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Abstract: Fully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications
for terrain and ground cover classification. The dynamics of surface and subsurface water events
can lead to slope instability resulting in slough slides on earthen levees. Early detection of these
anomalies by a remote sensing approach could save time versus direct assessment. We used L-band
Synthetic Aperture Radar (SAR) to screen levees for anomalies. SAR technology, due to its high
spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on
earthen levees. Using the parameters entropy (H), anisotropy (A), alpha (α), and eigenvalues (λ, λ1, λ2,
and λ3), we implemented several unsupervised classification algorithms for the identification of
anomalies on the levee. The classification techniques applied are H/α, H/A, A/α, Wishart H/α,
Wishart H/A/α, and H/α/λ classification algorithms. In this work, the effectiveness of the algorithms
was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion
Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area
is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control
levees are maintained by the US Army Corps of Engineers.
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1. Introduction

Earthen levees protect large areas of populated and cultivated land in the United States from
flooding. The potential loss of life and property associated with the catastrophic failure of levees can
be extremely large. Over the entire US, there are more than 150,000 km of levee structures of varying
designs and conditions. One type of problem along these levees, which can contribute to failure during
a high water event, is the occurrence of slough slides [1]. Slough (or slump) slides are slope failures
along a levee, which leave areas of the levee vulnerable to seepage and failure during high water
events [2]. The roughness and related textural characteristics of the soil in a slide area affect the amount
and pattern of radar backscatter. The type of vegetation that grows in a slide area differs from the
surrounding levee vegetation, which can also be used in detecting slides [3].

Polarimetric Synthetic Aperture Radar (PolSAR) data encompass information on scattering
mechanisms by diverse target structures and materials. We used multi-polarized L-band Synthetic
Aperture Radar (SAR) to screen earthen levees for anomalies. The dynamics of surface and subsurface
water events can lead to slope instability resulting in slough slides [4]. If these levees are not healthy,
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they may not be able to withstand flood conditions which could lead to catastrophic failures. Improved
knowledge of the condition of these levees would significantly improve the allocation of precious
resources to inspect, test, and repair the ones most in need [5]. Early detection of these anomalies by a
remote sensing approach could save time versus direct assessment. SAR technology, due to its high
spatial resolution and soil penetration capability, is a good choice for identifying problematic areas on
levees for this purpose [5]. SAR polarimetry using quad-polarization data is the HV-polarization base
in which an antenna transmits and receives horizontally and vertically polarized signals [6].

H/A/α decomposition is an eigenvalue-based decomposition of the coherency matrix xrT3sy [7,8].
Three features are defined as a function of the eigenvalues and the eigenvectors of xrT3sy: (1) entropy
(H), which determines the randomness of scattering or degree of statistical disorder of target;
(2) anisotropy (A), which is a unique function of eigenvalue ratios; (3) mean alpha angle (α) for
different scattering processes and identifying the dominant scattering mechanism [9,10]; and lambda
(λ) defined as nonnegative real eigenvalues of the diagonal matrix [Σ3] [7,8]. Cloude and Pottier [9]
demonstrated an unsupervised classification based on the H/α parameters. These parameters alone
were not sufficient for good interclass resolution, indicating that additional information is needed.
Hellmann et al. [11] tested an unsupervised classification based on the H/α/λ1 parameters. However,
λ1 alone was not able to represent the complete scattering mechanism about the target. Lee et al. [12]
proposed an unsupervised approach using H and α to initially classify a SAR image and use this
classification as training data for a final supervised classification using the maximum likelihood
algorithm base on a Wishart distribution. Further improvements can also be made by using the
anisotropy parameter. The value of the anisotropy gives the relative significance of secondary
scattering mechanisms.

2. Method

The overall method consists of creating an image subset of the test area, testing our candidate
classifiers on the area of interest, and comparing the results to ground truth data. In this paper,
we implemented several unsupervised classification algorithms for the identification of anomalies
such as slough slides on the levee, an example of which is shown in Figure 1. The classification
techniques applied, using H, A, α, and λ parameters are H/α, H/A, and A/α classification [9,10],
Wishart H/α classification [13], Wishart H/A/α classification [14], and extended H/α (i.e., H/α/λ)
classification [11,14,15], including classification for individual λ values as H/α/λ1, H/α/λ2, and
H/α/λ3. The H/α two dimensional classification employs a three-level Bernoulli statistical model
to generate estimates of the average target scattering matrix parameters from the data [9]. The work
outlined here is also focused on using λ1, λ2, and λ3, which takes advantage of individual classification
using λ1, λ2, and λ3 for a good interclass resolution. In the H/α/λ approach, the backscatter intensity
information contained in the eigenvalues λ1, λ2, and λ3 is used to improve the interclass resolution
due to the different reflectivities of different scatterers. The classification is performed using the
complex data of the Multi-Look Cross products (MLC) acquired by UAVSAR. The MLC data is derived
from an average of 3 pixels in range and 12 pixels in azimuth of the single-look complex data (SLC)
pixel [13–15]. Three complex data bands HHHV, HHVV, and HVVV back scatter magnitudes are
used as features for the classification. These processing steps for levee slide detection are illustrated
in Figure 2.



Sensors 2016, 16, 898 3 of 15

Sensors 2016, 16, 898 2 of 14 

 

Improved knowledge of the condition of these levees would significantly improve the allocation of 
precious resources to inspect, test, and repair the ones most in need [5]. Early detection of these 
anomalies by a remote sensing approach could save time versus direct assessment. SAR technology, 
due to its high spatial resolution and soil penetration capability, is a good choice for identifying 
problematic areas on levees for this purpose [5]. SAR polarimetry using quad-polarization data is the 
HV-polarization base in which an antenna transmits and receives horizontally and vertically 
polarized signals [6].  

H/A/α decomposition is an eigenvalue-based decomposition of the coherency matrix 	 [ ]  
[7,8]. Three features are defined as a function of the eigenvalues and the eigenvectors of	 [ ] : (1) 
entropy (H), which determines the randomness of scattering or degree of statistical disorder of target; 
(2) anisotropy (A), which is a unique function of eigenvalue ratios; (3) mean alpha angle (α) for 
different scattering processes and identifying the dominant scattering mechanism [9,10]; and lambda 
(λ) defined as nonnegative real eigenvalues of the diagonal matrix [Σ3] [7,8]. Cloude and Pottier [9] 
demonstrated an unsupervised classification based on the H/α parameters. These parameters alone 
were not sufficient for good interclass resolution, indicating that additional information is needed. 
Hellmann et al. [11] tested an unsupervised classification based on the H/α/λ1 parameters. However, 
λ1 alone was not able to represent the complete scattering mechanism about the target. Lee et al. [12] 
proposed an unsupervised approach using H and α to initially classify a SAR image and use this 
classification as training data for a final supervised classification using the maximum likelihood 
algorithm base on a Wishart distribution. Further improvements can also be made by using the 
anisotropy parameter. The value of the anisotropy gives the relative significance of secondary 
scattering mechanisms. 

2. Method 

The overall method consists of creating an image subset of the test area, testing our candidate 
classifiers on the area of interest, and comparing the results to ground truth data. In this paper, we 
implemented several unsupervised classification algorithms for the identification of anomalies such 
as slough slides on the levee, an example of which is shown in Figure 1. The classification techniques 
applied, using H, A, α, and λ parameters are H/α, H/A, and A/α classification [9,10], Wishart H/α 
classification [13], Wishart H/A/α classification [14], and extended H/α (i.e., H/α/λ) classification 
[11,14,15], including classification for individual λ values as H/α/λ1, H/α/λ2, and H/α/λ3. The H/α two 
dimensional classification employs a three-level Bernoulli statistical model to generate estimates of 
the average target scattering matrix parameters from the data [9]. The work outlined here is also 
focused on using λ1, λ2, and λ3, which takes advantage of individual classification using λ1, λ2, and λ3 
for a good interclass resolution. In the H/α/λ approach, the backscatter intensity information 
contained in the eigenvalues λ1, λ2, and λ3 is used to improve the interclass resolution due to the 
different reflectivities of different scatterers. The classification is performed using the complex data 
of the Multi-Look Cross products (MLC) acquired by UAVSAR. The MLC data is derived from an 
average of 3 pixels in range and 12 pixels in azimuth of the single-look complex data (SLC) pixel [13–
15]. Three complex data bands HHHV, HHVV, and HVVV back scatter magnitudes are used as 
features for the classification. These processing steps for levee slide detection are illustrated in Figure 2. 

 

Figure 1. Slough or slump slide on a levee. Figure 1. Slough or slump slide on a levee.Sensors 2016, 16, 898 3 of 14 

 

 
Figure 2. Processing steps for slide detection on levee. 
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by 0.6 m, the multi-look 5 × 7 m data is used to minimize speckle effects [5]. UAVSAR is capable of 
penetrating dry soil to a few centimeters depth and identifying vertical. Thus, it is valuable in 
detecting changes in levees that can be used as inputs to a levee monitoring system [16]. We also 
relied on the ground truth data collected by the US Army Corps of Engineers (USACE) which 
documented the location and timing of slough slide appearance and repair history. The ground truth 
data was also compared to optical NAIP (National Agriculture Imagery Program) imagery to visually 
confirm the slide events. The proposed algorithms were applied to a subset area of a levee. For the 
multi-polarized SAR imagery, it is useful to create a color composite image from the HH, HV, and 
VV channels that are being mapped to red, green, and blue, as shown in Figure 3, which includes an 
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Figure 2. Processing steps for slide detection on levee.

2.1. Data and Study Area

The study area for this work focuses on the mainline levee system of the Mississippi River along
the eastern side of the river in the state of Mississippi [16]. The fully quad-polarimetric L-band
(λ = 23.98 cm) SAR imagery from the NASA JPL’s UAVSAR with a range bandwidth of 80 MHz
(resulting in better than 2-m range resolution) was used to detect anomalies on earthen levees. The
MLC data consists of three sets of complex floating points numbers, 8 bytes per pixel. These complex
products are derived from an average of 3 pixels in range and 12 pixels in azimuth, i.e., the number of
range and number of azimuth looks are 3 ˆ 12 of the product of each single-look complex data (SLC)
pixel, which correspond to HHHV, HHVV, and HVVV. Although the raw ground sample distance is
1.6 by 0.6 m, the multi-look 5 ˆ 7 m data is used to minimize speckle effects [5]. UAVSAR is capable
of penetrating dry soil to a few centimeters depth and identifying vertical. Thus, it is valuable in
detecting changes in levees that can be used as inputs to a levee monitoring system [16]. We also relied
on the ground truth data collected by the US Army Corps of Engineers (USACE) which documented
the location and timing of slough slide appearance and repair history. The ground truth data was also
compared to optical NAIP (National Agriculture Imagery Program) imagery to visually confirm the
slide events. The proposed algorithms were applied to a subset area of a levee. For the multi-polarized
SAR imagery, it is useful to create a color composite image from the HH, HV, and VV channels that
are being mapped to red, green, and blue, as shown in Figure 3, which includes an overview image
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overlaid on the base map. This image, collected in a single UAVSAR flight segment flying on a near
north heading with the radar looking to the right, has a swath width of 20 km and a total length of
200 km. Across the swath, the beam’s angle of incidence varied from 20 to 65 degrees. It was collected
on 25 January 2010. The study area subset is shown in Figure 3 as a red box on the radar image.Sensors 2016, 16, 898 4 of 14 

 

 

Figure 3. Study area with radar color composite 3 band (HH, VV, & HV) image overlaid on base map. 
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2.2. Ground Truth Data

The availability of “ground truth” data is a challenge since the targets of interest are portions
of levees that show signs of impending failure. Once these are detected, they are quickly repaired
depending on their severity [5]. The study area is one in which the levees are managed by the US Army
Corps of Engineers and are well-monitored. The Corps, in association with the local levee boards,
maintains a good cumulative history of past problems and has particularly identified problematic
sections of levees in the study area as shown in Table 1. In addition to the ground truth data provided
by the Corps, we conducted field trips at the time of image acquisition to visually inspect the slide
area and levee condition. The active slide (Slide 3) was present and unrepaired during the radar image
acquisition time on 25 January 2010. Though the date of slide appearance was not identified by the
Corps for Slide 3, it is visible in the NAIP (National Agriculture Imagery Program) imagery collected
in 2009 and 2010 and was not repaired until after the image acquisition shown in Table 1. Hence, it was
an active slide during the time of the image.
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Table 1. Updated slides ground truth from Mississippi Levee Board.

Slide Number Latitude North Longitude West Date Slide Appeared Date Slide Repaired

1 32 36 37.7N 90 59 42.3W October 2009 November 2009
2 32 36 32.0N 90 59 46.3W August 2008 November 2009
3 32 36 29.1N 90 59 48.0W - September 2010

2.3. The H/A/α/λ Polarimetric Decomposition

Since the multi-look samples represent spatially average values, the expected value of the 3 ˆ 3
coherency matrix [T] is used to represent the averaged distributed target, as in [17]:

xrTsy “
1
N

N
ÿ

i“1

ki.ki
˚T “

1
N

N
ÿ

i“1

rTis (1)

where the symbol *T stands for complex conjugate.
From this, the 3 ˆ 3 Hermitian coherency matrix, the eigenvectors, and eigenvalues can be used

to generate a diagonal form matrix that can be interpreted as the statistical independence among a set
of target vectors. The coherency matrix xrTsy can then be written in this form:

xrTsy “ rU3s rΣs rU3s
´1 (2)

where [Σ] is a 3 ˆ 3 diagonal matrix with nonnegative real elements (eigenvalues) of xrTsy and
rU3s “ ru1 u2 u3s is a 3 ˆ 3 unitary matrix, where u1, u2 , and u3 are the three unit orthogonal
eigenvectors of xrTsy, and

rΣ3s “

»

—

–

λ1 0 0
0 λ2 0
0 0 λ3

fi

ffi

fl

(3)

where λ1 ą λ2 ą λ3 ą 0.
The polarimetric parameterization of the unit target vector u involves the combination of three

simple scattering mechanisms: surface scattering, double-bounce scattering, and volume scattering, in
the case of a distributed target (natural media). These can be characterized from the three components
(target generators) of the unit target vector [5,7]. For the mono-static radar case, the 3 ˆ 3 coherency
matrix [T] has the following parameterization [7]:

rTs “ k.k˚T
“

»

—

–

2A0 C´ jD H ` jG
C` jD B0 ` B E` jF
H ´ jG E´ jF B0 ´ B

fi

ffi

fl

(4)

Surface Scattering: A0 " B0 ` B, B0 ´ B;
Double-bounce Scattering: B0 ` B " A0, B0 ´ B;
Volume Scattering: B0 ´ B " A0, B0 ` B.
The Cloude and Pottier [8] decomposition, based on the eigenvalue analysis of a coherency matrix,

xrTsy is
xrTsy “ λ1u1 e1

˚T ` λ2u2 e2
˚T ` λ3u3 e3

˚T (5)

where λi and ui for i “ 1, 2, 3 are eigenvalues and eigenvectors.
The eigenvectors can be written as

ui “ rcosαi sinαi cosβie
jδi sinαi cosβie

jγi s
T

(6)
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Cloude and Pottier defined three parameters as a function of the eigenvalues and the eigenvectors
of xrTsy [5,7–9]: entropy, span(λ), and average alpha angle.

The entropy H determines the degree of statistical disorder of each target:

H “ ´

3
ÿ

i“1

Pilog3 pPiq , and (7)

Pi “
λi

ř3
j“1 λj

(8)

where Pi is the probability of the eigenvalue λi.
The entropy, having values in the range 0 to 1, reveals the randomness of the scattering medium,

ranging from pure isotropic scattering (H = 0) to completely random scattering (H = 1). For oceans and
low roughness surfaces, H is near 0, indicating the dominant mechanism is surface scattering. High
values of H mean multiple scattering is occurring, as in heavily vegetated areas.

Span (λq represents the total scattered power:

span “ |SHH|
2
` |SVV |

2
` 2 |SHV |

2
“

3
ÿ

i“1

λi (9)

span “ Trace prΣ3sq “

3
ÿ

i“1

λi , and (10)

λ “
3
ÿ

i“1

λi “ λ1 ` λ2 ` λ3 (11)

Average alpha angle (α) identifies the dominant scattering mechanism for different
scattering processes:

α “
3
ÿ

i“1

Piαi “ P1α1 ` P2α2 ` P3α3 (12)

α reveals the averaged scattering mechanisms from surface scattering (α = 0) to double bounce
(α = 90).

2.4. Unsupervised H/α Classification

Unsupervised classification schemes were implemented using H and α. All random scattering
process can be represented in this 2-dimensional feature space. The underlying principle is that
entropy is an indicator of the reversibility of the scattering, while the angle (α) is related to the
average scattering mechanism present [17]. The classification plane is divided into nine different
zones that represent the different scattering processes, as shown in Figure 4. The classification method
is implemented by comparing the observed values of H and α to these fixed zone thresholds to
identify the scattering mechanism. The value of α segments the plane into regions characteristic of
surface, volume, or multiple scattering. The H or entropy value separates regions of low, medium,
and high amounts of randomness along the x axis [9,17,18]. The corresponding net combined physical
scattering characteristics of each of the zones thus become as follows [9]: Z9: Low Entropy Surface
Scattering; Z8: Low Entropy Dipole Scattering; Z7: Low Entropy Multiple Scattering; Z6: Medium
Entropy Surface Scattering; Z5: Medium Entropy Vegetation Scattering; Z4: Medium Entropy Multiple
Scattering; Z3: (Not a Feasible Region); Z2: High Entropy Vegetation Scattering; and Z1: High Entropy
Multiple Scattering.
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A refinement of this simple classification was applied next using the method of Lee et al. [12].
The initial classification map from the fixed-zone H/α plane defines training sets for a maximum
likelihood classification based on the assumption that the data follow a Wishart distribution and the
use of the coherency matrix elements as the features. The class of each resulting cluster is determined
from whichever zone of the H/α plane the new class center falls in. The classified results are then used
as training sets for the next iteration, repeating until a threshold for the percentage of pixels switching
classes or an iteration count is met.

2.5. H/A/α Unsupervised Classification

A further refinement of the Wishart-based H/α segmentation makes use of an anisotropy
parameter during the procedure. This parameter indicates the relative significance of secondary
scattering processes. It allows the discrimination of scattering mechanisms having similar entropy
values but different eigenvalue distributions. In these cases, greater anisotropy indicates the presence
of two dominant scattering processes having equal probability and a less important third mechanism,
while low anisotropy reveals a dominant primary scattering process and two secondary mechanisms
that are not negligible and have equal significance [17–19]. Polarimetric data is first segmented
using the maximum likelihood Wishart method. After this procedure is complete, the 8 resulting
segments are refined into 16 based on the anisotropy value of each pixel, using a fixed threshold
of 0.5. The 16 resulting clusters are then used as training for a second Wishart maximum likelihood
classification. The use of anisotropy in the segmentation process allows the splitting of large segments
into smaller ones that discriminate small differences in a refined manner, grouping pixels together
with similar statistics [14,17,18].

2.6. H/α/λ Unsupervised Classification

Cloude and Pottier [9] demonstrated an unsupervised classification based on the H/α parameters.
These parameters alone were not sufficient for good interclass resolution, indicating that additional
information is needed. Even though the H and α values are derived from fully polarimetric data,
they do not completely represent all the polarimetric information. Other parameters, including the
span or specific correlation coefficients were expected to significantly improve the classification [20].
Hellmann et al. [11,15] tested an unsupervised classification based on the H/α/λ1 parameters.
However, λ1 alone was not able to represent the complete scattering mechanism about the target. The
H/α/λ classification including classification for individual λ values such as H/α/λ1 is performed for
good interclass resolution [12,18]. We implemented classification using H/α/λ, H/α/λ1, H/α/λ2, and
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H/α/λ3. In the H/α/λ approach, the backscatter intensity information contained in the eigenvalues
λ1, λ2, and λ3 is used to improve the interclass resolution due to the differing reflectivities of
different scatterers.

3. Results and Discussion

The motivation of this work is to detect slough slides on a levee using remotely sensed imagery.
PolSAR data was used for classification of scattering mechanisms of a target, such as surface,
double-bounce, or volume scattering [18]. The yellow line overlaid on the optical image in Figure 5
shows the analysis area of the levee from the river side toe to the center line (crown) of the levee.
At present, we are focusing on the river side because the chance of the occurrence of slough sides is
significantly greater there compared to the land side of the levee. On this image, the locations of the
three slides are also indicated.
Sensors 2016, 16, 898 8 of 14 
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Figure 5. Optical image overlaid with the test area in yellow.

Figure 6a shows the radar backscatter image in the Pauli color composite form (red = HH + VV,
green = HH ´ VV, and blue = HV). In Figure 6b–f, we see respectively the output class map from
each of the following classifiers: H/α, Wishart-H/α, H/A, A/α, and Wishart-H/A/α classification.
The H/α, H/A, A/α, and Wishart-H/α classifiers generate nine classes, based on the use of the
two-dimensional H/α classification plane. Wishart-H/A/α classification produces 16 classes based
on the H/A/α segmentation plane. For the Wishart-H/α and Wishart-H/A/α classification, the
polarimetric decomposition parameters (entropy, alpha, and anisotropy) were used as training sets in
these iterative classification algorithms. The iteration halted after 10 cycles, when the fraction of class
switching was under 10%. Figure 7 repeats the two clearly superior class maps among these—the two
Wishart classifier maps—showing how they align with the locations of slides, as shown in the optical
image in Figure 7c.



Sensors 2016, 16, 898 9 of 15

Sensors 2016, 16, 898 8 of 14 

 

 

Figure 5. Optical image overlaid with the test area in yellow. 

 

 
Figure 6. (a–c) Pauli RGB Image, H/α classification, and Wishart-H/α classification; (d–f) H/A 
classification, A/α classification, and Wishart-H/A/α classification. 
Figure 6. (a–c) Pauli RGB Image, H/α classification, and Wishart-H/α classification; (d–f) H/A
classification, A/α classification, and Wishart-H/A/α classification.Sensors 2016, 16, 898 9 of 14 

 

 

Figure 7. (a–c) Wishart-H/α classification, Wishart-H/A/α classification, and optical image.  

Figure 8a–f shows: (a) The Pauli RGB image, (b) H/α classification (repeated for comparison), (c) 
H/α/λ classification, (d) H/α/λ1 classification, (e) H/α/λ2 classification, and (f) H/α/λ3 classification. 
The latter three classifications are inter-classified within the 9 H/α to represent the interclass 
resolution due to the different reflectivities of different scatterers [11,15]. All the class values of 
segmented zones for the H/α, H/α/λ1, H/α/λ2, and H/α/λ3 classifications using the H/α segmentation 
plane for random media scattering are listed in Table 2. Using these values, the classification color 
map representing each class of H/α/λ classification was extended from 9 colors to 27 colors. In the 
classification with individual eigenvalue analysis, the H/α/λ1 classification shows where surface 
scattering dominates; the H/α/λ2 classification highlights areas dominated by double-bounce 
scattering. In the H/α/λ3 classification, the volume scattering is emphasized. For the slough slide 
areas, it can be seen that the surface scattering is partially dominant, the double-bounce scattering is 
strongly dominant, and the volume scattering is almost zero, since here our target (levee) is naturally 
distributed. 

 

Figure 7. (a–c) Wishart-H/α classification, Wishart-H/A/α classification, and optical image.



Sensors 2016, 16, 898 10 of 15

Figure 8a–f shows: (a) The Pauli RGB image; (b) H/α classification (repeated for comparison);
(c) H/α/λ classification; (d) H/α/λ1 classification; (e) H/α/λ2 classification; and (f) H/α/λ3

classification. The latter three classifications are inter-classified within the 9 H/α to represent the
interclass resolution due to the different reflectivities of different scatterers [11,15]. All the class
values of segmented zones for the H/α, H/α/λ1, H/α/λ2, and H/α/λ3 classifications using the
H/α segmentation plane for random media scattering are listed in Table 2. Using these values, the
classification color map representing each class of H/α/λ classification was extended from 9 colors
to 27 colors. In the classification with individual eigenvalue analysis, the H/α/λ1 classification
shows where surface scattering dominates; the H/α/λ2 classification highlights areas dominated by
double-bounce scattering. In the H/α/λ3 classification, the volume scattering is emphasized. For the
slough slide areas, it can be seen that the surface scattering is partially dominant, the double-bounce
scattering is strongly dominant, and the volume scattering is almost zero, since here our target (levee)
is naturally distributed.

Sensors 2016, 16, 898 9 of 14 

 

 

Figure 7. (a–c) Wishart-H/α classification, Wishart-H/A/α classification, and optical image.  

Figure 8a–f shows: (a) The Pauli RGB image, (b) H/α classification (repeated for comparison), (c) 
H/α/λ classification, (d) H/α/λ1 classification, (e) H/α/λ2 classification, and (f) H/α/λ3 classification. 
The latter three classifications are inter-classified within the 9 H/α to represent the interclass 
resolution due to the different reflectivities of different scatterers [11,15]. All the class values of 
segmented zones for the H/α, H/α/λ1, H/α/λ2, and H/α/λ3 classifications using the H/α segmentation 
plane for random media scattering are listed in Table 2. Using these values, the classification color 
map representing each class of H/α/λ classification was extended from 9 colors to 27 colors. In the 
classification with individual eigenvalue analysis, the H/α/λ1 classification shows where surface 
scattering dominates; the H/α/λ2 classification highlights areas dominated by double-bounce 
scattering. In the H/α/λ3 classification, the volume scattering is emphasized. For the slough slide 
areas, it can be seen that the surface scattering is partially dominant, the double-bounce scattering is 
strongly dominant, and the volume scattering is almost zero, since here our target (levee) is naturally 
distributed. 

 
Sensors 2016, 16, 898 10 of 14 

 

 

Figure 8. (a–c) Pauli RGB Image, H/α classification, and H/α/λ classification; (d–f) H/α/λ1 
classification, H/α/λ2 classification, and H/α/λ3 classification. 

Table 2. Class values of segmented zones for the H/α, H/α/λ1, H/α/λ2, and H/α/λ3 classifications using 
the H/α segmentation plane for random media scattering. 

Zone\Class Value 
Classification

H/α H/α/λ1 H/α/λ2 H/α/λ3 

Z1 1 1 3.37 6.54 
Z2 2 1.31 4.08 6.85 
Z3 0 0 0 0 
Z4 4 1.92 4.69 8.38 
Z5 5 2.23 5.00 7.77 
Z6 6 2.54 5.31 8.08 
Z7 7 2.85 5.62 8.38 
Z8 8 3.15 5.92 8.69 
Z9 9 3.46 6.23 0 

The slough slide area is marked with a polygon (found in the southern end of the test area) and 
the test area (on the river side of the levee) is outlined in yellow in the figures. The locations of the 
three slides are indicated on the optical image with red stars. For this subset, although some of the 
slide areas (slides 1 and 2) had been repaired by the time of image acquisition, they still show up as 
anomalies detected by the classification techniques to some extent as shown in Figures 7a–c and 9a–
c. Because these slide areas were repaired only two months prior to the time of image acquisition, 
they still appear anomalous because of the surface roughness and differences in the grass cover. 
Generally, the healthy levee area has a uniform pattern, but the slide areas have a different pattern in 
the radar backscattering data [21]. Sometimes other artifacts show similar patterns as the slide area. 
An example of this is highlighted by the yellow arrow in Figure 9b,c, which is an area influenced by 
a tall tree nearby casting a radar shadow on the levee. False positives may also occur in the 
classification process due to rough non-slide surfaces or other anomalies. Specifically, the presence 
of some anomalous areas in the vicinity of the slide areas may be due to the similarity of soil 
properties or the vegetation type and condition there, as was verified using in situ measurements of 
soil properties in [22]. 

Figure 8. (a–c) Pauli RGB Image, H/α classification, and H/α/λ classification; (d–f) H/α/λ1

classification, H/α/λ2 classification, and H/α/λ3 classification.



Sensors 2016, 16, 898 11 of 15

Table 2. Class values of segmented zones for the H/α, H/α/λ1, H/α/λ2, and H/α/λ3 classifications
using the H/α segmentation plane for random media scattering.

Zone/Class Value
Classification

H/α H/α/λ1 H/α/λ2 H/α/λ3

Z1 1 1 3.37 6.54
Z2 2 1.31 4.08 6.85
Z3 0 0 0 0
Z4 4 1.92 4.69 8.38
Z5 5 2.23 5.00 7.77
Z6 6 2.54 5.31 8.08
Z7 7 2.85 5.62 8.38
Z8 8 3.15 5.92 8.69
Z9 9 3.46 6.23 0

The slough slide area is marked with a polygon (found in the southern end of the test area) and
the test area (on the river side of the levee) is outlined in yellow in the figures. The locations of the
three slides are indicated on the optical image with red stars. For this subset, although some of the
slide areas (slides 1 and 2) had been repaired by the time of image acquisition, they still show up as
anomalies detected by the classification techniques to some extent as shown in Figures 7a–c and 9a–c.
Because these slide areas were repaired only two months prior to the time of image acquisition, they
still appear anomalous because of the surface roughness and differences in the grass cover. Generally,
the healthy levee area has a uniform pattern, but the slide areas have a different pattern in the radar
backscattering data [21]. Sometimes other artifacts show similar patterns as the slide area. An example
of this is highlighted by the yellow arrow in Figure 9b,c, which is an area influenced by a tall tree
nearby casting a radar shadow on the levee. False positives may also occur in the classification process
due to rough non-slide surfaces or other anomalies. Specifically, the presence of some anomalous areas
in the vicinity of the slide areas may be due to the similarity of soil properties or the vegetation type
and condition there, as was verified using in situ measurements of soil properties in [22].Sensors 2016, 16, 898 11 of 14 
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A qualitative assessment of the classification results reveals that the Wishart-H/α,
Wishart-H/A/α, and H/α/λ methods provide superior classification for this application compared
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with the other unsupervised schemes tested. The discrimination of the slide and related anomalies
from “healthy” levee areas was effective and was improved by incorporating more parameters. The
detected slide and anomalies in the classification results are compared with the optical NAIP image in
Figures 7a–c and 9a–c.

The H/α classification uses nine classes, as shown in Figure 6b: out of those, only 4 classes
(green, light blue, red, and dark blue) are found in the test area. Other classes occur outside the levee
area. This H/α classification does not effectively discriminate the slide area from the non-slide areas.
Similarly, the H/A classification and A/α classification result in nine classes as shown in Figure 6d,e,
only four of which are found in the test area. The segmented and occurrence planes for the H/α, H/A,
and A/α classifications are shown in Figure 10a–f. Once again, the likelihood of identifying slides
from this data is not good. This motivated the inclusion of Wishart-based classification, in which
the initial classification map defines training sets for classification based on the Wishart distribution
iteratively. Significant improvement in each iteration was observed, and the analysis of the final class
centers in the two-dimensional H/α classification plane is used for the identification of slides. The
Wishart-H/α classification uses eight classes, as shown in Figure 6c, of which for the most part only
two classes (green and orange) are found in the test area on the levee. These two classes exhibit good
discrimination between slide and nonslide (healthy) areas of the levee.Sensors 2016, 16, 898 12 of 14 
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Figure 10. (a–c) segmented planes for H/α, H/A, and A/α classification; (d–f) occurrence planes for
H/α, H/A, and A/α classification.

The Wishart-H/A/α classification is based on 16 classes, as shown in Figure 6f. Out of those,
four (colored parrot green, pink, red, and dark ash) occur in the test area. These four classes clearly
discriminate the slide and nonslide areas of the levee, as well as distinguishing the area near the slide
from other healthy areas on the levee. The segmented and occurrence planes for H/α/λ1, H/α/λ2, and
H/α/λ3 classifications are shown in Figure 11a–f. For the slough slide areas, once again it can be seen
that the surface scattering is partially dominant, the double-bounce scattering is strongly dominant,
and the volume scattering is almost zero. The H/α/λ classification and H/α/λ2 classification clearly
identified the slide/anomalous areas, as highlighted in Figure 8c,e. The polarimetric SAR data
processing and educational tool (PolSARpro v4.2.0 software) from the European Space Agency was
used for this work [23].
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Although formal quantitative accuracy assessment cannot be performed on unsupervised results
without first labeling the output clusters—which is typically done using manual interpretation—we
can somewhat quantify the accuracy of this result by noting that a single output cluster dominated
the area of the active slide (i.e., Slide 3) and can use it to estimate detection accuracy. In this case,
96% of the slide pixels were detected as such, and as can be seen in Figure 9b, there were very few
false positives based on this labeling. Furthermore, almost all of the false positives fall in the area of
the recently repaired Slide 2.

4. Conclusions

This work presents the results of using SAR data to detect anomalies on an earthen levee.
Unsupervised H/α, H/A, A/α, Wishart H/α, Wishart H/A/α, and H/α/λ (also individually
including λ1, λ2, and λ3) classification algorithms were applied to polarimetric SAR data. The
effectiveness of the algorithms is demonstrated using fully quad-polarimetric L-band SAR imagery
from the NASA JPL’s UAVSAR. The study area is a section of the lower Mississippi River valley in the
Southern USA.

Results show that slough slides on levees exhibit distinctive scattering mechanisms compared with
the healthy (i.e., nonslide) areas, and that these differences are revealed by unsupervised classification
methods utilizing the polarimetric decomposition parameters H, A, α, and λ. The resulting color-coded
class maps can be used to detect anomalous areas on the levee for closer inspection. Wishart-based
unsupervised classification schemes clearly show better results for this application. Furthermore,
H/α/λ2 classification shows noticeably better results to identify slough slide areas. The results indicate
that, on the levee, slide areas scatter predominantly as double bounce; meanwhile, in other healthy
parts of the levee, surface scattering dominates.

In addition to the active slide area, other anomalous areas are also detected. One interesting point
that we noticed is that some of the slide areas that had been repaired just two months prior to the time
of image acquisition still appear anomalous because of the texture roughness and differences in grass
thickness, and are detected by the classification technique. To validate the attribution of scattering
mechanisms such as these to the different surface classes, model-based polSAR decompositions can be
used. Early results of that approach were reported in [24].
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Although the test study area is small, including only a single active slide area, the methods
presented in this paper show promising results. Planned future work includes the use of larger
test areas consisting of more active slides, seasonal images acquired by the polSAR, and different
geometrical orientations of the levee.
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