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Abstract

Background: Detection of highly divergent or yet unknown viruses from metagenomics sequencing datasets is a
major bioinformatics challenge. When human samples are sequenced, a large proportion of assembled contigs are
classified as “unknown”, as conventional methods find no similarity to known sequences. We wished to explore
whether machine learning algorithms using Relative Synonymous Codon Usage frequency (RSCU) could improve the
detection of viral sequences in metagenomic sequencing data.
Results: We trained Random Forest and Artificial Neural Network using metagenomic sequences taxonomically
classified into virus and non-virus classes. The algorithms achieved accuracies well beyond chance level, with area
under ROC curve 0.79. Two codons (TCG and CGC) were found to have a particularly strong discriminative capacity.
Conclusion: RSCU-based machine learning techniques applied to metagenomic sequencing data can help identify a
large number of putative viral sequences and provide an addition to conventional methods for taxonomic
classification.
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Background
A large number of different viruses are present in biospec-
imens from humans [1, 2]. The proportion of viral
sequences and its composition seem to change in diseased
individuals [3, 4]. As many novel viruses are continu-
ously discovered, it is possible that many human viruses
are yet to be detected [5–10]. Next Generation Sequenc-
ing (NGS) technologies are used to directly examine the
DNA present in clinical samples, without the require-
ment of prior information about sequences that may
be present [11]. Metagenomics refers to the complete
sequencing of all microbiological genomes in a biospec-
imen and viral metagenomics is routinely used for virus
detection and discovery of new viruses [5, 9, 10, 12–17].
In order to detect potential viral sequences in metage-
nomic datasets, conventional alignment-based classifica-
tion is performed by BLAST, which compares sequences
to known genomes and calculates how much similar-
ity they share. A downside of the method is that public

*Correspondence: joakim.dillner@ki.se
†Zurab Bzhalava and Ardi Tampuu contributed equally to this work.
1Dept. of Laboratory Medicine, Karolinska Institutet, F46, Karolinska University
Hospital Huddinge, Stockholm, Sweden
Full list of author information is available at the end of the article

databases for virus-related genomes are incomplete. A
large number of sequences are labeled as “unknown” since
many of them have only very distant or no homologs in
public databases [5, 7].
The HMMER3 algorithm implements Hidden Markov

Models with a reference set of sequences encoding viral
proteins (“vFams”) [18]. This method appears to be
more effective in detecting distant homologs in metage-
nomic datasets [19]. However, it is also dependent on
a reference database such as “vFams”, which like any
other public database is incomplete. Predictive models
(for example built via machine learning algorithms), on
the other hand, use a training database only to learn
what the relevant features and criteria for classifica-
tion are, and can then be applied to any new data
point. In particular, we propose that machine learn-
ing methods as presented in our work can act as
a recommendation system to sort and prioritize the
sequences marked as “unknown” by existing methods for
further research.
In this work, we wished to investigate whether machine

learning using the relative synonymous codon usage
(RSCU) in the sequences could be used to predict the
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presence of human virus sequences in metagenomic NGS
data. In the genetic code, some amino acids are encoded
by several, synonymous codons. Usage of these codons is
not random and differs among species. This phenomenon
is called Codon Usage Bias. Several viral families (in par-
ticular the herpesvirus, lentivirus, papillomavirus, poly-
omavirus, adenovirus, and parvovirus) are known to
encode structural proteins that display heavily skewed
codon usage compared to the host cell [20, 21].
In order to test whether codon usage could predict

viral nature of a sequence we used genes extracted from
NCBI GenBank to build a virus/non-virus classifier. A
cross-validation approach using Random Forests achieved
almost perfect accuracy on this dataset. However, the
models trained on NCBI GenBank data fail to generalize
to classifying contigs obtained from metagenomics analy-
sis, with random-like performance. As the main contribu-
tion, we trained Random Forests and neural networks on a
metagenomic sequencing dataset generated by NGS tech-
nologies applied to human biospecimens. As we wished to
develop an algorithm to detect presence of human viruses,
viruses infecting bacteria (phages) were not included in
the training set.We show that models trained using RSCU
values from contigs from a set of metagenomics exper-
iments generalizes to other metagenomics experiments.
Furthermore, we investigated which codons were more
important for the models to classify a sequence as a virus.

Methods
Dataset
Patients and samples
Next Generation Sequencing (NGS) using the Illumina
platform was used to generate the metagenomic sequenc-
ing datasets from human samples coming from several
different patients groups, as described [6–8, 22–24]. The
purpose of all of these studies was to investigate the pres-
ence of viral genomes or other microorganisms in human
biospecimens from patients who developed diseases or
frommatched control subjects. Further information of the
samples is provided in Additional file 1.

Sequencing
Sequences were generated from the MiSeq, NextSeq and
HiSeq (Illumina) sequencing platforms, as described by
the manufacturer. When multiple human samples were
included in the same sequencing run, the sequences were
mapped to the originating sample using sequence indices,
included in the Illumina adapters.

Bioinformatics pipeline
Before applyingmachine learning techniques, all sequenc-
ing experiments were analyzed using a benchmarked
bioinformatics pipeline, as described [25]. The pipeline
starts with quality checking and reads are trimmed

according to their Phred quality scores. After this,
reads that are highly similar (with 95% identity over
75% of their length) to human, phage, bacterial and
vector DNA are removed from further analysis using
BWA-MEM [26]. The rest of the reads are normalized
and then processed for assembly using the Trinity [27],
SOAPdenovo, SOAPdenovo-Trans [28] and IDBA-UD
[29] assemblers. we used several assembly algorithms in
order to validate results. Then the assembled contigs are
subjected to taxonomic classification using alignment-
based classifiers such as BLAST and HMMER3. The code
of the pipeline is available on GitHub (https://github.
com/NIASC/VirusMeta and https://github.com/NGSeq/
ViraPipe). Different steps of the pipeline are shown in
Fig. 1.

Feature extraction and labeling
Sequencing datasets were obtained from 19 different
NGS experiments. After the de novo genome assembly,
two different algorithms were applied for viral classifi-
cation. Firstly BLASTn algorithm (reward for nucleotide
match=1; penalty of nucleotide mismatch=1; cost to
open a gap=0; cost to extend a gap=2; e-value≤ e−4)
was applied with NCBI nucleotide database. We also
re-analysed the assembled contigs by PCJ-BLAST [30]
with the most recent version of nt database. Number
of contigs classified by BLAST into different taxonomy
groups is shown in Additional file 2. For the contigs
that were classified as unknown we used HMMER3 algo-
rithm. As reference database for this algorithm, we used
a database which includes viral profile hidden Markov
models (“vFams”) from all the virally annotated pro-
teins in RefSeq (http://derisilab.ucsf.edu/software/vFam)
[18]. Both BLAST and HMMER3 results were used for
the machine learning. Note that while BLAST classifies
sequences in different taxonomic groups, HMMER3 with
the “vFam” reference set only identifies viral genomes. All
assembled-sequences, classified and labeled by this bioin-
formatics pipeline were combined to train the machine
and deep learning algorithms. This dataset consisted of
3% of viral contigs. Usually, viruses are less than 0.1%
in a metagenomic dataset but the removal of highly
identical non-viral reads at the initial stage of the anal-
ysis relatively increases the proportion of viruses in the
dataset.
To extract features from the metagenomic dataset for

the machine learning purposes we used Relative Syn-
onymous Codon Usage frequency (RSCU) [31]. Proteins
are encoded by 20 different amino acids but there are
64 codons encoding for them. Trinucleotides coding for
the same amino acids are called synonymous codons and
usage of those is not random: some species prefer one
codon over another. For a given contig, we calculate the
RCSU value for each codon with the following formula:

https://github.com/NIASC/VirusMeta
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Fig. 1 Flow of the bioiformatics pipeline of NGS data for viral metagenomics [25]

fij = xij
1
ni

∑ni
j=1 xij

(1)

Where xij is the number of occurrences of j-th synony-
mous codon coding for amino acid i. ni is the total number
of synonymous codons that encode for amino acid i. This
ratio can be defined as the observed number of codon
occurrences divided by expected usage assuming uniform
distribution [31]. Methionine and Tryptophan that have
only one corresponding codon (ATG and TGG, respec-
tively) were removed from the analysis since they would
not contribute to the study. Furthermore, stop codons
were also removed. This gave us a total number of 59
features.
DNA has double strands: forward (5 to 3’) and reverse

(3 to 5’). Since in metagenomic sequencing data it is not
known fromwhich strand a contig came from, we counted
RSCU values for both directions and considered them as
two independent samples. Furthermore, because of the
fact that RSCU values are counted only in regions of Open
Reading Frames (ORFs), assembled-sequences that did
not have at least two ORFs in either direction were dis-
carded from the further analysis. In this study, a stretch of
codons was considered as an ORF if there was a stretch of
at least 120 nucleotides between a start codon and a stop
codon.

Dataset fromNCBI GenBank
The NCBI GenBank sequences were obtained from Codon
Usage Database (https://www.kazusa.or.jp/codon/). For

this database codon usage (RSCU values) was calculated
for complete genes using nucleotide sequences from the
Genbank. For the analysis we used approximately 600
thousand proteins from which 14% were viral.

Machine learning analysis
In the preliminary analysis using Genbank data we first
took a 10-fold cross validation approach using Random
Forests with different sizes and with/without balancing
the class weights. The reported results are the validation
performance from the best performing parameter config-
uration, averaged over the 10 folds. Secondly we trained
a Random Forest model on the entire NCBI GenBank
dataset and tested its performance on RSCU values from
contigs obtained from metagenomics experiments.
In the main body of work we trained models using

metagenomics datasets. We used assembled-sequence
data from 19 different metagenomic sequencing runs.
However, we did not combine all contigs into one big
dataset, because contigs from the same run might be
highly similar to each other (in terms of hamming dis-
tance, for example). We applied cd-hit-est algorithm [32]
with sequence identity threshold 0.98 and coverage 0.95
on the entire dataset to remove highly similar assembled-
sequences. However, we observed that contigs from the
same run are still more likely to be similar than con-
tigs from different runs. We did not want such highly
similar sequences to end up in both training and test-
ing data, because it would result in an artificially high

https://www.kazusa.or.jp/codon/
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accuracy that does not reflect the true ability to generalize
to unseen samples. In order to provide an honest estimate
of the test accuracy, we took an approach we call leave-
one-experiment-out cross-validation (LOEO). With this
approach, we trained our machine learning algorithms
on data coming from 18 metagenomic sequencing runs
and tested them on the remaining 19th run. We repeated
this process 19 times and each time data from a different
experiment was used as test set. Using this methodology
we test algorithms on truly unseen data from an entirely
different experiment, which gives us a fairer estimate of
the performance of the model compared to a traditional
K-fold cross validation.
The leave-one-experiment-out cross-validation approach

gave us 19 different models and 19 validation sets of dif-
ferent size and prevalence. In order to combine results
from different folds, we used macro and micro averaging
approaches [33]. In macro averaging, the number of sam-
ples in each validation set is disregarded and the 19 results
are simply averaged [33] (we average over datasets). In
the micro averaging approach, however, experiments that
provide more validation samples have a bigger influence
on the results [33] (we average over samples).
In this study, we applied this leave-one-experiment-out

approach using two classification algorithms: the main
results were obtained using Random Forests, but later we
validated the results with Artificial Neural Networks. We
have selected to use Random Forest and Neural Networks
for several practical and theoretical reasons. Most impor-
tantly, the hierarchical structure of the two algorithms
allows combining the relatively simple features, such as
RSCU values, to form more complex decision boundaries
than simple non-linear regression models or SVMs. In
addition, the capacity of both algorithms is easily control-
lable and they are widely used yielding state of the art
results in many tasks.

Random forest
Random Forest is a collection of a large number of deci-
sion trees. Each tree differs from others because it is
trained on a different set of training samples and because
at each splitting point only a random subset of features are
considered [34]. The differences between the trees work
together and the average prediction made by the group is
more accurate than one individual tree [34]. In this study,
we used scikit-learn-0.18.1 implementation in python 2.7
[35]. More thorough description of Random Forests and
the hyperparameters we tested is given in Additional file 3.

Feature importance in random forest Each decision
tree in a random forest is a collection of simple splitting
rules (if-then statements) that use only one feature at a
time. At each splitting point only a small subset of features
are considered. Among the possible one-feature if-then

statements, the rule that maximally reduces Gini impu-
rity is always chosen. Gini impurity is reduced if the two
nodes resulting from the rule have a less uniform class
distribution than the parent node. How important a fea-
ture was in an entire tree can be estimated by summing up
the impurity reductions brought about by this feature at
all different branching points where it was used [34, 36].
The importance of each feature in each individual tree is
calculated and easily accessible to the user in scikit-learn’s
RandomForestClassifier [35].
To compare the importance of RSCU values of differ-

ent codons for our classification task, we averaged the
importance of the features across 1000 trees trained on
the entire data set of all 19 experiments. When interpret-
ing the mean importance of features, we need to notice
that the RSCU values of synonymous codons can be highly
correlated - if the value for one synonymous codon is
high, the other(s) must be low. If there are only two syn-
onyms, the correlation is almost perfect. Correlated fea-
tures “compete” for importance - the RSCU value that is
used first in a given tree will have the chance to contribute
the information shared between the correlated features
and is likely to show up as more important [36, 37]. In
a different tree the randomness might lead to another
feature being selected first and contributing highly. This
leads to high variance of feature importance across trees.
Despite high variance, we believe the average importance
is still interpretable and reveals which codons’ RSCU val-
ues are useful more often than others [36], especially when
the differences are clearly visible.

Artificial neural networks
Artificial Neural Networks is a machine learning algo-
rithm inspired by the structure of the biological networks
of neurons in the brain. The simplest type of artificial
neural networks, feed-forward neural network (FFN) used
in this work, consists of multiple layers of nodes (called
“neurons”) and the connections between these nodes [38].
There are no connections between the nodes of the same
layer, whereas neighboring layers are all-to-all connected
with each other. Each node is characterized by its activa-
tion and each connection by its weight. These connection
weights can be optimized by providing the network input-
output pairs.
To implement neural network models we used version

2.0.5 of Keras library (https://keras.io/) in Python 2.7. The
procedure to find useful values for hyperparameters (net-
work size, depth, etc) and a more thorough description of
neural network approach is provided in Additional file 3.

Results
To test whether the relative synonymous codon usage
frequency can predict the viral nature of a sequence
we firstly trained a model on sequences originating

https://keras.io/
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from NCBI GenBank. Secondly, we trained models only
on assemebled metagenomics contigs. We show how
well these models classify viral sequences and com-
pare results. During this study we used two datasets
and in each dataset there was a high class imbalance.
Therefore, we used area the under Receiver Operat-
ing Characteristic (ROC) curve as our main metric to
evaluate the results since it is not dependent on class
distribution.
We start with results from a preliminary analysis

obtained using the dataset from NCBI Genbank. There-
after, in the main analysis, we first describe and ana-
lyze the results obtained on metagenomics datasets with
Random Forest (RF) classifier. Also, we analyze how
important role each RSCU value played in the classifica-
tion. Finally, to validate the results obtained with RF, we
demonstrate that a similar classification performance can
be achieved with feedforward neural networks.

GenBankmodel
The first set of random forest models was trained on
RSCU values obtained from genes registered at Genbank.
Using k-fold cross validationmethod (k=10) the approach
showed very high accuracy. Figure 2 shows that averaged
across all folds the random forests achieve 0.99 area under
the ROC curve, meaning that classifying genes based on
their RSCU values can be done almost perfectly. As a
next step we applied a model trained on GenBank data
on metagenomics data in order to see how well it would

generalize on this type of noisy dataset. As Fig. 3 shows
the model clearly failed to classify the assembled metage-
nomics contigs. The area under the ROC curve was 0.51.
Despite the fact that the same model performed very
well on a dataset obtained from Genbank its accuracy on
metagenomics was very close to a random classifier.

Metagenomics model
As our primary goal was to detect viral sequences in
metagenomics and given the fact that Genbank model
could not classify assembled contigs, we trained the next
model entirely on metagenomics data.
We used Random Forests with different hyperparameter

combinations (number or trees, up and down sampling,
class weights), applying the leave-one-experiment-out
(LOEO) type cross-validation (see “Methods” section).
The results with different tested hyperparameters are pro-
vided in Additional file 4. The best results were obtained
with 5000 trees, balanced class weights and no up or down
sampling. In the following we present the results from this
model, unless clearly stated otherwise.
Joining the predictions for all samples and for all

experiments in our LOEO cross-validation approach,
we can describe the overall performance of the ran-
dom forests. In Fig. 4 we visualize the ROC curves
for each individual validation set (i.e. data from each
of the 19 metagenomics experiments, dotted gray lines)
as well as the micro-averaged and macro-averaged
ROC curves across the 19 validation sets (blue line

Fig. 2 ROC curve of GenBank model when testing on GenBank data. The models trained in 10-fold cross validation, achieved 0.99 area under the
ROC curve while classifying RSCU values obtained from genes registered at the GenBank. Notice that in case of equal fold sizes, micro and macro
averages are equal
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Fig. 3 ROC curve of GenBank model when tested on metagenomics data. Area under the ROC curve is 0.51, which means the model trained on
GenBank data failed to generalize on metagenomics data. It’s performance is close to random level

and red line respectively). The area under the micro-
averaged ROC curve is 0.789 meaning the models per-
formed clearly better than a random classifier or the
Genbank model. Because our data comes from very
different experiments, we also provided the macro-
averaged results - statistics from all 19 cross-validation

folds are averaged disregarding the number of sam-
ples. The area under the macro-averaged ROC curve
is 0.785, confirming that the models perform well on
data from different experiments. See Additional file 5
for results per validation set (i.e per metagenomics
experiment).

Fig. 4 ROC curves of the metagenomics model for each LOEO cross-validation fold and their micro and macro averages. The grey lines depict the
ROC curve in each leave-one-experiment-out cross-validation fold. The red line is the macro-averaged curve and blue line the micro-averaged
curve. Green line shows the performance of a randommodel. The averaged results are clearly above the diagonal, meaning the models perform a
much better than a random guess
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Precision and recall
The leave-one-experiment-out (LOEO) cross-validation
approach yields a probability for each contig being a
virus. Across the 19 datasets, we had on average 3%
of virus and 97% of non-virus samples. Notice that
a naive model that classifies everything as non-virus
would have a 97% overall precision and 97% overall
recall. Despite rather high overall precision and recall,
this model would clearly be useless for separating the
classes. With a high class imbalance we needed to
describe the precision and recall for both classes sepa-
rately, instead of overall performance. This way we could
gain more insight to the model’s actual ability to detect
viral samples. Table 1) summarizes the precision and
recall at threshold p(virus)≥0.5 for the two classes, using
micro and macro averaging. We see that the model is
clearly doing better than simply classifying all samples as
“not virus”.
In Table 1 we reported the precision and recall if all sam-

ples with p(virus)≥0.5 are classified as virus. This is an
intuitive threshold to set - it means that we assign themost
probable class to each sample. Notice however, that setting
a higher threshold would make the decision stricter and
would likely increase the precision at the expense of recall,
whereas a lower threshold boosts recall at the expense
of precision. Varying the strictness of the classification
can be useful depending on the context and purpose of
the analysis. If one needs to detect the maximum amount
of viruses and is willing to accept many false positives,
a low threshold can be useful. Inversely, if false positives
are costly to deal with while one can accept letting many
viruses pass unnoticed, a high threshold might be useful.
This is also the case in metagenomics analysis for find-
ing new viral sequences - setting a threshold yielding high
precision might be useful as further biological analysis
can be costly. Figure 5 illustrates the trade-off between
precision and recall for the virus class using the model
with highest area under ROC curve. With this model we
can, for example, achieve 75% accuracy at 8.0% recall, 90%
accuracy at 5.6% recall and 95% accuracy at 3.7% recall.
However, if choosing the model maximizing these recall

Table 1 Micro- and macro-averaged performance measures
across 19 experiments using random forests

Method Class Precision Recall F1-score

Micro-average Non virus 0.97 1.00 0.99

Micro-average Virus 0.92 0.05 0.10

Macro-average Non virus 0.96 1.0 0.98

Macro-average Virus 0.53 0.04 0.08

The results presented are from the best model according to area under ROC curve
(ROCmicro = 0.789). This model used 5000 trees, balanced class weights and no
down nor upsampling

values instead of maximizing area under ROC curve,
we can also achieve 75% accuracy at 10.5% recall, 90%
accuracy at 8.6% recall, 95% accuracy at 5.5% recall. See
Additional file 4 for results with different hyperparameter
values.

Feature importance and visualization
The mean importance of each codon’s RSCU value for the
virus detection task is displayed in Fig. 6.
The high variance in these mean importance val-

ues is driven by the correlations between the RSCU
values of synonymous codons (see the explanation in
“Methods” section). Despite the variance, it is clear that
the sum importance of an amino acid seems to grow
with increased number of triplets coding for it. Sec-
ondly, it can be seen that in most cases the impor-
tance is distributed rather uniformly across synonymous
codons, but codons TCG (Ser), CGC (Arg), CGA (Arg),
GCG (Ala), GTA(Val) and CCG(Pro) stand out as the
most informative codons. As the classification algorithm
treats all features as equals, such increased importance
of certain codons might hint at underlying biological
causes.

Neural networks
To confirm and potentially improve the results from the
RF classifier, we also trained a neural network (NN) clas-
sifier on the same RSCU data. We applied the same leave-
one-experiment-out cross-validation technique, meaning
19 models were trained, each time leaving out data
from one experiment. Table 2 summarizes the results
for the best-performing (according to ROC area) neu-
ral network hyperparameters at classification threshold
0.5 using the same measures as for random forests. The
results at threshold 0.5 for NN approach look supe-
rior to the results of random forests when comparing
F1 scores for the viral class. However, area under the
ROC curve reveals that the two methods are of equiv-
alent power. The micro-averaged area under the ROC
curve for this best model is 0.790, whereas the best
random forest configuration reaches 0.789. Indeed com-
pared to the random forests in Table 1 the neural net-
works in Table 2 seemed to trade off precision at the
expense or recall, with the actual underlying power to
discriminate (as measured by ROC area) staying the
same.
Thus both random forest and neural network mod-

els are able to detect patterns in the RCSU values that
are predictive of the virus or non-virus nature of the
samples.

Discussion
We found that machine learning using RSCU can predict
presence of viral contigs in metagenomic sequencing data.
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Fig. 5 The trade-off between precision and recall for virus vs. non-virus classification when changing the classification threshold. A sample is
classified as virus only if p(virus)>threshold. Dotted lines depict the precision and recall for virus class at different thresholds for individual folds (i.e.
metagenomics experiments) in LOEO cross validation. Blue line depicts the micro average across the experiments, red line illustrates macro average.
The vertical and horizontal dashed lines exemplify what performance can be obtained when boosting precision at the expense of recall. Blue
dashed line shows that at 90% accuracy we can obtain 5.67% recall. Cyan dashed line shows that a threshold giving us 95% precision would yield
3.74% recall. The models yielding highest area under ROC curve are used for this graph

Firstly, we investigated the possibility to use RSCU val-
ues to predict viral origin of sequences originating from
complete protein coding genes at NCBI Genbank (the
data was obtained from http://www.kazusa.or.jp/codon/).
Using 10-fold cross-validation on this dataset, random

forest models achieved 0.996 area under ROC curve on
validation data. However, the models trained on this
dataset failed to generalize when tested on metagenomics
data - yielding only 0.510 area under ROC. Additionally,
we tested the metagenomics model on the Genbank

Fig. 6 Feature importance in the Random Forest model as measured by Gini impurity decrease. Each RSCU value’s importance is averaged over a
1000 trees trained on the full metagenomics data set. Codons are grouped according to their corresponding amino acid, with the amino acids with
most codons on the left. Vertical lines separate a.a.-s with 6 codons, 4, 3 and 2 codons. The variance is high due to correlations among synonymous
codons. Codons TCG, CGC, CGA,GCG,GTA and CCG stand out as more important than others

http://www.kazusa.or.jp/codon/
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Table 2 Micro- and macro-average performance measures
across 19 experiments using feed-forward neural networks

Method Class Precision Recall F1-score

Micro-average Non virus 0.97 1.00 0.99

Micro-average Virus 0.69 0.13 0.21

Macro-average Non virus 0.96 1.00 0.98

Macro-average Virus 0.43 0.12 0.19

The results are from the best model according to area under the ROC curve
(ROCmicro = 0.790). This model used two 1024 units FC layers with Relu nonlinearity,
0.25 dropout rate and class_weight_power 0.25 (see Additional file 3). All networks
were trained for 10 epochs, using Adam optimizer with 10e − 4 initial learning rate
that was multiplied with 0.95 after each epoch

dataset, but results were also close to random guess. This
failure probably occurs because metagenomic dataset is
very noisy compared to the clean data obtained from
Genbank. Instead of complete genes, it contains shorter
fragments, it includes non-coding ORFs and has many
sources of possible errors in the pipeline. Considering
the differences between the two datasets, it is a logical
outcome that a model built on one dataset does not per-
form on the other. As our goal is to detect viral sequences
specifically in metagenomics data (and not just gener-
ally demonstrate predictability using RSCU values), we
concluded that we should also train the model on metage-
nomics data.
Using both Feed Forward Neural Network and Ran-

dom Forest classification methods and metagenomics as
training dataset, we show that RSCU can predict the viral
nature of a sequence in metagenomic dataset. While the
method rediscovers only a small proportion of the viral
contigs we nevertheless consider this a significant result
because this rediscovery was achieved based solely on
RSCU values extracted from ORFs (most of ORFs are
probably not actually genes) without any additional exter-
nal knowledge - such as a sequence database. Having used
such very high-level features this method has a chance of
generalizing outside the space of “known sequences” that
it was trained on. This means that the presented solution
can be applied to sequences that other, more informed
methods leave unclassified because they are not similar
enough to the “known sequences” in the database. This
information is beyond the information offered by other
methods and it significantly narrows down the search
space for the discovery of unknown viruses in metage-
nomic samples.
We also investigated which codons played a decisive

role, employing the Random Forest feature importance
analysis. RSCU values for six codons (TCG (Ser), CGC
(Arg), CGA (Arg), GCG (Ala), GTA(Val) and CCG(Pro))
were the most influential in the classification model. In
the human genome, none of these 6 codons are frequently

used [39]. In our metagenomics datasets, the average
RSCU values for the top two influential codons, TCG
and CGC, in non-viral contigs were also quite low (0.39
and 0.53), while in viral contigs they were more abun-
dant (0.60 and 0.80). A similar pattern is also followed
by the other four most influential codons (see Additional
file 6 for a figure depicting mean RSCU values in the
two classes). This indicates that the most decisive codons
for the algorithm were the ones, which were least com-
monly found in non-viral sequences. It also suggests that
the frequency of usage of these particular codons is dif-
ferent in viral and non-viral genome, which in turn hints
at different biological characteristics of viral sequences.
Further research will be necessary to analyze this
difference.
Metagenomics datasets generated by NGS technologies

from human biospecimens are noisy and contain many
potential errors. After human samples are sequenced,
the Illumina machine provides a vast amount of frag-
mented ’reads’ of DNA [40]. In order to reconstruct
full genomes, de novo assembly algorithms are used,
which introduces several types of errors, such as sub-
stitutions, insertions or deletions. These errors cause
frame shifts in the potential coding regions that may
greatly affect accuracy of RSCU values. Despite this
highly noisy data (that comprised only 3% of viral
sequences) our approach achieved 0.79 area under the
ROC curve. In our bioinformatics pipeline, for the
sequences that are classified as unknown byNCBI BLAST,
the HMMER3 algorithm is applied. However, a large
amount of sequences is still labeled as unknown where
potential viral sequences might be hidden. Therefore, we
propose that the machine learning models proposed in
this work could be used as the third stage after BLAST and
HMMER3.
De novo assembly for viral metagenomics is in its

infancy and further improvements will most probably
further enhance the predictive value of machine
learning analysis of RCSU values for taxonomic
classification.

Conclusions
The results of the present investigation indicate that sim-
ple counting statistics at the codon level and applying
machine learning to RCSU values can provide impor-
tant information in addition to conventional methods for
taxonomic classification of sequences in metagenomic
datasets. Future investigations should focus on a more
flexible approach without pre-defined features (like RSCU
values), such as training 1D convolutional neural networks
on raw DNA sequence strings. This approach may have
the potential to discover novel predictive features beyond
codon usage and thus further improve the classification
accuracy.
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