this single-
center retrospective study, the authors studied the
utility of 12-lead electrocardiogram (ECG) models to
detect cardiac amyloidosis. These AI models analyze
the ECG waveform to distinguish cases of cardiac
amyloidosis from controls, a task they can accom-
plish relatively well with an area under the receiver
operator characteristic curve (AU-ROC) as high as
0.898. Achieving such high performance is consis-
tent with the general diagnostic capabilities that
ECG-based AI models have demonstrated in recent
years. Indeed, the top line results of this study are
nearly identical to several studies classifying ATTR-
CA from ECGs with deep learning with AU-ROCs of
0.85 to 0.91.7-9

The more important contributions from this
analysis are the insights derived from the system-
atic evaluation of case and control selection on
model output. As the authors convincingly demon-
strate, this is not an idle question but instead one
on which the success or failure of an AI program is
critically dependent. Supervised learning, the most
common type of AI, relies upon labeled data sets to
train models to distinguish patterns. In the case of a
model to detect cardiac amyloidosis, an AI model is
developed by providing some type of data (in this
case, an ECG) from patients with cardiac amyloid-
osis and the same type of data from controls
without the disease. If provided enough data, the
model can learn the ECG patterns associated with
cardiac amyloidosis and may be able to identify
cases of cardiac amyloidosis that it has not previ-
ously seen.

In this article, the authors tested multiple methods
of identifying cases of cardiac amyloidosis such as
curated cardiac amyloidosis clinic lists or amyloidosis
https://doi.org/10.1016/j.jacadv.2024.100999
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by diagnosis codes with or without supportive find-
ings such as increased left ventricle thickness by echo
or a positive troponin or brain natriuretic peptide.6

These amyloidosis cases were combined with vari-
ously defined controls such as all patients; all patients
matched by age, sex, wall thickness, or QRS ampli-
tude; or patients with similar pathologic features,
such as left ventricular hypertrophy or heart failure
by various metrics. With these various combinations
of cases and controls, the authors report an enormous
variability in accuracy with AU-ROCs ranging from
0.467 to 0.898 depending on the selected model and
test set.

Several trends emerged from this analysis. First,
good performance in a test set mirroring the training/
development set does not guarantee good perfor-
mance in a broader population. While this is a known
fundamental concept in data science and machine
learning, empirical demonstration can still provide
useful reinforcement. Second, incorporating a broad
set of controls is critical—none of the models devel-
oped with narrow control definitions (ie, restricting to
heart failure or left ventricular hypertrophy) were
viable. Such a strategy could be reasonably motivated
by forcing the model to learn to make difficult dis-
tinctions in a clinical diagnostic context, but such
cases should still be part of a broader population if
that is the intended use of the resulting model.
Finally, while performance metrics varied for
models across the spectrum of case definitions, all
demonstrated a potential to generalize in this
analysis. As the authors note, this suggests that
specialized centers with highly curated registries are
not a prerequisite for evaluating or developing
models for rare diseases such as ATTR-CA.6 While
explicit generalization of these patterns for other
disease states is needed, it is reasonable to presume
that they may similarly apply to modeling studies
of other rare cardiovascular conditions of interest,
such as hypertrophic or arrhythmogenic
cardiomyopathies.

What are the limitations of this analysis? First, this
is a single-center study, and the external generaliz-
ability of these findings is uncertain. Second, the
sensitivity and specificity of this approach may not
support widespread deployment. At the Youden in-
dex, the model has a sensitivity of 61% and specificity
of 72% for a positive predictive value of 0.018. Even
when specificity is maximized at 97%, modeling
demonstrates that out of 10,000 patients screened, a
total of 275 would be flagged as positive and only 18 of
those patients would be found to have amyloidosis.
Maintenance of a funnel that starts with 10,000 pa-
tients and yields only 18 cases may prove untenable.
Third and most importantly, this manuscript and
other prior analyses are retrospective. We truly do not
know if clinical pathways deploying these models will
function effectively. It may be that the patients
already diagnosed with cardiac amyloidosis are the
“low hanging fruit” with the most phenotypically
distinct features. The remaining cases may be those
patients with subtle, difficult to detect findings. In
addition, given the association between age and car-
diac amyloidosis, it is probable that many undiag-
nosed patients will have concomitant diseases that
preclude benefiting from the diagnosis, particularly
given the exorbitant cost of cardiac amyloidosis
therapies.

The authors are to be congratulated for carrying
out this complex, rigorous analysis. The finding that
using similar case and control definitions as the
planned deployment is likely a generalizable one in
AI research, and this manuscript continues to build
the evidence basis for using AI to detect
cardiac amyloidosis. The next frontier is clear: we
must move beyond the retrospective and carry out
the essential clinical trials to determine if we can
diagnose cardiac amyloidosis with these
technologies.
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