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Abstract: HIF means hypoxia-inducible factor gene family, and it could regulate various biological
processes, including tumor development. In 2021, the FDA approved the new drug Welireg for
targeting HIF-2a, and it is mainly used to treat von Hippel-Lindau syndrome, which demonstrated its
good prospects in tumor therapy. As the fourth deadliest cancer worldwide, gastric cancer endangers
the health of people all across the world. Currently, there are various treatment methods for patients
with gastric cancer, but the five-year survival rate of patients with advanced gastric cancer is still not
high. Therefore, here we reviewed the regulatory role and target role of HIF in gastric cancer, and
provided some references for the treatment of gastric cancer.

Keywords: HIF; gastric cancer

1. Introduction

The hypoxia-inducible factor (HIF) gene family consists of HIF1, HIF2 and HIF3:
HIF1, the most important member of the HIF family, is mainly composed of two subunits,
namely HIF1α and HIF1β. When the oxygen concentration is normal, HIF1α is degraded
and cannot exist stably. In the case of hypoxia, HIF1α enters the nucleus and combines
with HIF1β to promote downstream genes transcription [1]. The specific mechanism is:
under normoxia conditions, HIF1α undergoes hydroxylation under the action of prolyl
hydroxylase (PHD), and it is recognized and bound by the von Hippel-Lindau tumor
suppressor (VHL), when the HIF1α binds to VHL, then it is ubiquitinated and degraded.
Under hypoxia, the oxygen-dependent proline hydroxylation reaction is blocked due to the
inactivation of PHD, HIF1α is not degraded, and the accumulated HIF1α enters the nucleus
and combines with HIF1β to form a dimer, and the dimer regulates the expression of related
genes under hypoxic conditions with the participation of transcriptional co-activators such
as histone acetyltransferase p300, and finally realizes the adaptation of cells to hypoxia
conditions [2–6] (Figure 1). HIF2 is composed of HIF2α and HIF2β. HIF2α is the main
functional subunit, and it is rich in tissues such as vascular endothelial cells and fetal
lung fibroblasts. After HIF2α is activated, it binds to ARNT to form heterodimerization.
Then, it specifically binds to the hypoxia response element of hypoxia-inducible factor
(5′-TACGTGCG-3′), thereby upregulating the expression of these genes [7]. It is currently
known that HIF3, a less-studied member of the HIF gene family, is composed of HIF3α
and HIF3β. The HIF3α gene produces a variety of HIF3α variants, and it is expressed
and differentially regulated by hypoxia and other factors. Full-length HIF3α protein
functions as an oxygen-regulated transcriptional activator [8]. The HIF gene family plays
a very important regulatory role in a variety of diseases, including cancer [9–15]. For
example, Kimberly J Briggs et al. found that HIFα promotes adaptation to hypoxia and
stimulates growth in triple-negative breast cancer [16]. Joo-Yun Byun et al. found that
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HIF-1α promotes cancer stem-like cell phenotype and chemotherapy resistance in head
and neck squamous cell carcinoma [17].
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Figure 1. The mechanism of function of HIF1 under normoxia and hypoxia.

According to the data of the World Health Organization, the number of new gas-
tric cancer patients in the world in 2020 is 1.09 million, ranking fifth, and the number of
gastric cancer deaths in the world in 2020 is 770,000, ranking fourth. Therefore, it can
be said that gastric cancer seriously harms the health of people around the world [18].
Current treatments for gastric cancer include systemic chemotherapy, radiotherapy, surgery,
immunotherapy and targeted therapy [19]. Even with so many treatments, the median
survival for advanced gastric cancer is less than 1 year, and the treatments for advanced
gastric cancer include chemotherapy, radiotherapy, immunotherapy and targeted ther-
apy [20]. Targeted therapy for advanced gastric cancer includes anti-HER2, anti-EGFR,
anti-VEGF, anti-mTOR, anti-HFG and PARP inhibitors. Representative drugs and specific
schematic diagrams are shown in Figure 2 [21]. The above-mentioned targeted therapy
drugs have certain curative effects, but the survival period of advanced gastric cancer is
always relatively short, so the development of new targeted drugs to prolong the survival
period of advanced gastric cancer is a top priority.
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In 2016, some scholars found that the antagonist PT2399 targeting HIF2α has good
antitumor efficacy in VHL-deficient clear cell renal cell carcinoma [22–24]. The discovery of
PT2399 suggested that targeting HIF may be a promising target for cancer therapy. Jung-
Hyun Park et al. were firstly discover that HIF1α is stably expressed in gastric cancer and
may be involved in the progression of gastric cancer [25]. Since then, many studies have
proved that HIF plays a regulatory role in the occurrence and development of gastric cancer,
and the development of targeted drugs for HIF may be a promising treatment for advanced
gastric cancer. Therefore, this review discussed the role of HIF in gastric cancer from its
regulation of proliferation, metastasis, apoptosis, drug resistance, angiogenesis, stemness
and metabolism of gastric cancer cells, and discussed some HIF-targeted therapies drugs
for gastric cancer as well.

2. The Regulatory Role of HIF in Gastric Cancer

From the abstract, we can know that HIF could regulate the occurrence and develop-
ment of gastric cancer by proliferation, metastasis, apoptosis, drug resistance, angiogenesis,
stemness and metabolism of gastric cancer cells (Figure 3). Therefore, we will discuss the
progress of HIF regulation of gastric cancer from the above seven aspects.
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2.1. HIF Regulates Gastric Cancer Progression by Gastric Cancer Cell Proliferation

We know that tumor cell proliferation plays a huge role in tumor development [26].
HIF also regulates gastric cancer progression by regulating tumor cell proliferation
(Table 1). Hai-Yan Piao et al. revealed that HIF1α can bind to the promoter of Hypoxia Yield
Proliferation Associated LncRNA (HYPAL) and promote its transcription, which activates
the Wnt/β-catenin signaling pathway through HYPAL/miR-431-5p/CDK14 and induces
gastric cancer cell proliferation [27]. Jiayu Zhao et al. also discovered that HIF1α could bind
to the promoter region of miR-17-5p to activate the transcription of pre-miR-17-5p and miR-
17-5p, and miR-17-5p binds to the untranslated region of the gastric cancer suppressor gene
programmed cell death 4 (PDCD4), the role of PDCD4 in gastric cancer mainly includes
inhibition of cell proliferation, thus leading to the degradation of its mRNA. Finally, HIF1α
promotes the proliferation of gastric cancer cells [28] (Figure 4). In addition, according to
Lei Hong et al., the overexpression of HIF1α can promote the proliferation of gastric cancer
cells, and the tumor suppressor gene Linc-pint can inhibit the proliferation of gastric cancer
cells by down-regulating the expression of HIF1α [29].

Many other studies have confirmed that HIF regulates the proliferation of gastric
cancer cells [30–34]. Some tumor-targeted drugs such as crizotinib can exert their anti-
tumor effects by inhibiting cell proliferation [35]. Maybe, we can find drugs that inhibit
the proliferation of gastric cancer cells by targeting HIF in the future, which will help the
clinical treatment of gastric cancer.
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Table 1. HIF regulates gastric cancer progression by regulating tumor cell proliferation.

Gene Function Mechanism References

HIF1α promote proliferation HYPAL/miR-431-5p/CDK14 [27]
HIF1α promote proliferation miR-17-5p/PDCD4 [28]
HIF1α promote proliferation - [29]
HIF1α promote proliferation - [30]
HIF1α promote proliferation - [31]
HIF1α promote proliferation PI3K/AKT [32]
HIF1α promote proliferation miR-224/RASSF8 [33]
HIF1α promote proliferation - [34]
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2.2. HIF Regulates Gastric Cancer Progression by Gastric Cancer Cell Metastasis

Metastasis causes most cancer deaths [36]. Extensive evidence indicated that HIF
plays an important role in gastric cancer metastasis (Table 2). Deng Guan et al. found that
HIF1α can promote the epithelial-mesenchymal transition of gastric cancer cells to promote
the metastasis of gastric cancer [37]. R Guo et al. proved that HIF1α can directly bind to
the promoter of LXRα to promote its transcription, and the increased content of LXRα
activates the epithelial–mesenchymal transition of gastric cancer cells, so the metastatic
ability of gastric cancer is greatly increased [38] (Figure 5). Xiang Xia et al. revealed that
HIF1α could induce gastric cancer cells to release miR-301a-3p-enriched exosomes and
promote the metastasis of gastric cancer cells through the MiR-301a-3p/PHD3/HIF-1α
positive feedback loop [39]. Furthermore, many studies have found that HIF is involved in
the metastasis of gastric cancer cells [40–52].

Inhibiting tumor metastasis by targeting certain genes is also a major strategy for
anti-tumor therapy. For example, Entrectinib inhibits the metastasis of non-small cell lung
cancer by targeting ROS proto-oncogene 1(ROS1) and neurotrophic receptor tyrosine kinase
(NTRK), ROS1 is a proto-oncogene highly expressed in various tumor cells, and ROS1
protein is a type I integral membrane protein with tyrosine kinase activity, and has achieved
satisfactory clinical efficacy [53–56]. From what we have stated above, we can know that
HIF has a certain role in the metastasis of gastric cancer. In the future, it may be a good
choice to develop drugs to inhibit the metastasis of gastric cancer by targeting HIF.
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Table 2. HIF regulates gastric cancer progression by gastric cancer cell metastasis.

Gene Function Mechanism References

HIF1α promote metastasis EMT [37]
HIF1α promote metastasis LXRα/EMT [38]
HIF1α promote metastasis MiR-301a-3p/PHD3/HIF-1α [39]
HIF2α promote metastasis miR-653-5p/miR-338-3p-NRP1 [40]
HIF1α promote metastasis CXCR4 [41]
HIF1α promote metastasis PCGEM1/SNAI1 [42]
HIF1α promote metastasis P4HB [43]
HIF1α promote metastasis - [44]
HIF1α promote metastasis BC005927/EPHB4 [45]
HIF1α promote metastasis GAPLINC [46]
HIF1α promote metastasis Wnt/β-catenin [47]
HIF1α promote metastasis KLF8 [48]
HIF1α promote metastasis - [49]
HIF1α promote metastasis RhoE [50]
HIF1 promote metastasis 67LR [51]

HIF1α promote metastasis - [52]
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2.3. HIF Regulates Gastric Cancer Progression by Gastric Cancer Cell Apoptosis

Apoptosis refers to the autonomous and orderly death of cells controlled by genes
in order to maintain the stability of the internal environment. It is not a phenomenon
of autologous injury under pathological conditions, but a kind of actively striving death
process for better adaptation to the living environment. Apoptosis plays a certain role in
the occurrence and development of gastric cancer [57] (Table 3). Lili Liu et al. found that
HIF1 can promote the expression of the adhesion molecule MGr1-Ag/37LRP by activating
ERK and inhibiting the apoptosis of gastric cancer cells [58]. Nadine Rohwer et al. also
found that HIF can inhibit the apoptosis of gastric cancer cells by up-regulating alpha5 [59].
However, in fact, the role of HIF in gastric cancer cell apoptosis may be controversial, and
some scholars have revealed that HIF can promote gastric cancer cell apoptosis [60,61].
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Table 3. HIF regulates gastric cancer progression by gastric cancer cell apoptosis.

Gene Function Mechanism References

HIF1 inhibit apoptosis ERK/MGr1-Ag/37LRP [58]
HIF1α inhibit apoptosis alpha5 [59]
HIF1α inhibit apoptosis - [60]
HIF1α inhibit apoptosis - [61]

In summary, currently the role of HIF in gastric cancer cell apoptosis is controversial,
and more studies are required to clarify the role of HIF in gastric cancer.

2.4. HIF Regulates Gastric Cancer Progression by Gastric Cancer Cell Drug Resistance

Drug resistance limits the efficacy of cancer treatment, and addressing drug resistance
may be a key issue in cancer treatment [62–65] (Table 4). Mitsuyoshi Okazaki et al. found
that HIF1 promotes drug resistance in gastric cancer cells by affecting the expression of
pyruvate kinase muscle 1 (PKM1), PKM1 is a gene associated with chemotherapy resistance
in gastric cancer [66]. Based on Yunna Chen et al., using siRNA to knock down HIF1α
can reduce the drug resistance of gastric cancer cells and increase the killing effect of
5-fluorouracil on gastric cancer cells [67]. Qun Zhao et al. discovered that HIF1α directly
binds miR-27a to promote its expression, and miR-27a promotes drug resistance of gastric
cancer cells by inhibiting the expression of MDR1/P-gp, LRP and Bcl-2 [68].

Table 4. HIF regulates gastric cancer progression by gastric cancer cell drug resistance.

Gene Function Mechanism References

HIF1α promote drug resistance - [66]
HIF1α promote drug resistance - [67]
HIF1α promote drug resistance miR-27a [68]
HIF1α promote drug resistance - [69]
HIF1α promote drug resistance survivin [70]
HIF1α promote drug resistance p53/NF-kappaB [71]
HIF1 promote drug resistance MGr1-Ag/37LRP [72]

HIF1α promote drug resistance - [73]
HIF1α promote drug resistance - [74]
HIF1α promote drug resistance - [75]

The role of HIF in gastric cancer drug resistance is relatively certain: HIF can promote
gastric cancer drug resistance, and many other studies have also confirmed this [69–75].
HIF promotes drug resistance of gastric cancer cells, and the idea of new drug design
revolves around this point.

2.5. HIF Regulates Gastric Cancer Progression by Gastric Cancer Cell Angiogenesis

Anti-angiogenesis has always been an important method in designing anti-tumor
drugs. For example, bevacizumab can combine with VEGF to inhibit tumor angiogen-
esis and achieve the effect of inhibiting tumors [76,77]. Zheng Li et al. illustrated that
HIF1α can promote angiogenesis in gastric cancer, and this process can be promoted by
Natriuretic peptide receptor A (NPRA), NPRA is the most important receptor of atrial
natriuretic peptide (ANP), NPRA functions significantly in promoting GC development
and progression [78] (Table 5). Ganggang Mu et al. proposed that HIF1α can promote the
angiogenesis of gastric cancer by promoting the expression of VEGF-A [79]. E Tang et al.
revealed that HIF1α promotes gastric angiogenesis through β-catenin/VEGF signaling,
thus promoting gastric cancer progression [80].
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Table 5. HIF regulates gastric cancer progression by gastric cancer cell angiogenesis.

Gene Function Mechanism References

HIF1α promote angiogenesis - [78]
HIF1α promote angiogenesis - [79]
HIF1α promote angiogenesis β-catenin/VEGF [80]
HIF1α promote angiogenesis VEGF [81]
HIF1α promote angiogenesis VEGF [82]
HIF1α promote angiogenesis miR-382/PTEN/VEGF [83]
HIF1α promote angiogenesis - [84]
HIF1α promote angiogenesis VEGF [85]
HIF1α promote angiogenesis - [86]

Many other studies have confirmed that HIF may be a key factor in gastric cancer
angiogenesis [81–86]. Inhibition of tumor angiogenesis by developing targeted HIF-related
drugs is a promising approach for the clinical treatment of gastric cancer.

2.6. HIF Regulates Gastric Cancer Progression by Gastric Cancer Cell Stemness

Cancer stem cells are defined by the American Cancer Society: A cancer stem cell is a
small subset of cells present in a tumor that produces heterogeneous tumor cells with the
ability to self-renew [87]. Cancer stem cells are considered as important factors in tumor
progression [88–91].

Zhenqin Luo et al. found that HIF1α can promote the progression of gastric cancer
by promoting the stemness of gastric cancer cells [92] (Table 6). On the other hand, Zhi-
Feng Miao et al. proved that HIF1α promotes peritoneal dissemination by promoting the
stemness of gastric cancer cells [93].

Table 6. HIF regulates gastric cancer progression by gastric cancer cell stemness.

Gene Function Mechanism References

HIF1α promote stemness - [92]
HIF1α promote stemness - [93]

At present, there are not many studies on HIF in gastric cancer stem cells, and there is
no successful clinical application of drugs targeting cancer stem cells. Therefore, the role of
HIF in gastric cancer stem cells needs more research.

2.7. HIF Regulates Gastric Cancer Progression by Gastric Cancer Cell Metabolism

Metabolism is closely related to tumors, the metabolism of glucose, lipid and protein
in tumors and it is different from normal cells [94–102]. Tao Wu et al. discovered that
HIF1α promotes gastric cancer progression by promoting glycolysis in gastric cancer
cells [103] (Table 7). Xiao-Hong Wang et al. displayed that HIF1α regulates gastric cancer
cell glycolysis through the FOXO4/LDHA axis, thereby affecting the progression of gastric
cancer cells [104]. According to Jia Liu et al., HIF1α can promote the glycolysis of gastric
cancer cells through the circ-MAT2B/miR-515-5p axis, and promote the occurrence and
development of gastric cancer cells [105].

Many studies have suggested that HIF1α plays a key role in the metabolism of gastric
cancer [106–110].

We know that 5-FU can exert an anti-tumor effect by inhibiting nucleic acid
metabolism [111,112]. HIF is closely related to the metabolism of gastric cancer. As a
good choice to design drugs for gastric cancer based on this, HIF can promote the progres-
sion of gastric cancer by promoting glycolysis under hypoxic conditions.
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Table 7. HIF regulates gastric cancer progression by gastric cancer cell metabolism.

Gene Function Mechanism References

HIF1α promote aerobic glycolysis - [103]
HIF1α promote glycolysis - [104]
HIF1α promote glycolysis circ-MAT2B/miR-515-5p [105]
HIF1α promote glucose Metabolism - [106]
HIF1α promote glycolysis - [107]
HIF1α promote glucose metabolism - [108]
HIF1α promote aerobic glycolysis - [109]
HIF1α promote glucose metabolism - [110]

3. Small Molecule Drugs Targeting HIF to Inhibit Gastric Cancer

Small-molecule drugs mainly refer to organic compounds with molecular weights less
than 1000, and they have been widely used and mature in theory [113–117]. Apixaban,
widely used in clinical practice, is a small molecule drug whose main mechanism is to
inhibit the expression of FXa [118–122]. Researchers have discovered many small-molecule
drugs that can inhibit gastric cancer progression by targeting HIF (Table 8). Tae Woo
Kim et al. found that apigenin, a flavonoid found in traditional medicine, fruits and
vegetables, inhibits HIF1α-induced autophagy-related cell death [123]. Noriyuki Egawa
et al. demonstrated that low-dose tipifarnib inhibits tumors by inhibiting the expression of
HIF1α [124]. Yun-Ning Huang et al. exhibited that dextran sulfate (DS) could inhibit EMT
in gastric cancer cells by inhibiting the expression of HIF [125].

Table 8. Small molecule drugs targeting HIF to inhibit gastric cancer.

Drugs Target Mechanism References

apigenin HIF1α promote autophagy [123]
tipifarnib HIF1α - [124]

dextran sulfate HIF1α inhibit metastasis [125]
schisandrin B HIF1α inhibit metastasis [126]

Glaucocalyxin a HIF1α inhibit metastasis [74]
Resveratrol HIF1α inhibit metastasis [127]

Oleanolic acid HIF1α inhibit aerobic glycolysis [128]
ginsenoside Rg3 HIF1α inhibit angiogenesis [129]

EGCG HIF1α promote apoptosis [130]
Wogonin HIF1α inhibit proliferation [131]

FS-7 HIF1α inhibit glycolysis [132]
TC24 HIF1α promote apoptosis [133]

dextran sulphate HIF1α inhibit metastasis [134]
Sulforaphane HIF1α inhibit angiogenesis [135]

Quercetin HIF1α promote autophagy [136]
Celecoxib HIF1α promote autophagy [137]

There are many small molecule drugs that inhibit the progression of gastric cancer by
targeting HIF [74,126–137]. Unfortunately, although so many small molecule drugs have
been found to inhibit the progression of gastric cancer through HIF, none of them can be
used clinically, so more basic and clinical researches are needed.

However, there is a piece of exciting news that the US FDA has approved Merck’s
innovative oncology drug Welireg, the first HIF2α inhibitor, for the treatment of VHL
syndrome-related tumors. VHL syndrome is a rare and serious genetic disorder associated
with a high risk of developing cancer in multiple organs. Prior to Welireg, no systemic
therapies were approved for the treatment of VHL-related tumors. Patients suffering from
VHL-related tumors treated with Welireg demonstrated high response rates and durable
responses [138–145].

Given the success of Welireg, a drug targeting HIF2α in treating VHL syndrome-
related tumors, HIF plays a huge role in gastric cancer. Can we look forward to the future
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that scientists discover that HIF-targeting drugs for the treatment of gastric cancer will
benefit patients in the clinic?

4. Conclusions

HIF affects the progression of gastric cancer by regulating the proliferation, metastasis,
apoptosis, drug resistance, angiogenesis, stemness and metabolism of gastric cancer cells.
Many small molecule drugs that inhibit the progression of gastric cancer through HIF have
been found in basic experiments, while these drugs have not yet been clinically applied.
Given the success of Welireg, a drug targeting HIF2α in treating VHL syndrome-related
tumors, HIF plays a huge role in gastric cancer. We look forward to the future where
scientists discover that HIF-targeting drugs for the treatment of gastric cancer will benefit
patients in the clinic.
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