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Antisense Oligonucleotides Targeting Influenza A
Segment 8 Genomic RNA Inhibit Viral Replication
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Influenza A virus (IAV) affects 5%—10% of the world’s population every year. Through genome changes, many IAV
strains develop resistance to currently available anti-influenza therapeutics. Therefore, there is an urgent need to find
new targets for therapeutics against this important human respiratory pathogen. In this study, 2’-O-methyl and locked
nucleic acid antisense oligonucleotides (ASOs) were designed to target internal regions of influenza A/California/04/
2009 (HIN1) genomic viral RNA segment 8 (VRNAS) based on a base-pairing model of VRNAS. Ten of 14 tested
ASOs showed inhibition of viral replication in Madin-Darby canine kidney cells. The best five ASOs were 11-15
nucleotides long and showed inhibition ranging from 5- to 25-fold. In a cell viability assay they showed no cytotoxicity.
The same five ASOs also showed no inhibition of influenza B/Brisbane/60/2008 (Victoria lineage), indicating that
they are sequence specific for IAV. Moreover, combinations of ASOs slightly improved anti-influenza activity.
These studies establish the accessibility of IAV vRNA for ASOs in regions other than the panhandle formed between
the 5" and 3” ends. Thus, these regions can provide targets for the development of novel IAV antiviral approaches.
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Introduction

EASONAL INFLUENZA A VIRUS (IAV) causes disease in

humans every year, especially in the winter months in
temperate climates [1]. The World Health Organization
(WHO) estimates that each year, influenza affects 5%—10%
of the world’s population resulting in between 250,000 and
500,000 deaths [2]. Furthermore, IAV occasionally and un-
predictably can cause a pandemic when a novel virus not
previously circulating in humans is introduced into humans
and is easily transmitted person to person [3-5].

TAVs are categorized by the antigenic variation of the hem-
agglutinin (HA) and neuraminidase (NA) proteins. So far, 16 HA
and 9 NA TAV variants have been found in wild birds [6,7]. Only
two subtypes, H3N2 and HIN1, are currently circulating in hu-
mans [8]. The last novel pandemic strain (pHIN1) of IAV ap-
peared in 2009 and became, since then, the dominant HIN1 virus
circulating worldwide [9]. In addition, zoonoses can occur, as
evidenced by the current outbreaks of H7N9 and H5N1, which
may contain pandemic potential of acquiring the ability to readily
transmit between humans [10,11].

The IAV genome has eight negative-sense single-
stranded RNAs [12,13] that encode for 10-14 proteins

[14]. To date, only two classes of anti-influenza thera-
peutics are available: (1) Adamantanes (amantadine and
rimantadine) target the ion channel matrix 2 (M2) protein
[2,15], and (2) inhibitors of influenza NA (zanamivir,
oseltamivir as well as peramivir and laninamivir licensed
in several countries) [2,16,17]. Most circulating IAVs are
resistant to amantadine [18], and emerging resistance to
zanamivir and oseltamivir has become a serious problem
[9,19,20]. The rate of oseltamivir-resistant HIN1 influenza
viruses in the United States has increased from 0.7% in the
2006-2007 influenza season to 98.5% in the 2008-2009
influenza season [21,22]. Therefore, there is an urgent
need to find new targets and therapeutics for the treatment
of influenza viral infections [23].

Influenza RNA is a potential target for therapeutics.
Antisense oligonucleotides (ASOs) provide an approach for
identifying potential targets, and therefore represent poten-
tial therapeutics. Current ASO therapeutics, including
Vitraviren [24] and Mipomersen [25], target mRNA. In this
study, ASOs were designed against loops in IAV segment
8 VRNA and tested in cell culture. The results suggest
that IAV vRNA loops can be targets for therapeutics,
including ASOs.
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Materials and Methods
Predicted folding of vVRNAS8 of A/California/04/2009 (H1N1)

The vRNAS of influenza A/California/04/2009 (HINT1)
was folded by comparison to VRNAS of A/Vietnam/1203/
2004 (H5N1) with the Dynalign program [26] in the
RNAstructure 5.4 package of software. Dynalign finds the
lowest free energy sequence alignment and secondary
structure common to two previously unaligned sequences.
Folding was guided by the base pairing determined on the
basis of chemical mapping and base pair conservation of
influenza A/Vietnam/1203/2004 (H5N1) [27]. Base pairs in
VRNAS of A/Vietnam/1203/2004 (H5N1) that are more than
99.9% conserved in a database of over 8,000 nonredundant
IAV sequences were used in Dynalign as constraints when
submitting the sequence of VRNAS8 of A/Vietnam/1203/
2004 (H5N1). The pairing from nucleotides 713-718/783-790
was adjusted to maximize alignment of base pairs.

Design and synthesis of ASOs

ASOs were designed based on the predicted self-folding
of protein-free VRNAS of influenza A/California/04/2009
(HINT1). Oligonucleotides were designed to target single-
stranded regions that bind to microarray probes and/or are
well defined as single stranded based on chemical mapping of
VRNAS8 of A/Vietnam/1203/2004 (H5N1) (Supplementary
Fig. S1; Supplementary Data are available online at www
Jliebertpub.com/nat) [27]. All oligonucleotides were primarily
2’-0O-methyl RNA with some also containing locked nucleic
acid (LNA) nucleotides to increase duplex stability. All oligo-
nucleotides were synthesized on MerMade 12 (BioAutomation)
synthesizer by phosphoroamidite method and deprotected ac-
cording to published protocols [28,29]. Oligonucleotides were
purified with thin layer chromatography or with denaturing
12% polyacrylamide gel and concentrations were measured
with a UV spectrophotometer (NanoDrop—Thermo Scientific).

Cells and viruses

Madin-Darby canine kidney (MDCK) cells (ATCC CCL-
34) were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS)
and 1% PSG (penicillin—100 U/mL, streptomycin—100 pg/
mL, L-glutamine—2 mM) at 37°C in air enriched with 5% CO,.

Influenza A/California/04/2009 (HIN1) and influenza B/
Brisbane/60/2008 (Victoria lineage) were propagated in MDCK
cells and viral titers were measured with standard plaque assays
[plaque-forming units (PFU)/mL]. Briefly, confluent mono-
layers of MDCK cells (six-well plate format) were infected
with 10-fold viral dilutions for 1 h at room temperature (RT),
overlaid with agar, and incubated at 33°C in air enriched with
5% CO,. After 3 days postinfection, cells were fixed with 4%
formaldehyde in phosphate-buffered saline (PBS), and the
agar layer was removed. One percent crystal violet was used
to visualize the viral plaques. Virus stocks consisted of cell-
free supernatant and were kept in aliquots at —80°C.

MDCK cell transfections

Lipofectamine® 2000 (Invitrogen) was used as a lipid-
based carrier. One day before transfection, 2.5x 10° cells
were seeded in a 100-mm dish to be sure the cells would be in
the exponential growth phase on the day of transfection.
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Before each transfection, Lipofectamine 2000 was diluted
10-fold with the Opti-MEM® I Reduced Serum Medium
(Opti-MEM) and incubated 10 min at RT. Then 15 pL of this
solution was mixed gently with 15 pLL of 5 uM ASO in Opti-
MEM and incubated 30 min at RT. Next, 300 puL of 7.5 x 10*
MDCK cells in media was added. For each ASO, 100 pL of
this mixture was added to each of three wells in a 96-well
plate (Supplementary Fig. S2A). Cells were incubated at
37°Cin air enriched with 5% CO, for 6 h and the medium was
changed for fresh one. Transfection efficiency was optimized
using FAM6-labeled oligonucleotide (FN) observed under a
fluorescent microscope (Supplementary Fig. S2B).
Concentrations of oligonucleotide from 0.01 to 2 uM (final
concentration in the medium) and different ratios of oligo-
nucleotide to Lipofectamine 2000 (uM oligonucleotide to pL.
Lipofectamine 2000=1:0.5; 1:1; 1:1.5; 1:2; 1:2.5) were tes-
ted. Using a fluorescent microscope, FN was observed to
accumulate in both the nucleus and cytoplasm (Supplemen-
tary Fig. S2B). The optimal condition for uptake was chosen
as the ratio of oligonucleotide to Lipofectamine 2000 =1:2
(Supplementary Fig. S2). According to Invitrogen, the tox-
icity of undiluted Lipofectamine 2000 is minimized at 0.5 pL/
well in a 96-well plate. Accordingly, the maximum concen-
tration of oligonucleotides used in this study was 230 nM.
Transfections of all ASOs were performed in triplicate.

Antiviral test of ASOs

At 18h posttransfection with ASO (6h with liposome
complexes and 12 h with fresh medium, as described above),
MDCK cells were infected (multiplicity of infection, of
0.001) with the indicated viruses diluted in PBS supple-
mented with 0.3% bovine albumin (BA) and 1% PS (PBS/
BA/PS). After 1 h incubation at RT on a rocking platform, the
infection medium was changed for the postinfection medium
containing DMEM supplemented with 0.3% BA, 1% PSG,
and 1 pg/mL tosyl-sulfonyl phenylalanyl chloromethyl ke-
tone (TPCK)-treated trypsin (Sigma). Infected MDCK cells
were incubated at 33°C in air enriched with 5% CO, for 36 h
and after that time, cell culture supernatants (CCS) were
collected. Viral titers were determined with the immunofocus
assay described below.

Immunofocus assay

CCS were 10-fold diluted in PBS/BA/PS. MDCK cells
cultured on 96-well plates were infected with 50 L of CCS
dilutions for 1h at RT. After incubation, the infection me-
dium was changed for the postinfection medium and infected
cells were maintained at 33°C in air enriched with 5% CO,
for 8-10h. Cells were fixed with 4% paraformaldehyde
(PFA) for 15 min and permeabilized with 0.5% Triton X-100
in PBS for 15 min at RT. Next, cells were incubated with a
blocking buffer containing 2% bovine serum albumin in PBS
for 1 h. After blocking, the solution was replaced with a mouse
anti-NP (HB-65 for IAV or BO17 for IBV) primary mono-
clonal antibody diluted in the blocking buffer (1 pg/mL) and
incubated for 1h at 37°C. Primary antibodies were detected
with an FITC-conjugated rabbit anti-mouse polyclonal sec-
ondary antibody (Dako 1:200). Fluorescent-forming units
(FFU/mL) were counted under a fluorescent microscope. The
mean titer from triplicates and the standard deviation (SD)
were calculated with Microsoft Excel software.
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Cell viability assays

For the cell viability assays, MDCK cells were transfected as
described above. The medium containing liposome complexes
was changed for fresh one after 6 h and after 18 h, cell viability
was measured using the CellTiter 96 Non-Radioactive Cell
Proliferation Assay (MTT; Promega) according to the manu-
facturer’s recommendations. The rate of formazan dye for-
mation was determined by measuring the absorbance (570-
650nm). The 570-650nm reading value is directly pro-
portional to the number of living cells. Cell viability was
normalized to viability of cells treated only with Lipofecta-
mine 2000. The mean and SD from triplicates were calculated
with Microsoft Excel software.

Statistical analysis

Experimental data were analyzed with a two-tailed #-test with
unequal variance in Microsoft Excel Software. Three intervals
of statistical confidence were considered, 0.05, 0.01, and 0.001.
The statistic was calculated from three independent experi-
ments with each containing three technical repeats, normalized
to virus titer from cells treated with Lipofectamine 2000 only.

Results

Design of ASOs

Self-folding of protein-free VRNAS from A/Vietnam/1203/
2004 (H5N1) [27] was used to model A/California/04/2009
(HIN1), which is more representative of influenza strains
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FIG. 1.
indicate regions targeted by ASOs. The nomenclature consists of VRNAS8 nucleotide number complementary to the middle
nucleotide of ASOs, length of ASOs, and containing modification: M =2"-O-methyl-RNA and L =2"-O-methyl-RNA with LNA.
Note that relative to influenza A/Vietnam/1203/2004 (H5N1) (Supplementary Fig. S1) there is a 15 nucleotide insert between
614 and 615 so that the nucleotide numbers after 615 are larger by 15 relative to those for A/Vietnam/1203/2004 (H5N1). The
numbering of VRNAS is from its 5" end. A consistent base pair is one where GU replaces a Watson—Crick pair or vice versa.
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(HIN1) currently circulating in humans. The sequences are
83% homologous and the predicted secondary structures are
similar (Fig. 1 and Supplementary Fig. S1). Single-stranded
regions in A/Vietnam/1203/2004 (H5SN1) vRNAS that bind to
microarray probes and are well defined by chemical mapping
[27] were chosen as targets (Fig. 1 and Supplementary Fig. S1).
All designed ASOs were fully complementary to VRNAS of A/
California/04/2009 (HIN1) (Fig. 1 and Table 1). With the
exception of ASOs 276-20M & L, 713-10M, and 786-19M, the
length of ASOs was dependent on the length of loops and
sometimes adjacent pairs with low probability based on results
for A/Vietnam/1203/2004 (H5N1) (Fig. 1 and Supplementary
Fig. S1) [30]. ASOs 276-20M & L target a hairpin with a stem
of highly probable base pairs and ASOs 713-10M and 786-19M
also target a helical region with highly probable base pairs in A/
Vietnam/1203/2004 (H5N1). In addition, a sequence with ran-
dom A, G, and U (5GAGGAGUGUAGAGUUAUA) without
(NEG) and with (FN) a 5’FAM fluorophore was also used as a
negative control. All ASOs were primarily 2’-O-methyl RNA
with half also containing LNA nucleotides to stabilize binding
to target sequence (Table 1).

Certain ASOs inhibit IAV propagation.

ASOs at final total concentration of 230 nM were tested in
MDCK cells (Supplementary Fig. S2). Ten of 14 tested ASOs
showed significant (P <0.05) inhibition of IAV replication
(Fig. 2A). Five ASOs inhibited virus propagation more than
fivefold at 36 h postinfection. ASOs 187-14L and 404-14L
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identical Watson-Crick base pair, GU pair or same nucleotide in loop

as in base pairing model of vVRNAS of A/Vietnam/1203/2004

compensating Watson Crick base pair relative to vVRNAS of A/Vietnam/1203/2004
consistent base pair relative to vVRNAS of A/Vietnam/1203/2004

always purine or pyrimidine in loop in base pairing model of both VRNAS

Targets of ASOs in predicted secondary structure of VRNAS of influenza A/California/04/2009 (HIN1). Purple lines
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TABLE 1. SEQUENCES OF ASOs FULLY COMPLEMENTARY TO VRNAS8 OF INFLUENZA A/CALIFORNIA/04/2009 (HIN1)

AG’;7 (kcal/mol) AG’;; (kcal/mol)

Predicted Logo Percent
Name Sequence (5'-3')° Duplex® VRNAS binding® K, inhibition of inhibition
404-14L. GA*GGA'GGGA'GCATAU -32.9 -32.9 7.1E-24 1.4 96.2
187-14L GAYGCALAUNUGGGANCA -30.8 -30.6 2.9E-22 1.4 96.0
68-11L  UU'GAA'GU'GGAA -22.1 -18.7 7.0E-14 1.1 92.1
167-15L. UGA'GGAFAAUNAAGGUMG -30.1 -27.7 3.1E-20 0.8 84.1
867-14L CAFAATAATCATUANAUGG -24.0 -24.0 1.2E-17 0.7 80.0
136-20M AUGCGGCACAGAUUGAAAGC -38.5 -38.5 7.2E-28 0.5 68.4
276-20L  AGU'CUCFUGAAYAAUAMUACANGA -39.2 -25.6 9.4E-19 0.5 68.4
68-11M UUGAAGUGGAA -17.0 -13.6 2.8E-10 0.4 60.2
535-11M CAAAAGAUAAU -11.2 -11.2 1.4E-08 0.2 36.9
578-11L CCUCGA'GGAAA -23.3 -17.0 1.1E-12 0.2 36.9
740-12M AAAGUCCUUAAA -15.6 -15.6 9.8E-12 0.2 36.9
276-20M AGUCUCUGAAAAUAUACAGA -325 -18.9 5.0E-14 0.1 20.6
713-10M CCUUGGCCUC -20.7 -11.8 5.0E-09 0.0 0.0
786-19M GACAAUGGAUUGGGUGAUG -35.8 -15.1 2.2E-11 0.0 0.0
FN FAM6-GAGGAGUGUAGAGUUAUA — -0.1 -25.9
NEG GAGGAGUGUAGAGUUAUA — -0.2 -58.5

2ASOs were fully 2’-O-methyl-RNA or 2’-O-methyl-RNA with LNA. Nucleotides followed with superscript L indicate LNA nucleotides.
NEG is a scrambled oligonucleotide, not complementary to any sequence of VRNAs of influenza A/California/04/2009 (HIN1). FN-
scrambled oligonucleotide labeled with FAM6 at the 5" end, used to test transfection efficiency.

Predicted AG°3; of the ASO binding to a complementary single-stranded RNA. Predicted free energy for duplex was calculated with
2’OMeRNA/RNA or LNA-2’OMeRNA/RNA calculator available at www.ibch.poznan.pl/laboratory-of-rna-chemistry.

“Predicted AG°37 for ASO binding to VRNAS. The AG’3; was calculated by adding to AG°3; of duplex formation the AG’3; predicted with
OligoWalk [50] for breaking base pairs in the region targeted. For binding of oligonucleotides to large loops, no structure needed to be broken.

ASO, antisense oligonucleotide; LNA, locked nucleic acid.

showed the highest inhibitory effect, inhibiting virus propa-
gation on average by 25-fold (log;y25=1.4). Results for all
14 ASOs are listed in Table 1 and shown in Fig. 2A.

Further studies were focused on the five ASOs with more
than threefold inhibition of viral propagation (68-11L, 167-
15L, 187-14L, 404-14L, and 867-14L). In these experiments,
ASO 578-11L was used as a negative control because it has
three LNAs and a predicted Ky of 1.1 x107'2,

ASOs do not affect cell viability and are specific to IAV

Five inhibiting ASOs plus two negative control oligonucle-
otides, NEG and ASO 578-11L, were tested for cytotoxicity
(Supplementary Fig. S3). None showed significant (P <0.05)
differences in cell viability at 230 nM, suggesting that the in-
hibitory effect of the ASOs on influenza A/California/04/2009
HINI viral replication is not due to affecting cell viability, but
rather due to specifically targeting VRNAS.

To further test if inhibition of IAV replication is specific,
the effect of ASOs on IBV infection was studied (Fig. 2B).
The sequences of the IBV strain B/Brisbane/60/2008 used for
this test do not contain regions fully complementary to the
ASOs. The transfection conditions and infection with IBV
were the same as for IAV with one exception. The CCS were
collected after 48h postinfection because of the slower
growth of IBV in MDCK cells [31]. No significant differ-
ences in IBV titer were observed between the control and
cells treated with ASOs (Fig. 2B). Evidently, the inhibition of
IAV by all five tested ASOs is specific to sequences of IAV.

Dose-dependent effect of inhibition on IAV

Two different concentrations (230 and 115nM) of ASOs
were used on the same assay and with the same amount of

Lipofectamine 2000 to test for a dose-dependent inhibition
effect against influenza A/California/04/2009 (Fig. 3). The
procedures were the same as for single concentration studies
except for the different ASO concentrations. All five ASOs
showed a dose-dependent inhibitory effect against influenza
A/California/04/2009. The dose-dependent effect was most
significant for the three ASOs with the highest inhibition
effect (68-11L, 187-14L, and 404-14L). The inhibition level
went from 25-fold (log;o25 =1.4) relative to control to six-
fold (log;¢6=0.8) for ASO 404-14L, from 20-fold (log;p20=
1.3) to fourfold (log;op4=0.6) for 68-11L, and from 16-fold
(logj0l6=1.2) to eightfold (log;(8=0.9) for 187-14L.
Smaller dose effects were observed for 167-15L and 867-14L
(Fig. 3). Concentration-dependent differences in inhibition
were statistically significant (P <0.05) for 68-11L, 187-14L,
and 404-14L.

Effect of combinations of ASOs on influenza
A/California/04/2009 viral replication

All possible combinations of two, three, and four ASOs
with 867-14L were tested for an additive effect against
viral replication (Fig. 4). The final total concentration
(230nM) of ASOs in mixtures was the same in all single or
combined transfections. Transfection and infection proto-
cols were the same as in single ASO tests. ASO 867-14L
tested individually showed average inhibition of fivefold
relative to control virus titer. After it was combined with
other ASOs, the largest inhibition was 20-fold. The ad-
ditive effect of ASO combinations was relatively small, but
statistically significant differences (P <0.05) were ob-
served in eight cases compared to single ASO 867-14L
inhibition (Fig. 4).
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LNA can enhance ASO inhibition

ASOs 68-11 and 276-20 were tested as completely 2’-O-
methyl modified RNA and with several LNA substitutions
(Figs. 1 and 2; Table 1). For both sequences, inhibition was
higher for the ASO containing LNA (Fig. 2A). For ASO 68-
11, inhibition increased from 2.5- to 10-fold upon LNA
substitution (with P <0.05 for 68-11M and P <0.001 for 68-
11L). For ASO 276-20, no significant inhibition was ob-
served for 276-20M, but a threefold inhibition (with P < 0.05)
was observed for 276-20L. These data suggest that LNA
substitutions can enhance the inhibitory effect for the de-
signed ASOs, and this would be important to design future
ASOs with therapeutic potential against influenza virus tar-
geting VRNAS or other vVRNAs.

Discussion

IAV yearly infects millions of people and can undergo
genetic reassortments to generate a new virus strain for which
people do not have preexisting immunity, therefore providing
pandemic potential [32,33]. Thus, new antiviral therapeutics
and targets are urgently needed for the treatment of these
newly introduced human viruses against which vaccines and
effective antiviral therapies would not be available. In this
study, ASOs were designed to target VRNA of segment 8 of
influenza A/California/04/2009 (H1N1), the strain responsible
for the pandemic of 2009 [34]. All eight influenza VRNA seg-
ments are required for efficient virus replication [35]. Thus,
inhibition of any segment can have a significant impact on virus
propagation.

Most previous ASOs for IAV were designed to target
mRNA (e.g., AUG region of different segments [36—40],
conserved region [41], or structures [42] in NP, or UTRs
[43,44]). For IAV vRNA, only the conserved 5" and 3’ ends
forming the panhandle structure have been targeted [45,46].
In this study, ASOs were designed to target internal regions in
VRNAS, for which function is not yet known. ASO 867-14L,
however, targets a region potentially important for influenza
virus packaging because deletion of nucleotides 865-875
reduced VRNAS packaging into virion by over 90% [47,48].

The ASOs for influenza A/California/04/2009 (HINT1)
were designed based on self-folding of VRNAS of influenza
A/Vietnam/1203/2004 (H5N1) [27]. Both strains are impor-

tant in AV studies. Influenza A/California/04/2009 (HINT1)
was isolated from humans and caused the pandemic in 2009
[34]. Influenza A/Vietnam/1203/2004 (H5N1) is an avian-
origin virus, able to also infect humans [3,49]. So far, no
transmission from human to human has been observed with
influenza A/Vietnam/1203/2004 (HS5N1), but this highly
pathogenic strain causes severe disease with high mortality in
humans and mutations allowing human to human transmis-
sion of the virus could potentially result in a pandemic [3,50].
Moreover, it has been shown that influenza A/Indonesia/5/
2005 (H5N1) can acquire the ability for air transmission
between ferrets [50]. Sequences of IAV in A/Vietnam/1203/
2004 (H5N1) and A/California/04/2009 (HIN1) segment 8
vRNAs are 83% homologous with 76% of base pairs con-
served (Fig. 1 and Supplementary Fig. S1). Thus, the sec-
ondary structure of VRNAS of influenza A/Vietnam/1203/
2004 (H5N1) was used to model VRNAS of influenza A/
California/04/2009 (HIN1) and to select regions to target.

The ASOs generally target predicted single-stranded re-
gions with adjacent stems predicted to be dynamic in protein-
free VRNAS [27]. Seven of 14 tested ASOs inhibited virus
growth by at least threefold in MDCK cells (Table 1). ASOs
68-11M, 276-20M, 535-11M, 578-11L, 713-10M, 740-12M,
and 786-19M had less antiviral activity. The lack of antiviral
activity is likely due to relatively weak binding after con-
sidering the predicted cost of breaking target structure (Ta-
ble 1). This is consistent with the enhanced activity of ASO
276-20L, where five LNA nucleotides were introduced. LNA
nucleotides strengthen binding affinity [51] and the antiviral
activity increased threefold. Moreover, the lack of inhibition
by ASOs 713-10M and 786-19M is consistent with the pre-
dicted cost of breaking the helix targeted by these ASOs (Fig. 1
and Table 1).

ASOs 68-11L, 187-14L, and 404-14L reduced viral titer
more than 10-fold after 36 h. ASOs 68-11L and 404-14L
primarily target single-stranded nucleotides in a hairpin loop
and have predicted tight binding (Table 1). ASO 187-14L
also is predicted to bind tightly. Moreover, it binds to a region
predicted to have base pairs with low probability (Supple-
mentary Fig. S1) and, therefore, likely to be dynamic. While
there are many possible reasons for variation in the activity of
ASOs, the results in Table 1 are consistent with previous
studies that binding affinity is important [52,53].
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The results in Table 1 are somewhat surprising. Influenza
A genomic VRNA is generally considered not to be a target
for ASOs because it is encapsidated by the viral nucleopro-
tein, NP [54,55]. Moreover, influenza NP binding is expected
to disrupt the secondary structure [56]. Nevertheless, when
breaking a predicted target structure is considered, with the
exception of 276-20M, the ASOs in Table 1 can be catego-
rized in two groups. Those with predicted dissociation con-
stants less than 107" inhibit replication at least 68%, while
those with larger dissociation constants inhibit less (Table 1).
The exception of 276-20M may be due to potential self-
folding into a hairpin. While factors such as ASO chemical
stability, target function, and competition with binding to
protein or other RNAs are expected to affect response to
ASOs, the results are consistent, with target RNA secondary
structure being one factor.

Five ASOs (68-11L, 167-15L, 187-14L, 404-14L, and
867-14L) with more than fivefold inhibition were tested in
detail. None are cytotoxic (Supplementary Fig. S3) or inhibit
IBV (Fig. 2B), consistent with sequence specificity to IAV.
The relatively short lengths of 11-15 nucleotides may reduce
possible off-target effects even though predicted dissociation
constants are very favorable for binding to the predicted self-
folding of the naked vVRNAS [57,58]. ASOs 68-11L, 187-14L,
and 404-14L showed statistically significant less inhibition at
115 nM compared to 230 nM, but retained the antiviral activity
at 115nM (Fig. 3).

Combinations of ASOs were tested for additive effects
(Fig. 4). Of the five ASOs tested extensively, ASO 867-14L
alone had the smallest antiviral activity. To see if activity
could be enhanced, combinations of other ASOs with 867-
14L were tested. Statistically significant differences relative to
ASO 867-14L alone were observed for eight combinations,
including the combination of all five tested ASOs. However,
the largest enhancement of antiviral activity from combina-
tions of ASOs was only fourfold when total ASO concentra-
tion was maintained at 230nM (Fig. 4). The small additive
effect could be because multiple ASOs are not binding to a
single VRNA molecule. If a combination of ASOs targeting
different segments was used, then the antiviral effect could be
higher. Self-folding of other VRNA segments, however, has
not been published to facilitate design of new ASOs that could
be tested in combination with the ASOs from this study.

There are many possible reasons for the effects of ASOs on
influenza. Oligonucleotides accumulate in both cytoplasm
and nucleus [59] (Supplementary Fig. S2B). Thus, ASOs can
interfere with the virus at every stage of the life cycle. In-
fluenza vRNA is involved in replication, transcription, and
packaging. For packaging, there is increasing evidence that
vRNA interactions play essential roles in selecting and as-
sembling the required 8 segments into nascent virions [60—-62].
For example, VRNA segments can directly interact pairwise
in vitro. Packaging of VRNAS apparently depends on regions
corresponding to the 5" and 3’ UTRs and to part of the open
reading frame [47,48]. Mutation of this region can result in
inhibition of the virus life cycle [63—65]. Based on effects of
ASOs, we identify new possible regions for study of VRNA
function and thus as potential targets for therapeutics.

In summary, new ASOs with anti-IAV activity are re-
ported in this study. Notably, the antiviral activity was ob-
served when targeting genomic sequences outside the
panhandle region, which was previously thought to be the
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only VRNA region accessible for targeting with ASOs. Cor-
relation between in vitro self-folding of protein-free VRNAS
and the anti-IAV activity suggests that studies of in vitro base
pairing can guide ASO design and help identify targets for
therapeutics. While only VRNAS was targeted in this study, it
is likely that ASO combinations targeting more than one
vRNA would have an even larger anti-viral activity.
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