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INTRODUCTION 
 

Epigenetic age estimation based on age-correlated DNA 

methylation has emerged as the most accurate and robust 

molecular estimator of biological age [1]. DNA 

methylation age (DNAm) based on 353 autosomal CpGs 

(Cytosine-phosphate-Guanine dinucleotides), identified 

from DNA methylation microarray data, represents the 

most widely used multi-tissue age predictor with high 

accuracy (error of ± 3.6 years across tissues) [1]. This so 

called Horvath clock was developed from microarray 

data of >8,000 individuals and 51 healthy tissues, and 

has also been tested for the effect of accelerated aging in 

disease, such as in obesity [2], HIV infection [3] and 

cancer [4]. Over the years, the success of epigenetic age 

predictors has been continued, targeting different tissues 

e.g. blood and buccal cells [5] and semen [6], particular 

age groups e.g. children [7], expanding from humans to 

other species e.g. chimpanzees [8] and mice [9], as well 

as utilizing multiple statistical approaches [10] and 

targeted laboratory methods, e.g. next-generation 

sequencing [11]. 

 

However, all currently available epigenetic age 

predictors are based on CpGs located on the autosomal 

chromosomes. Nevertheless, sex-specific differences in 

epigenetic mechanisms exist, including in the X-

chromosome inactivation in women [12], sex-specific 

genome-wide DNA methylation patterns [13], sex-

specific epigenetic regulation of gene expression [14], 

and also in sex-specific aging-related phenotypes and 

diseases [15]. Particularly, it has been reported that 

male, but not female, longevity advances as a result of 

rising male mortality; this leads to the mortality type-

dependent sex gap in longevity between males and 

female being further broadened [16]. Furthermore, 
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epigenetic mechanisms define the sex-specific stage for 

disease later in life [17]. More importantly, the sex 

chromosomes code for various epigenetic modifiers that 

are differentially expressed between the two sexes, 

which can potentially affect the autosome in a sex-

specific way [18]. But despite the evident sex 

differences in some disease, for example cardiovascular 

diseases, epigenetic analysis on this topic so far is not 

always stratified by sex, indicating that sex-specific 

DNA methylation might still have to give us additional 

insights in such disease mechanisms [15]. All this 

evidence suggests for a putative role of sex 

chromosomes in human aging; therefore, age-associated 

epigenetic changes may also exist on the sex 

chromosomes, like the Y-chromosome. 

 

Thus far, the Y-chromosome is used as a popular genetic 

tool in phylogeny and population history [19] as well as 

in forensics [20]. Recently on the epigenetics side, Zhang 

et al showed that the DNA methylation pattern on the Y-

chromosome was stable among family members and 

haplogroups, as well as conservative during human male 

history [21]. The authors were able to identity 

haplogroup-specific Y-CpG methylation sites, which 

were both genotype-dependent [21]. On the other hand, 

current literature on the human Y-chromosome and aging 

is mostly limited to the (mosaic) loss of the entire Y-

chromosome in blood and buccal cells in aging men [22, 

23]. Only recently, age-dependent DNA methylation 

patterns on the Y-chromosome were explored for 

predicting all-cause mortality in elderly males [24]. Lund 

et al. investigated the age association of Y-linked DNA 

methylation (416 Y-CpGs in total) in four datasets of 

males (n=624 in total) [24]. They identified 219, 76, 40 

and 169 Y-CpGs exhibiting age-dependent methylation 

patterns, with 7 being shared among all cohorts. 

Interestingly, the vast majority of age Y-CpGs were 

hypermethylated over age as shown by comparing the 

regression coefficients in cohorts with increasing mean 

age [24]. Despite these promising results, age-dependent 

DNA methylation patterns on the Y-chromosome have 

not yet been investigated in a large age range for the 

purpose of developing a male-specific age predictor. 

Having such a predictor would eventually be relevant for 

studying male-specific effects on ageing, improving 

autosomal-based age prediction and also for specialized 

forensic applications. 

 
In the forensic context, the male perpetrator of a crime 

is often not identifiable with standard forensic DNA 

analysis based on short tandem repeats (STRs). When 

the police has no hits at the national DNA database 

and/or no suspect for a crime, predicting the physical 
characteristics of the unknown person via forensic 

DNA phenotyping (FDP) [25] may provide useful 

investigative leads. Among the phenotypes of interest, 

age is a distinct personal characteristic that influences 

the way a person appears; therefore, predicting age 

from crime scene DNA is a very useful piece of 

evidence to narrow down suspect pools. Existing 

autosomal CpG-based age predictors show great 

promise due to their great accuracy but are only 

applicable to single-source DNA samples, meaning to 

DNA samples that belong to a single biological donor. 

Current autosomal CpG-based age estimation in males, 

if coupled with an additional, independent Y-

chromosome-based age predictor, would potentially 

lead to a more confident age estimation. Particularly in 

cases where we obtain mixed male-female DNA 

samples, as often obtained in physical or sexual assault 

cases, a Y CpG-based male-specific age predictor 

would also enable the prediction of the age of an 

unknown male perpetrator. As a result, such male-

specific age predictor would also allow us to 

discriminate among close male relatives belonging to 

the same paternal lineage but are of different age, such 

as father vs son, who are indistinguishable in current 

forensic Y-chromosomal DNA analysis, because they 

typically share the same Y-DNA haplotype [20]. 

 
In this study, we aimed to investigate the age correlation 

of Y-chromosomal DNA methylation in a wider age 

range, which is expected to lead to new clues in sex-

specific molecular processes of aging given that it has 

been systematically excluded in most autosomal CpG-

based age DNA methylation studies. For this, we used 

publically available DNA methylation data obtained by 

the Illumina® Infinium® HumanMethylation450 

Beadchip array in whole blood, as blood is one of the 

most commonly used medical/(public) health-related 

and forensically relevant body fluid. Hence, we aimed 

to develop a blood-based male-specific Y-CpG based 

age predictor that could be relevant not only to study 

male-specific aging in epidemiology or age-related 

diseases, but also in forensics for male donor-specific 

age prediction. 

 

RESULTS 
 

Age correlation of Y-CpGs in blood 

 

We used publicly available Illumina® Infinium® 

HumanMethylation450 Beadchip microarray data that 

cover 416 Y-CpGs. We collected such data from six 

studies (Table 1) previously generated from blood of 

1,057 healthily aging males of a wide age range (15-87 

years old) (Figure 1A). These datasets were initially 

produced to investigate the correlation of autosomal 

DNA methylation with birth weight [26], aging [27], 

stress [28], allergic rhinitis [29] and insulin resistance 

[30], while their Y-chromosomal data remained entirely 

unexplored as of yet. 
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Table 1. Information on the six publicly available Illumina® Infinium® HumanMethylation450 BeadChip 
datasets used in this study. 

GEO dataset 
No. of 

samples 

No. of 

males 

No. of samples 

following QC 
Health status 

Age range 

(years old) 
Tissue Used for 

GSE100386 46 24 24 Healthy/Rhinitis 21-61 Lymphocyte-enriched PBMCs 

Training 

Validation 

GSE125105 699 312 275 Healthy/depressed 18-79 Whole blood 

GSE128235 537 229 214 Healthy/depressed 20-79 Whole blood 

GSE61496 312 82 76 Healthy 30-74 Whole blood 

GSE87571 732 341 341 Healthy 15-87 Whole blood 

GSE115278 474 132 127 Healthy 23-73 Peripheral white blood cells Testing 

 

Following strict quality control as described in the 

Methods, our initial marker pool consisted of a total of 

268 (64%) of the 416 Y-CpGs covered by the 

microarray. We found that Y-CpGs are more variable 

compared to their autosomal counterparts (p-value = 

2.64×10-6, Supplementary Figure 1). To enrich for Y-

CpGs displaying biological variation rather than purely 

technical noise, we applied a strict empirical threshold of 

inter-quantile range (IQR) ≥ 0.1 that further reduced our 

marker pool to 75 male-specific Y-CpGs, scattered 

across the entire Y-chromosome (Supplementary Table 

1). By computing a Spearman correlation coefficient that 

allows to measure correlation with age that follows non-

linear monotonic relationships, we found that 22 Y-

CpGs (29.3%) were hypermethylated and 6 Y-CpGs 

(8%) were hypomethylated with age (Supplementary 

Figure 2). Our results confirm a tendency of increased 

hypermethylation of Y-CpGs with age; however, their 

effect sizes tend to be small. Given that the relationship 

between DNA methylation change and age for these age-

related Y-CpGs does not follow a linear trend, we did 

not calculate the percentage increase in methylation per 

unit age, as it is expected to vary with time. 

Nevertheless, when comparing the very young (< 20 

years old) versus the elderly (> 70 years old), we 

observed a ~15% average decrease or increase in DNA 

methylation for our top age-related hypomethylated and 

hypermethylated Y-CpGs, respectively (Figure 1B, 1C). 

The computed Spearman correlation coefficients ranged 

between -0.3197 for cg13308744 showing the most 

significant negative age correlation (Figure 1B) and 

0.3192 for cg04691144 showing the most significant 

positive age correlation (Figure 1C). In total, 28 Y-CpGs 

(37.3%) showed age correlation on the significance level 

of 5% and 23 Y-CpGs on the significance level of 1%. 

The correlation coefficients for all 75 CpGs are 

presented in the Supplementary Table 1 and their 

position on the Y-chromosome in Figure 2. 

 

Age prediction based on Y-CpGs in blood 

 

Next, we implemented several supervised machine 

learning algorithms listed in Table 2 to find the best 

performing age prediction approach. For model building, 

we used five out of the six available datasets that were 

randomly split into an 80% model training set (n = 758) 

and a 20% model validation set (n = 172) by maintaining 

a homogenous and wide age distribution in both data 

subsets. The sixth original dataset (n = 127) was 

normalized separately and used as an independent 

external model testing dataset. Using multiple linear 

regression (MLR), we achieved a mean absolute 

deviation (MAD) between predicted and observed age of 

10.45 years (ρ = 0.65) in the validation dataset and 9.31 

years (ρ = 0.58) in the external testing dataset (Table 1). 

Similar MADs were obtained using other methods such 

as lasso, ridge and elastic net regression, all of which 

capture linear relationships only (Table 2). Regularization 

and built-in feature selection in the lasso and elastic net 

models (32 and 33 age-predictive Y-CpGs respectively, 

Supplementary Table 1) did not affect age prediction 

accuracy (Table 2). Additionally, we applied random 

forest regression (RFR), which delivered reduced MAD 

of 9.23 years (ρ = 0.80, validation dataset) when using all 

75 Y-CpGs, and 9.63 years (ρ = 0.74, validation dataset) 

when using a sub-selection of the 19 best-predictive Y-

CpGs (Table 2 and Supplementary Figure 3B). For all 

methods, similar and slightly improved MADs were 

obtained for the independent external testing dataset 

compared to the internal validation dataset (Table 2). 

 
In an attempt to further reduce the age prediction error 

by taking into account possible non-linear associations 

with age that we already observed for our top age Y-

CpGs (Figure 1B), we applied support vector machine 

(SVM) using the ε-regression method implemented with 

different kernels. While the SVM linear model based on 

all 75 Y-CpGs resulted in similar MAD as the MLR 

model (10.69 years, ρ = 0.60, validation dataset), the 

SVM third-degree polynomial model improved age 

prediction by more than one year (9.41 years, ρ = 0.68, 

validation dataset) and the SVM radial model by more 

than three years (7,54 years, ρ = 0.81, validation 

dataset) (Table 2 and Figure 3A). The improved age 

prediction was also seen in the external testing dataset 

(7.61 years, ρ = 0.70) (Table 1 and Figure 3C). Even 
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Figure 1. Examples of age-associated Y-CpG methylation in blood. (A) Histogram showing the age distribution in all samples colour-
coded per training (n = 758), internal validation (n = 172) and external testing (n = 127) datasets, (B) DNA methylation levels of cg13308744 
showing the strongest negative correlation with age (ρ = -0.3197, p-value = 1.545E-26), (C) DNA methylation levels of cg04691144 showing 
the strongest positive correlation with age (ρ = 0.3192, p- = 1.820E-26). ρ: Spearman correlation coefficient, Bonferroni threshold: α/n= 
0.05/75 = 6.667E-4, Loess: locally estimating scatterplot smoothing curve. 
 

 
 

Figure 2. IGV screenshot on the Y Chromosome including the location of all reference Y-genes, the 416 Y-CpGs included in 
the Illumina® Human Methylation450 BeadChip array and the 75 age-predictive Y-CpGs used in this study (with highlighted 
the 19 Y-CpGs that were further selected) as well as their Spearman correlation coefficients. 
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Table 2. Metrics of machine learning approaches applied for Y-based epigenetic age prediction. 

Regression model Parameter(s) 
No. of features 

(Y-CpGs) 

Internal validation (n=172)1  External testing (n=127)1 

MAD (years) ρ RMSE R2  MAD (years) ρ RMSE R2 

Multiple Linear N/A 75 10.45 0.65 12.93 0.42  9.31 0.58 11.65 0.34 

Lasso α: 1 32* 10.71 0.65 12.99 0.42  9.19 0.58 11.08 0.34 

Ridge α: 0 75 10.67 0.66 12.88 0.43  8.76 0.60 10.70 0.36 

Elastic Net α: 0.5 33* 10.72 0.65 12.99 0.42  9.15 0.59 11.01 0.34 

Random Forest 
ntree: 500, mtry: 25, 

nodesize: 5 

75 9.23 0.80 11.33 0.64  8.48 0.66 10.18 0.43 

19§ 9.63 0.74 11.89 0.54  8.42 0.61 10.50 0.37 

S
u
p
p
o

rt
 V

ec
to

r 

M
a

ch
in

e 
(ε

-t
yp

e)
 

Linear kernel C: 1 75 10.69 0.60 13.88 0.36  10.63 0.53 13.03 0.28 

Polynomial kernel C: 1, degree: 3, γ: 0.013 75 9.41 0.68 12.40 0.46  9.71 0.53 12.48 0.28 

Sigmoid kernel C: 1, γ: 0.013 75 13.83 0.40 17.83 0.16  11.44 0.33 16.90 0.11 

Radial kernel 
C: 2, γ: 0.013 75 7.53** 0.81 10.15 0.653  7.61** 0.70 9.36 0.49 

C: 2, γ: 0.052 19† 8.46 0.73 11.77 0.53  8.88 0.57 11.38 0.33 

MAD: Mean Absolute Deviation, ρ: Pearson Correlation Coefficient, RMSE: Root Mean Square Error, N/A: Not Applicable. 
α: Regularization parameter, ntree: Number of trees to grow, mtry: Number of variables randomly sampled as candidates at 
each split, nodesize: Minimum size of terminal nodes, C: Cost weight for penalizing the soft margin, degree: Number of 
degrees for the polynomial equation, γ: Controls the trade-off between error due to bias and variance in the model. 
1All models were built based on our training set (n = 758). 
*Based on α penalization, which shrinks coefficients towards zero. 
§Based on Random Forest Cross-Validation for feature selection. 
**(in bold) Best performing model. 
†Based on stepwise-feed forward feature selection and Bayesian Information Criterion (BIC). 

when including a stepwise-feed forward feature 

selection based on Bayesian Information Criterion 

(BIC) and reducing the Y-CpGs to 19 (11 shared with 

all other models, Supplementary Table 1 and 

Supplementary Figure 3A), the age prediction accuracy 

achieved with SVM remained better than in all non-

SVM models (9.05 years, ρ = 0.71, validation dataset). 

 
Additionally, there was an interesting observation 

concerning the age prediction accuracy across age groups, 

particularly for older individuals. In our 75-Y-CpG SVM 

radial model, we observed similar average prediction 

errors across age groups, meaning similar prediction 

accuracies in young (age ≤ 40) and elderly individuals 

(age ≥ 60) (Figure 3B). Particularly for the validation 

dataset, we obtained a MAD = 7.061 for the 11 

individuals aged ≤ 20 years, MAD = 7.469 years for the 

55 individuals aged between 20-40 years, MAD = 4.809 

years for the 69 individuals aged 40-60 years, and finally, 

MAD = 6.640 years for the 37 individuals aged ≥ 60 

years. Similarly in the testing dataset, we obtained a MAD 

= 7.796 years for the 25 individuals aged between 20-40 

years, MAD = 6.437 years for the 55 individuals aged 40-

60 years, while for the 52 older individuals aged ≥ 60 

years the MAD was 5.269 years. Unfortunately, there 

were no individuals aged ≤ 20 years in the testing dataset. 

 

Comparison between our male-specific age estimator 

and the Horvath clock 

 

As already mentioned, the Horvath clock represents the 

most widely used multi-tissue age predictor [1]. This 

highly accurate and robust age clock is based on 353 

autosomal CpGs identified out of a pool of >450,000 

CpGs included in the Illumina® 450K microarray and 

analysed with >8,000 samples, compared to our male-

specific age estimator that is based on a smaller market 

set (75 Y-CpGs) identified out of a smaller marker pool 

(only 416 Y-CpGs) and analysed on a much smaller 

sample size (n = 1,057). We applied the Horvath clock 

on the very same samples used for our Y-based age 

estimator’s independent model testing and obtained a 

MAD of 5.06 years, which is almost two years larger 

than the reported by Horvath in whole blood (error of ± 

3.7 years, testing dataset) [1] and less than three years 

smaller than the one obtained in our 75-Y-CpG SVM 

radial model (MAD = 7.61 years). In contrast to our 

model (Figure 3D), the prediction error variance based 

on the Horvath model slightly increased for individuals 

>60 years old; MAD of 5.73 years for age >60, 

compared to 4.40 and 4.60 years obtained for the other 

two age groups (Figure 4B). 

 
Functional annotation of the top age-correlated Y-

CpGs 

 

Our selected 19 Y-CpGs are scattered across the entire 

Y-chromosome (Supplementary Figure 3). The vast 

majority of them (18 out of 19) are located within Y-

CpG islands and within Y-genes (12 out of 19) (File 

S1). These include a set of 10 genes, such as EIF1AY, 
DDX3Y, ZFY, TTTY14 and NLGN4Y. Mutations in 

and differential expression of these Y-chromosome 

genes, such as the DDXY3 gene, have been linked with 
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Figure 3. Male-specific epigenetic age prediction in blood based on 75 Y-CpGs using support vector machine (radial kernel). 
Validation dataset (n = 172): (A) Predicted vs. true age and (B) age prediction errors per age category; Testing dataset (n = 127): (C) Predicted 
vs. true age and (D) age prediction errors per age category. ρ: Spearman correlation coefficient, RMSE: root mean square error, MAD: mean 
absolute deviation. 

 

 
 

Figure 4. Age prediction of male samples included in the testing set of this study (n = 127) using the publically available 
Horvath age predictor based on 353 autosomal CpGs [1]. (A) Predicted vs. true age and (B) age prediction errors per age category. ρ: 
Spearman correlation coefficient, RMSE: root mean square error, MAD: mean absolute deviation. 
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male infertility and reduction of germ cell numbers [31, 

32], which are age related processes, also in other 

tissues such as sperm [33]. Our finding of age-

correlated CpGs existing in the rest of the Y-genes 

likely has an underlying biological reason, which should 

be investigated in future studies. Since the current 

literature on these genes in limited so far, we cannot 

exclude that they might be indirectly linked with aging. 

 

Additionally, although excluding Y-CpG probes is a 

standard practice in epigenome-wide association studies 

(EWAS), we also checked the selected 19 Y-CpGs of 

the SVM radial model for possible reported associations 

with age-related traits or diseases in the EWAS atlas 

database [34]. Notably, ~5% lower methylation of 

cg00121626 is associated with the autoimmune disease, 

primary Sjögren's syndrome [35], while ~5% higher 

methylation of cg03767353 is associated with the 

Kabuki syndrome, caused by mutations in histone-

modifying enzymes [36]. Lastly, 21% higher methyla-

tion of cg13654344 has been observed in prostate 

tumours [37]. 

 

DISCUSSION 
 

The main purpose of our study has a proof-of-principle 

nature, showing for the first time that CpGs on the Y-

chromosome have the potential to be used for age 

estimation in males of a wide range of reproductive age. 

Previously, and in line with its DNA sequence variation, 

Y-CpG DNA methylation has been shown to be 

evolutionarily conserved, with stable DNA methylation 

patterns on the Y-chromosome reported among family 

members and haplogroups [21]. The authors of one of 

the only couple existing studies on Y-chromosomal 

DNA methylation also found two haplogroup-specific, 

both genotype-dependent, CpGs [21]. 

 

In our study, Y-CpGs seem more variable compared to 

the autosomal ones, which could at least be partly due 

to noisier DNA methylation detection. Technically, this 

could be explained by the single-copy nature of the Y-

chromosome in contrast to the two copies of autosomal 

chromosomes resulting in half the possible signal, or by 

underlying biological reasons, such as reduced 

specificity of the designed probes [38]. But even though 

there are variable Y-CpGs, their observed association 

between DNA methylation levels and age is weak 

(ranging from -0.3197 to 0.3192), compared to what we 

are used to so far for autosomal age-CpGs. From the 

total 268 Y-CpGs used in this study, only 75 CpGs 

(27.99%) passed our variability threshold (IQR ≥0.1). 

 

Our results confirm a tendency of increased 

hypermethylation of Y-CpGs with age, also reported by 

Lund et al., the only existing study exploring age 

correlation of Y-chromosomal DNA methylation with 

mortality in elderly males [24]. In comparison with the 

seven age-associated Y-CpGs reported by Lund et al., 

three Y-CpGs (cg03055837, cg00311963 and 

cg06636270) were removed from our analysis as cross-

reactive based on lists reported by previous studies [38, 

39]. This could mean that these Y-CpGs bind in 

multiple regions of the genome, therefore resulting in 

non-specific DNA methylation signal. Another three Y-

CpGs (cg14180491, cg01707559, and cg18188392) 

were excluded from our predictive analysis following 

the IQR threshold (<0.1). Therefore, only one Y-CpG 

(cg00679624) was overlapping between our Y-CpG 

marker list and that of Lund et al. [24]. Lastly, if we 

look at the functional annotation, two out of the 10 

genes reported in our study (Y-linked Neuroligin, 

NLGN4Y and DEAD-box helicase 3, DDXY3) were 

also reported by Lund et al. who also listed two other Y-

linked testis-specific transcripts (TTTY20 and 

TTTY23) but not ours (TTTY14), strengthening the 

validity of our results on the age-correlated Y-CpGs. 

 
Our Y-chromosome-based results are also similar with 

the ones obtained for other sex chromosome – the X-

chromosome. In brief, from the total of 10,096 X-CpGs 

included in the study by Li et al. sex-specific X-linked 

DNA methylation changes over age later in life was 

recently identified at 123, 293 and 55 significant CpG 

sites in males, females and both sexes, respectively 

[40]. X-CpGs that are highly methylated in both sexes, 

similarly to the Y-CpGs, also tend to get hyper-

methylated even further with age. These results could 

indicate that the sex chromosomes undergo differential 

methylation changes during aging in comparison with 

the ones on the autosomal chromosomes [40]. 

 

Moving forward to prediction, regardless the low age 

correlation of our variable Y-CpGs which seemingly 

follow non-linear relationships, they still contain 

sufficient information that can be utilized in age 

prediction modelling. As expected, the selected 19 Y-

CpGs in the SVM radial model included the Y-CpGs 

with the strongest positive/negative age correlation 

(Supplementary Table 1). The obtained MAD values of 

~7-8 years are not as high as we are used to for 

autosomal-based age predictors based on similar 

number of CpG markers, but this is mainly driven by 

the smaller effect sizes and the weaker age correlations 

we observed for Y-CpGs. In the validation of our Y-

CpG age predictor based on the 75 variable Y-CpGs 

(IQR ≥ 0.1) we obtained MAD values of 7.061, 7.469, 

4.809, 6.640 years for individuals aged ≤ 20, 20-40, 40-

60, and ≥ 60 years, respectively. The better age 
prediction accuracy in the 40-60 category can at least 

partly be explained by the bigger sample size in this age 

group. Similarly in the independent testing, we obtained 
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MAD values of 7.796, 6.437, 5.269 years for 

individuals aged 20-40, 40-60, and ≥ 60 years. 

Unfortunately, there are no individuals in this dataset 

that fall in the first category (aged ≤ 20 years) to allow 

us strongly comment on the very young age category, 

but from both validation and testing, it seems that the 

age estimation accuracy in older individuals (> 40 

years) is better than the younger ones (< 40 years). 

Similarly to above, less accurate age prediction in the 

20-40 category can also at least partly be explained by 

the smaller sample size in this age group. But despite 

that, our model can still accurately distinguish between 

young adults and old individuals. This is particularly 

important for the potential forensic application where 

our Y age estimator will be used for differentiating 

close male relatives belonging to the same paternal 

lineage but are of different age, such as grandfather vs 

father vs son. All males of the same paternal lineage are 

expected to be indistinguishable with currently 

practiced Y-STR profiling, so a Y-based age predictor, 

without prediction accuracy bias towards specific age 

groups that these individuals might belong to, is a 

promising identification approach and could have 

additional investigative value when constructing the 

paternal branch of a pedigree. 

 

Furthermore, we were interested to compare the 

performance of our Y-based age estimator with one of 

the most popular autosomal-based age clocks, the 

Horvath clock [1]. While a comparison between the two 

age predictors might not be considered totally fair given 

their differences, including the larger size of their 

training dataset, the >1000 times larger initial set of 

DNA methylation markers (CpGs), and the inclusion of 

markers across independent chromosomes, we were 

interested to see if an age estimator based on the Y-

chromosome would behave similarly with one based on 

autosomal CpGs like the Horvath clock, which are 

known to underperform in older individuals [41, 42]. 

Despite the ‘unfair’ advantages of the Horvath clock, 

the results were promising for our male-specific age 

estimator. Using the same independent testing dataset, 

the MAD of predicted age using the Horvath clock was 

less than three years smaller than the one obtained in 

our 75-Y-CpG SVM radial model. We envision that 

with the use of a larger dataset as publically methylation 

microarray datasets becoming available as well as the 

use of Y-CpGs with stronger age correlation that still 

need to be identified, the performance of an age 

predictor based on the Y-chromosome will become 

comparable with the Horvath and other autosomal CpG-

based age predictors. 

 
For this proof-of-concept study we focused our 

analysis in whole blood, as it is one of the most 

commonly biological material collected in the clinic, 

research laboratory, or at the crime scene, such as in 

physical assault. Furthermore, there is currently a 

large depository of genome-wide DNA methylation 

data in the publically available domain. As a result, 

new age predictors based on the Y-chromosome of 

white blood cells can easily be compared with 

existing, thoroughly investigated autosomal-based 

predictors, such as the Horvath clock [1]. Additionally 

to blood, sperm could also be an interesting body fluid 

in ageing research due to its haploid nature and 

involvement in embryogenesis, but also due to its 

relevance in a wide range of civil (paternal), legal and 

criminal cases, such in sexual assault. Unfortunately, 

while there is a high number of datasets in whole 

blood, suitable data for non-blood tissues, such as 

sperm that could be relevant in sexual assault cases, 

are not of sufficient quantity or quality to conduct 

analysis of high power. For example, existing data in 

small numbers use a different type of platform used 

[43], do not include age information or include only 

elderly males (>70 years old, [44]). Nevertheless, we 

expect that the collection of large genome-wide DNA 

methylation data in sperm (such as by Jenkins et al, 

[6, 45]) will raise soon in the coming, ‘open-access’ 

era. This will allow us to expand our investigation to 

Y-chromosome-based age prediction in sperm; 

however, the constant production of sperm and the 

age-associated decreased sperm counts for males 

above 41 years of age, p = 0.023, ref) should be taken 

into account. For instance, men above 50 years have 

been reported to be 6.15 times more likely to present 

lower DNA amount in their semen compared to males 

aged 21-30 years [46], which subsequently then 

affects the process of DNA methylation detection. 

 
Finally, while the Illumina® DNA methylation 

microarray data in blood exist in large numbers, that 

makes us able to achieve a high age predictive power, 

it is possible as a result, that their experimental 

procedures will vary greatly. This is expected to lead 

to a considerable DNA methylation variation, which 

should be taken into account in data analysis. To 

account for such methodological variation, we selected 

datasets with raw data available to enable 

harmonization via pooling and single pipeline 

normalization. However, for our independence testing, 

we performed a separate normalization of the data, 

mimicking the scenario of researchers applying our 

free, online Y-CpG-based age predictor (Availability 

information included in the Materials and Methods 

section). Also, Illumina technologies (27K, 450K, and 

currently EPIC) can analyse only a very small portion 

of the Y-chromosome methylome. Particularly, the 
Illumina® 450K platform contains the very small set 

of 416 Y-CpG markers out of the total of 217,906 

existing Y-CpGs [47]). Novel tailored technologies 
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that will allow Y chromosome-wide DNA methylation 

are required for expanding our analysis to more 

potentially biologically interesting Y-CpG DNA 

methylation in the future. 

 

CONCLUSIONS 
 

In conclusion, we found age correlation of available Y-

chromosomal CpGs in blood as well as built and 

validated the first-of-its-kind male-specific epigenetic 

age predictor for blood. This Y-chromosome-based age 

predictor is made available for future applications 

including in male-specific aging research as well as in 

more specialized areas of male-specific age prediction, 

such as age estimation in forensic applications. Future 

investigation of the Y-CpG markers included in the 

microarrays in other non-blood tissues such as sperm is 

expected to widen not only our knowledge in age-

associated Y-CpG methylation but also practical 

forensic applications. Furthermore, future investigation 

of the entire Y-chromosome via a non-array 

methodology, such as whole genome bisulfite 

sequencing, is expected to result in the discovery of 

more age-correlated Y-CpGs, which shall be in-

vestigated for their age predictive value in addition to 

those presented here. 

 

MATERIALS AND METHODS 
 

DNA methylation datasets 

 

Illumina® Infinium® HumanMethylation450 BeadChip 

array data from a total of 1,057 blood samples of male 

individuals aged between 15 and 87 years old were 

collected from six genome-wide DNA methylation 

studies, the raw data of which (IDAT files) had been 

made publically available via the Gene Expression 

Omnibus (GEO) database. Given that we targeted the 

Y chromosome for male-specific age prediction, we 

included exclusively male samples in this study. 

Samples were also carefully collected so that there 

was a broad age distribution (Figure 1A). We included 

only healthy individuals or individuals suffering from 

diseases like depression or rhinitis that are not 

expected to display strong effects on ageing. In 

particular, the GEO datasets we used are: GSE100386 

[29], GSE125105 and GSE128235 [28], GSE61496 

[26], GSE87571 [27] and GSE115278 [30]. More 

detailed information can be found in Table 1. 

 

Quality control (QC) 

 

The entire analysis based on the Illumina® 450K 
methylation data was performed using R v3.5.2 [48], 

including quality control (QC), pre-processing and 

modelling. We implemented a QC workflow using the 

QCinfo function included in the ENmix R package 

[49] following default parameters (detPthre = 10-6, 

nbthre = 3, samplethre = 0.05, CpGthre = 0.05 and 

outlier = TRUE). Firstly, in the training and validation 

dataset, we discarded a total of 52 low-quality 

samples and 20,281 low-quality probes. In the testing 

dataset, we did not discard any sample but 7,555 low-

quality probes. Additionally, we filtered out probes 

containing single-nucleotide polymorphisms (SNPs) 

in their sequence/CpG site/single-base extension site 

(n = 24,874), cross-reactive probes (n = 30,973) and 

probes associated to the X-Chromosome (n = 11,232). 

Altogether, we removed 73,699 and 62,811 probes 

from the two datasets, respectively. For both datasets 

we predicted the sex of our samples as implemented 

using the function getSex in the minfi v1.28.4 R 

package [50], which predicts sex based on the median 

values of measurements on both sex chromosomes. As 

a result of this analysis and to our surprise, we 

predicted five samples as females in the testing 

dataset (GSM3173076, GSM3173100, GSM3173105, 

GSM3173188, GSM3173434), which we excluded 

from subsequent analysis. Finally, regarding the 

 data from GSE61496 (Danish twin study), we 

randomly selected one of each twin pair and excluded 

replicates. 

 

Data pre-processing and normalization 

 
With respect to preprocessing, we firstly employed the 

function ENmix::preprocessENmix, in order to correct 

for background noise based on out-of-band (oob) 

probes and for dye bias via the REgression on 

Logarithm of Internal Control probes (RELIC) 

correction method [51]. Secondly, the function 

ENmix::norm.quantile was employed to quantile-

normalize on separate Infinium type I/II probes and 

separate M/U (methylated/unmethylated) intensity 

channels. Finally, the function ENmix::bmiq.mc was 

used as a wrapper of the Beta Mixture Quantile dilation 

(BMIQ) method [52], which additionally corrects for 

Infinium type I/II probe bias. Samples used for model 

training and validation were normalized separately 

from the samples used for the independent model 

testing. 

 
Y-CpG sites 

 
Only following QC and normalization that excluded 

cross-reactive, low-quality and SNP-containing Y-CpG 

probes, we retrieved the methylation values of a total of 

268 (Y-CpGs, out of the 416 included in the Illumina® 

450K platform. To assess the hypothesis that Y-CpG 

probes are more variable compared to the autosomal 

ones, we compared the IQR distribution between 

autosomal and Y-chromosome probes using an one-
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sided Mann-Whitney U-test, which does not assume 

normality (Supplementary Figure 1). We then decided 

to filter out low-variation Y-CpGs presenting an IQR 

lower than an empirical, strict cut-off of 0.1. We tested 

each of the 75 Y-CpGs for significance in Spearman’s 

correlation employing the function cor.test. p-values 

were adjusted with Bonferroni multiple testing 

correction (α/n= 0.05/75 = 6.667E-4). In the end, we 

ended up with 75 Y-CpGs, annotated based on the 

IlluminaHumanMethylation450kanno.ilmn12.hg19 data 

(Supplementary Table 1). Additionally, Y-CpG probe 

positions on the Y Chromosome were visualized in 

Integrative Genomics Viewer (IGV) (Figure 2). 
 

Model building and testing 
 

Based on five out of the six GEO datasets included in 

the study (n = 930, Table 1), and in order to choose the 

best performing age prediction approach, we 

implemented several supervised machine learning 

algorithms (Table 2) with in house R scripts. A hold-out 

cross-validation was included with an 80-20 % split 

between training (n = 758) and validation (n = 172) 

datasets, respectively. In order to maintain a 

homogenous and wide age distribution, we split 

randomly between age bins. For model building we 

used the age as response variable and the 75 Y-CpGs as 

independent variables. For model testing, we applied an 

external independent dataset (GSE115278, n = 127) that 

was normalized separately. 
 

In our study various models were constructed. Firstly, 

for Ordinary Least Squares (OLS) for MLR, we used 

the lm() function from the standard R stats R package. 

Secondly, we applied shrinkage methods including (a) 

Ridge Regression, which penalizes the sum of squared 

coefficients (L2 penalty), (b) Lasso Regression, which 

penalizes the sum of absolute values of coefficients (L1 

penalty) and (c) Elastic Net Regression, which is a 

convex combination of Ridge and Lasso. For these 

methods we trained our models using the function 

cv.glmnet in the glmnet R package [53]. Large 

coefficients are penalized by a λ (lambda). To define 

the best λ we used the Mean Square Error (MSE) as 

type of measure, 5 as the number of folds during Cross-

validation (CV) and an α (alpha) of 1, 0 and 0.5, for 

Ridge, Lasso, Elastic net, respectively. Additionally, 

for RFR we employed the randomForest R package 

[54] using 500 as the number of trees (ntree), 25 as the 

number of random variables for each split (mtry) and 5 

as the minimal size of terminal nodes (nodesize). 

Finally, for SVM we employed the eps-regression (ε) 

method using the e1071 R package [55], that includes 

different kernels, such as linear, polynomial (degree: 

3), sigmoid and radial basis function. To avoid over-

fitting we implemented a grid-search for hyper-

parameter optimization next to hold-out CV and we 

assessed using our internal validation dataset. Each 

kernel included a cost parameter (c) of 1 or 2, and 

default gamma (γ) of 0.013 (1/n, n = 75 CpGs). 

Overall, to assess machine learning performance, we 

made use of standard performance measures for 

regression, such as MAD, coefficient of determination 

(R-squared, R2), Root Mean Square Error (RMSE) and 

Pearson correlation coefficient (ρ) between true and 

predicted age. 

 

Feature selection 

 

Towards an effort to reduce the number of features, we 

additionally applied forward stepwise regression as 

model refining using the BIC. This method uses 

different combinations of input parameters by adding 

one feature (Y-CpG) at a time until exhaustion. 

Furthermore, Lasso and Elastic Net Regression that 

both apply L1 penalization allow to limit the size of 

coefficients, which might also causes some of them 

towards zero. This also led to partial models using a 

sub-selection of Y-CpGs. We also included a feature 

selection based on Random Forest CV [56], which uses 

the feature importance function based on Gini impurity. 

Each decision tree in the Random Forest tries to 

minimize the residual sum of squares (RSS) when 

splitting each node, which resulted also in the selection 

of 19 (but different) features using the function rfcv 

with five CV (Supplementary Table 1). 

 

Horvath age clock 

 

We also predicted DNA methylation (DNAm) age of 

our testing samples (n = 127) using the popular 353 

autosomal CpG-based Horvath age clock [1], using the 

agep function included in the wateRmelon v1.28.0 R 

package [57]. 

 

Resource 

 

All (pre- and post-normalized) data used in this study 

and the SVM radial models based on 75 and 19 Y-CpGs 

have been released to the public domain under an MIT 

license at GitHub (https://github.com/genid/Y-CpG/) 

and at the Zenodo digital object identifier-assigning 

repository (https://doi.org/10.5281/zenodo.4304487). 

 

Data availability 

 

The data that support the findings of this study are 

openly available in GEO at https://www.ncbi.nlm. 

nih.gov/geo/, with reference numbers GSE100386, 

GSE125105, GSE128235, GSE61496, GSE87571 and 

GSE115278. 

https://github.com/genid/Y-CpG/
https://doi.org/10.5281/zenodo.4304487
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Abbreviations 
 

BIC: Bayesian information criterion; BMIQ: beta 

mixture quantile; CpG: cytosine-phosphate-guanine site; 

CV: cross-validation; DNA: Deoxyribonucleic acid; 

DNAm: DNA methylation age (Horvath clock); EWAS: 

epigenome-wide association study; FDP: forensic DNA 

phenotyping; GEO: Gene Expression Omnibus database; 

HIV: human immunodeficiency viruses; IGV: 

integrative genomics viewer; IQR: inter-quantile range; 

MAD: mean absolute deviation; MLR: multiple linear 

regression; MSE: mean square error; OLS: ordinary least 

squares; oob: out-of-band; QC: quality control; RELIC: 

regression on logarithm of internal control probes; RFR: 

random forest regression; RMSE: root mean square 

error; RSS: residual sum of squares; SNP: single 

nucleotide polymorphism; SVM: support vector 

machine; Y-CpG: Y-chromosome-located CpG. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Cumulative density distribution (CDF) of inter-quantile range (IQR) for autosomal (black and Y-
chromosome (red) probes. 

 

 
 

Supplementary Figure 2. Distribution of –log10(p-values) based on Spearman correlation test for all 75 Y-CpGs following the 
IQR threshold of ≥0.1. The dotted red line represents the –log10 of the Bonferroni-corrected degree of significance (α/n) =0.05/75. 
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Supplementary Figure 3. Feature selection of age-predictive Y-CpGs. (A) Stepwise-feed forward feature selection with Bayesian 
Information Criterion (BIC), (B) Feature selection based on the Random Forest Regression model. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Annotation and age predictive information of all 75 Y-CpGs included in our study. 

 


