
biomolecules

Article

Predicting Protein–Protein Interactions via Gated Graph
Attention Signed Network

Zhijie Xiang 1 , Weijia Gong 1, Zehui Li 1, Xue Yang 1, Jihua Wang 1 and Hong Wang 1,2,*

����������
�������

Citation: Xiang, Z.; Gong, W.; Li, Z.;

Yang, X.; Wang, J.; Wang, H.

Predicting Protein–Protein

Interactions via Gated Graph

Attention Signed Network.

Biomolecules 2021, 11, 799. https://

doi.org/10.3390/biom11060799

Academic Editor: Brigita Urbanc

Received: 1 May 2021

Accepted: 26 May 2021

Published: 28 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China;
201811010415@stu.sdnu.edu.cn (Z.X.); 201811990134@stu.sdnu.edu.cn (W.G.);
201811010322@stu.sdnu.edu.cn (Z.L.); 2020020935@stu.sdnu.edu.cn (X.Y.); Wangjihua@sdnu.edu.cn (J.W.)

2 Shandong Provincial Key Laboratory for Distributed Computer Software Novel Technology,
Shandong Normal University, Jinan 250014, China

* Correspondence: 111052@sdnu.edu.cn

Abstract: Protein–protein interactions (PPIs) play a key role in signal transduction and pharmacoge-
nomics, and hence, accurate PPI prediction is crucial. Graph structures have received increasing
attention owing to their outstanding performance in machine learning. In practice, PPIs can be
expressed as a signed network (i.e., graph structure), wherein the nodes in the network represent
proteins, and edges represent the interactions (positive or negative effects) of protein nodes. PPI
predictions can be realized by predicting the links of the signed network; therefore, the use of gated
graph attention for signed networks (SN-GGAT) is proposed herein. First, the concept of graph
attention network (GAT) is applied to signed networks, in which “attention” represents the weight of
neighbor nodes, and GAT updates the node features through the weighted aggregation of neighbor
nodes. Then, the gating mechanism is defined and combined with the balance theory to obtain the
high-order relations of protein nodes to improve the attention effect, making the attention mechanism
follow the principle of “low-order high attention, high-order low attention, different signs opposite”.
PPIs are subsequently predicted on the Saccharomyces cerevisiae core dataset and the Human dataset.
The test results demonstrate that the proposed method exhibits strong competitiveness.

Keywords: protein–protein interactions (PPIs); PPI signed network; link sign prediction; attention
mechanism; gating mechanism

1. Introduction

Proteins inside cells do not function alone, and they must interact with other proteins
to perform their functions. Therefore, studying protein–protein interactions (PPIs) is
necessary for understanding various biological processes in cells, such as gene transcription,
that involve multiple protein interactions. The accurate prediction of unknown PPIs reveals
the function of proteins at the molecular level and is critical for revealing life activity
rules, e.g., growth, development, differentiation, and apoptosis. In addition, accurate PPI
prediction provides an important theoretical basis for discussing the mechanisms of major
diseases, disease treatment, disease prevention, and new drug development.

PPIs control nearly all cellular processes and play an important role in the execution of
various physiological functions. Therefore, PPI prediction has been extensively studied, and
as such, many methods have been proposed, including biological experimental methods
and calculation methods. Currently, the experimental methods for PPI identification mainly
include affinity purification mass spectrometry (AP-MS) [1] and yeast two-hybrid system
(Y2H) [2]. In recent decades, proteomics based on mass spectrometry (MS) has become
an important technique for identifying PPIs. One method of AP-MS is to label the cells
of the experimental group and the control group, respectively, by the method of stable
isotope labeling with amino acids in cell cultures (SILAC) [3], and then carry out a co-
immunoprecipitation (Co-IP) [4] experiment. The immune complex is separated by the
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specific reaction between the antigen and antibody, and then the protein in the immune
complex is detected by liquid chromatography tandem mass spectrometry (LC-MS/MS).
When the content of a protein in the experimental group and the control group reaches
statistical difference, it can be observed that the protein interacts with the studied protein.
This method can greatly reduce the possibility of false positive results of protein–protein
interaction. Y2H was initially established by Fields et al. [2] when they studied the
properties of yeast transcription factor Gal4. After continuous improvement, Y2H has
developed into a mature protein–protein interaction research tool. Y2H is a system in which
the two proteins to be studied are cloned into a DNA-binding domain (DNA-BD) and
activation domain (AD) of a transcription activator (Gal4, etc.) of yeast expression plasmid,
respectively, to construct a fusion expression vector, and then the interaction between the
two proteins is analyzed from the expression products. Y2H can also sensitively detect weak
and transient interactions between proteins through the expression products of reporter
genes. This method is a highly sensitive technology to study the relationship between
proteins. In addition, there are many other experimental methods for PPI prediction, such as
phage display technology [5] protein chip technology [6], and surface plasmon resonance
technology [7]. However, detecting PPIs in biological experiments is inefficient, time-
consuming, and laborious; thus, such methods are unsuitable for large-scale PPI detection.

In recent years, structure- and sequence-based PPI prediction calculation methods
have been proposed. Structure-based prediction methods are constrained by the experi-
mentally determined protein structure, and sequence-based prediction methods include
statistical and machine learning methods. Statistics-based prediction methods primarily
include the mirror tree [8] and the co-evolutionary differences (CD) [9]. The mirror tree
method is based on observing the correspondence between the phylogenetic trees of related
proteins in systems, such as ligands and receptors, and employs a new method to discover
possible protein interactions by comparing the evolutionary distances between related
protein family sequences. The co-evolutionary differences method does not use multivari-
ate comparison. Thus, it requires less time than other comparison methods. Prediction
methods based on machine learning primarily include autocovariance (AC) and support
vector machine (SVM) [10], similarity comparison [11], the amino acid composition (AAC)
method [12], universal in silico predictor of PPIs (UNISPPI) [13] and the ETB-Viterbi [14].
The advantage of the AC and SVM method is that autocovariance contains the remote
interaction information of amino acid residues, which is crucial in PPI identification. The
similarity comparison method predicts PPIs according to the pairwise similarity of the
primary protein structure, and the amino acid composition method is suitable for any
protein sequence, particularly when domain information is lacking. The universal in silico
predictor of the PPI method uses a small number of features to train decision tree classifiers.
The advantages of this method are low calculation cost and simple implementation. The
disadvantage is that decision tree classifiers typically suffer overfitting problems. The
ETB-Viterbi method can capture long-distance correlation to improve prediction accuracy
and is unaffected by the sequence direction.The calculation methods for predicting PPIs
can not only compute large-scale protein interaction data but also have advantages of high
accuracy and low cost.

In the real world, many application scenarios can be represented as graphs or networks,
wherein nodes represent entities, and edges represent the relationships among entities.
Compared with the traditional network that exclusively comprises positive edges, the
signed network can express more abundant semantic information and more accurate
expression of the actual scene; thus, signed networks are used widely, e.g., in Epinions
consumer review networks, Slashdot news review networks, and organizations or groups
interaction networks [15]. The edge signs signify the user’s emotional tendency (e.g.,
like or do not like) regarding a comment. Inspired by this, we express PPIs as a signed
network, wherein nodes in the network represent proteins, and connecting edges represent
positive or negative interactions between proteins, where positive means the presence and
negative means the absence of interaction. The PPI prediction task can be transformed into
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a link prediction task for the PPI signed network created herein. Research has revealed
that the negative edge of a signed network has an important impact on the network
structure and node representation [16]. The positive edge renders nodes increasingly
similar, whereas the negative edge renders nodes increasingly different. Therefore, in the
analysis and study of PPI networks, positive and negative edges must be comprehensively
analyzed. However, the structure of a signed network is more complex than that of
traditional unsigned networks. In the low-dimensional node representation space of
signed networks, the distance between two nodes connected by a positive edge should be
less than that of two nodes connected by a negative edge. The traditional representation
learning method of unsigned networks cannot be applied directly to signed networks;
consequently, researching PPIs based on signed networks is extremely challenging.

Currently, graph neural networks (GNNs) have attracted significant research inter-
est in the field of deep learning, particularly in machine learning tasks, such as link
prediction [17,18]. GNNs introduce a neural network into graph data by defining convolu-
tion [19] and attention [20]. After the graph convolution network (GCN) was proposed,
Velickovic et al. further proposed the use of GAT [20], which utilizes attention coefficients
(i.e., weight coefficients) to aggregate the features of neighbor nodes to the central node
and uses local stationarity on the graph to learn new node feature expressions. By learning
the weight of neighbors, GAT can realize the weighted aggregation of neighbors, rendering
GAT more robust to noisy neighbors and giving the model certain interpretability via the
attention mechanism [20]. To some extent, GAT is more powerful than GCN because, in the
GAT method, the correlation between node features is better integrated into the model. In
addition, GAT can not only simultaneously handle multiple nodes of different degrees that
are highly parallel, but it also does not rely on graph structure information, thus making it
exhibit strong generalizability. Furthermore, the GAT model can be applied to graph-based
inductive and transductive learning problems effectively. However, traditional GAT cannot
compute a network with negative edges and can only aggregate and update nodes on an
unsigned network. A network comprising PPIs is a signed network; therefore, the above
limitation of GAT inspired our research on its application to signed networks. In addition,
GAT has scope for improvement: first, GAT only considers the influence of low-order
neighbors and ignores the influence of high-order neighbors. Second, the balance theory is
critical in signed network research; however, it has not been integrated into GAT-based
methods. Overall, current GAT-based methods do not have the expected features, i.e.,
focusing on the sign of the edges, considering high-order neighbor information, and the
interpretability of the balance theory.

To overcome the limitation of the inapplicability of GAT to signed networks, the
attention mechanism must be improved to effectively predict the unknown links on the
signed networks to realize PPI prediction on PPI signed networks. This is the primary
focus of the present study.

To solve these problems, the method of gated graph attention for signed networks
(SN-GGAT) is proposed herein and subsequently used to predict the links in a PPI network.
The primary contributions of this study are summarized as follows:

1. PPIs are transformed into a signed network with rich semantic information, and the
proposed SN-GGAT method is applied to the network, thus enabling the accurate
prediction of unknown sign information (i.e., interactions) between proteins.

2. We propose the application of GAT to signed networks while retaining the original
advantage of GAT and expressing the polarity of the edge more accurately.

3. We define a gating mechanism to determine high-order neighbors that affect a node
and innovatively define an attention mechanism to demonstrate that the low-order
neighbors of a node have a relatively greater influence on a node. In comparison,
high-order neighbors have less influence.

4. To obtain a good interpretative network embedding, we strengthen the constraint of
the balance theory on the sign propagation process.
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2. Materials and Methods
2.1. Materials
2.1.1. Saccharomyces cerevisiae Core Dataset

One of the PPI datasets used in this study was taken from the Saccharomyces cerevisiae
core dataset (version: Scere20170205) in the database of interacting proteins (DIP) [21]. The
5470 protein pairs in the dataset were used as the positive sample set in the test. The S.
cerevisiae core dataset is available online (https://dip.doe-mbi.ucla.edu/dip/Download.
cgi?SM=7&TX=4932, accessed on 10 February 2021).

Since the non-interacting pairs were not readily available, we drew on the strategies
in the literature [10,22,23] to construct the negative sample set. Here, we followed the
assumption that there is no interaction between proteins at different subcellular local-
izations in the cell, i.e., we randomly paired proteins with different subcellular location
information, and the resulting protein pair was considered non-interactive. The subcellular
localization information of proteins can be obtained from the UniProt database [24]. Note
that there is a small amount of subcellular localization information of proteins that cannot
be queried, and this information was excluded during random matching. The UniProt
database is available online (https://www.uniprot.org/, accessed on 10 February 2021). To
ensure data balance, we constructed 5470 negative edges for the PPI network by random
pairing. In total, the dataset contained 10,940 pairs of samples (50% positive samples and
50% negative samples).

2.1.2. Human Dataset

The second dataset we used is the Human dataset. The HIPPIE database collects
human PPIs with experimental annotations [25]. By considering factors such as the number
of publications or the type of experimental support, the reliability score of the interaction
was scored. Later, Hampe et al. [26] chose 10% of the highest scoring interactions from
the HIPPIE dataset to obtain a high-quality human protein subset. In order to obtain fair
comparison results, Liu et al. [27] followed the same strategy as DPPIs [28] on the basis of
high-quality human protein subset, eliminating the redundancy of the Human dataset, so
that no two PPIs are similar at the sequence level. If at least two sequences have more than
40% sequence identity, two PPIs are considered to be similar.

In this paper, we used the Human dataset used by Liu et al. as the second test dataset,
the Human dataset is available online (https://zenodo.org/record/3960077/files/Human.
zip?download=1, accessed on 31 March 2021).

2.2. Related Definition

Here, we describe relevant definitions involved in the proposed SN-GGAT method.
First, we describe some concepts of the basic PPI signed network. Then, we define node
update rules for PPI signed networks.

2.2.1. PPI Signed Network

A PPI signed network is a graph structure that can be described by G = (V, E), where
V is the set of all protein nodes in graph G, and E is the set of edges between any two
protein nodes in graph G. Here, the edges between protein nodes i and j are denoted as
e(i, j) and e(i, j) ∈ E, respectively; e(i, j) = 1 represents a positive interaction between
protein nodes i and j; e(i, j) = 0 represents an unknown interaction between protein nodes
i and j; and e(i, j) = −1 represents a negative interaction between protein nodes i and j.

For example, we can learn from the Drosophila melanogaster signed PPI database [29]
constructed by Arunachalam V et al. that the interaction between Ribosomal protein LP0
(FlyBase ID: FBgn0000100) and Ataxin-2 protein (FlyBase ID: FBgn0041188) is positive;
however, the interaction between Ribosomal protein LP0 and Dodeca-satellite-binding
protein 1 (FlyBase ID: FBgn0027835) is negative. Thus, the PPI signed network comprising
the Ribosomal protein LP0, Ataxin-2 protein, and Dodeca-satellite-binding protein 1 can

https://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=7&TX=4932
https://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=7&TX=4932
https://www.uniprot.org/
https://zenodo.org/record/3960077/files/Human.zip?download=1
https://zenodo.org/record/3960077/files/Human.zip?download=1
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be represented as shown in Figure 1. The signed PPI database is available online (https:
//www.flyrnai.org/SignedPPI/Download.jsp, accessed on 25 January 2021).

Figure 1. An example of positive and negative interactions between protein nodes. The red edge
indicates positive interaction and the black edge indicates negative interaction.

A(i, j) =


−1, i f e(i, j) = −1

0, i f e(i, j) = 0

1, i f e(i, j) = 1

(1)

To define and explain the adjacency matrix A of the PPI signed network more in-
tuitively, we selected seven protein nodes in a PPI network as an example and label
these nodes with serial numbers. Simultaneously, we selected part of the edges between
these protein nodes to form the PPI signed network (Figure 2). Adjacency matrix A is
defined in Equation (1), and the adjacency matrix corresponding to Figure 2 is expressed
by Equation (2). Here, the link sign prediction task must replace the unknown zeros in the
adjacency matrix with the predicted signs.

A =



1 1 0 −1 1 0 1
1 1 0 1 −1 0 −1
0 0 1 −1 0 0 0
−1 1 −1 1 0 0 −1
1 −1 0 0 1 1 0
0 0 0 0 1 1 0
1 −1 0 −1 0 0 1


(2)

Figure 2. An example of protein–protein interaction (PPI) network. The PPI network consists of
seven protein nodes and some connected edges.

2.2.2. Balance Theory

Heider proposed a structural balance model that can use positive and negative links
to describe protein interactions or user relationships. The balance theory originally began
with analyzing the balance of triangles in signed networks and has since been applied

https://www.flyrnai.org/SignedPPI/Download.jsp
https://www.flyrnai.org/SignedPPI/Download.jsp
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to large-scale link sign prediction. This theory considers all possible combinations of the
triplet comprising three nodes, forming four intuitive understandings—a friend of a friend
is a friend, an enemy of a friend is an enemy, a friend of an enemy is an enemy, and an
enemy of an enemy is a friend.

According to the structural balance theory, if the product of the signs on the three edges
of a triangle is positive, the triangle is structurally balanced; otherwise, it is unbalanced.
Here, if we use “+” to represent positive edges, i.e., the positive relationship between two
nodes, and “−” to represent the negative edges, i.e., the negative relationship between
two nodes, then the structural network of the two triangles in Figure 3a,b is balanced.
In contrast, the triangular structural networks in Figure 3c,d are unbalanced. Here, it is
worth noting that there are times when the balance theory does not hold in real life, such as
G-proteins, which play the role of molecular switches in the process of signal transduction.
G-proteins do physically interact with several other proteins, but these proteins do not
interact directly. Therefore, this paper states that balance theory has some limitations
in specific biological networks. However, in a broad sense, in real life, compared with
unbalanced triangles, there are more balanced triangles [30]. In addition, the balance
theory has achieved remarkable results in our method. Therefore, we carefully considered
balanced triangles in our test.

AA

BB

CC

(a)

A

B

C

(a)

AA

BB

CC

(c)

A

B

C

(c)

AA

BB

CC

(d)

A

B

C

(d)

AA

BB

CC

(b)

A

B

C

(b)

Figure 3. Examples of balanced and unbalanced triangles, where (a,b) are balanced triangles, and
(c,d) are unbalanced triangles.

2.2.3. PPI Signed Accessibility Matrix

If there are s paths of length k between proteins i and j, the meaning of length is the
number of edges that cross other proteins between two proteins. According to the balance
theory, if p positive edges and q negative edges are obtained, and p + q = s, then the value
of the i-th row and j-th column of the k-order PPI signed accessibility matrix Mk is Mk(i, j).
This is calculated using Equation (3), where the return value of the sgn(x) function is 1, −1,
or 0 when x is positive, negative, or zero, respectively.

Mk(i, j) = sgn(p− q) (3)

The 0-order accessibility matrix M0 and the first-order accessibility matrix M1 are
defined first. M0 and M1 are defined in Equations (4) and (5), respectively.

M0 = I (4)

M1 = A (5)

M0 is equal to the identity matrix, i.e., every node can reach itself in zero steps, and
every node is positively related to itself. M1 is equal to the adjacency matrix A because A
reflects nodes such that each node can reach itself in a single step, which exactly matches
the definition of M1.

In addition, we can derive the second-order accessibility matrix M2 expression as follows.

M2 = sgn(M1 ·M1) = sgn

(
n

∑
k=1

M1(i, k) ·M1(k, j)

)
(6)
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According to Equation (6), the second-order accessibility matrix M2 corresponding to
Figure 2 can be obtained as follows.

M2 =



1 −1 1 −1 1 1 1
−1 1 −1 1 −1 −1 −1
1 −1 1 −1 0 0 1
−1 1 −1 1 −1 0 −1
1 −1 0 −1 1 1 1
1 −1 0 0 1 1 0
1 −1 1 −1 1 0 1


(7)

Similarly, the third-order accessibility matrix is given in Equation (8). We further
derive the expression of the n-order accessibility matrix in Equation (9).

M3 = sgn(M2 ·M1) (8)

Mn = sgn(Mn−1 ·M1) (9)

2.2.4. Node Update Rules for PPI Signed Network

The nodes in a PPI signed network are affected by their m-order neighbors when
they update. Using the attention weight, the features of the m-step accessible neighbor
nodes are aggregated to the central node to realize node updates. Of these m-order nodes,
the attention weight of low-order neighbors is relatively high, and the attention weight
symbols of positive and negative links are opposite.

In the PPI signed network shown in Figure 4a, the solid line represents the first-order
neighbor, and the dotted line represents the second-order neighbor. If the value of m in
the above definition is 2, the update rule of node 1 is shown in Figure 4b. Here, node 1 is
affected by its first- and second-order neighbors. The thickness of the arrow represents the
relative size of the attention weight. Note that attention α is used to aggregate the neighbor
nodes to update node 1.

r

r

r

r

r

r

]3,1[

]2,1[
]6,1[

]4,1[

]5,1[

(a)

1h
r

2h
r

3h
r

4h
r

5h
r

6h
r

]3,1[a-

]2,1[a-

]6,1[a

]4,1[a

]5,1[a

(b)

Figure 4. (a) PPI signed network, where the solid line represents the first-order neighbor and the
dotted line represents the second-order neighbor. (b) Update rules for node 1, where the thickness of
the arrow represents the relative size of the attention weight.

The specific algorithm and implementation of the attention mechanism and node
update are introduced in detail in Section 2.3.

2.3. Proposed SN-GGAT Method

Here, we describe the implementation of the proposed SN-GGAT model in detail, including
the model structure, gating mechanism, attention mechanism, and algorithm implementation.
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2.3.1. Model Framework

The model structure of SN-GGAT is shown in Figure 5, which includes the following
four parts.

Part Gating mechanism

Part Ⅳ Link sign 

             prediction

elu

tanh

Part Ⅱ Graph convolution 

          of attention

Part Ⅲ Inner product 

             decoder
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Figure 5. Framework of the proposed SN-GGAT model. Part I uses the gating mechanism to calculate the parameters
required by the algorithm; part II executes the algorithm to obtain the feature representation of each node; part III uses the
inner product decoder to obtain the reconstructed adjacency matrix; part IV uses the prediction result to verify the accuracy
of the model.

In Part I, we calculated the adjacency matrix A, low-order memory accessibility matrix
M′m, and low-order attention accessibility matrix M̃m. These were fed into the gating
mechanism, which outputs the corresponding high-order memory accessibility matrix
M′m+1 and high-order attention accessibility matrix M̃m+1 as the input for Part II.

In part II, we considered M′m+1 as the adjacency matrix used by the model. Here, 0 in
M′m+1 represent boundless and a non-zero value represents an edge. The model assigns an
attention coefficient to all edges. The role of M̃m+1 is to modify and update these attention
coefficients such that attention follows the following rules: positive edges are positive,
negative edges are negative, low-order neighbor high attention, and high-order neighbor
low attention. With these definitions, we employed two convolutional layers to train the
node vector’s feature representation. Finally, we added a nonlinear activation function
layer, wherein the nonlinear activation function is a hyperbolic tangent function (tanh). We
obtained the feature representation of each node through these layers, which forms the
input for part III.

In part III, according to the feature representation of nodes, we obtained an adjacency
matrix, which is reconstructed. This process is a relatively open problem that can be solved
through deep learning. Here, we employed an inner product decoder to calculate node
similarity to obtain the reconstructed adjacency matrix, i.e., the link prediction result.

In part IV, model accuracy was verified using the reconstructed adjacency matrix
obtained in part III.

2.3.2. Model Interpretation

In the traditional GAT [20] algorithm, convolution is defined as using an attention
mechanism to aggregate different neighborhoods differently. The function of the attention
mechanism is to assign a weight coefficient to each neighbor node and subsequently
updated the central node through convolution summation. Therein, different weights
are assigned to different neighbor nodes through GAT, but only the first-order neighbor
information of each node is considered. However, there may be other potential edge
relationships that have not been mined out in the network. These edge relationships are
not considered by GAT, which is inconsistent with the relationships existing in practice
because it is not only the first-order neighbor node that affects the node, i.e., a higher-order
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neighbor node will also have a certain impact on the node or exhibit a certain relationship
(positive or negative). For example, X and Y are friends, and their relationship is very
good; however, Y and Z have a very poor relationship. According to the balance theory,
the relationship between X and Z is very likely to be bad, which means that both Y and
Z, i.e., the second-order neighbor of X, have an impact on X. However, Y and Z may have
different effects on X, and the impact of first-order neighbors may be even greater, which
we discuss in Section 2.3.4.

The algorithm to select high-order neighbor nodes based on the gating mechanism
and improving the attention mechanism is employed in the proposed method.

2.3.3. Gating Mechanism

When updating the feature representation of a node, we should consider both the first-
order neighbor information of the node and the fact that the high-order neighbor impacts
the node. Here, inspired by Long Short-Term Memory (LSTM) [31] and Gate Recurrent
Unit (GRU) [32], update, memory, and reset gates are proposed to obtain gating, memory,
and attention accessibility matrices, respectively. The gating mechanism employed in the
proposed SN-GGAT is shown in Figure 6.

sgn

sgn

g

m
M
~

m
M

A

1m
M

1

~

m
M

f

Update gate

Memory 

gate

Reset 

gate

1m
M

Figure 6. Gating mechanism in the proposed SN-GGAT. It includes update gate, memory gate, and
reset gate.

The gating unit’s input is the adjacency matrix A, memory accessibility matrix M′m,
and attention accessibility matrix M̃m of the previous gating unit’s output. The output
is the memory accessibility matrix M′m+1 and attention accessibility matrix M̃m+1. The
first-order memory accessibility matrix M′1 and first-order attention accessibility matrix
M̃1 are defined as adjacency matrices in Equations (10a) and (10b), respectively.

M′1 = A (10a)

M̃1 = A (10b)

The update gate considers the m-order memory accessibility matrix M′m and adjacency
matrix A as input, and outputs the m + 1—order gating accessibility matrix Mm+1. The
specific calculation method is expressed as follows.

Mm+1 = sgn
(

M′m · A
)

(11)

In the update process, the high-order accessibility matrix may forget the low-order
neighbor information. For example, in the first-order accessibility matrix (adjacency matrix
A) and second-order accessibility matrix expressed by Equations (2) and (7) in Section 2.2,



Biomolecules 2021, 11, 799 10 of 20

the edge from nodes 1 to 2 shown by the second-order accessibility matrix is −1, and the
edge from nodes 1 to 2 in the first-order accessibility matrix is +1. Here, the higher-order
accessibility matrix forgets the low-order edge information.

To solve this problem, the memory gate memorizes the low-order memory accessibility
matrix and displays it in the high-order memory accessibility matrix. In this manner, the
high-order memory accessibility matrix can represent the high-order neighbor information
of the node and ensure that the low-order neighbor information is retained. The memory
gate’s inputs are the m-order memory accessibility matrix M′m and m + 1—order gating
accessibility matrix Mm+1. The m + 1—order memory accessibility matrix M′m+1 can then
be obtained from the memory gate as follows.

M′m+1 = sgn
(
(1− α) ·Mm+1 + α ·M′m

)
where 0.5 < α < 1 (12)

In the proposed method, low-order neighbor nodes are considered nodes with a higher
influence. Here, the higher the order, the lower the influence of neighbor nodes, and the
positive and negative links have opposite attention. The reset gate realizes this function,
and its inputs are the m-order attention accessibility matrix M̃m and m + 1—order memory
accessibility matrix M′m+1. The m + 1—order attention accessibility matrix M̃m+1 can then
be obtained from the reset gate as follows.

M̃m+1 = (1− β) · M̃m + β ·M′m+1 where 0 < β ≤ 1 (13)

In the reset gate, the smaller the value of β, the lower the influence of high-order
neighbors on nodes. For example, when β = 1, the influence of high-order neighbors is the
same as that of low-order neighbors.

Therefore, the symbolic operation in Figure 6 represents matrix multiplication, func-
tion f represents f (x, y) = sgn((1− α) · x + α · y), and function g represents g(x, y) =
(1− β) · x + β · y, where α and β are hyperparameters.

The high-order memory accessibility and high-order attention accessibility matrices
are calculated recursively in the gating mechanism according to the value of m. When
using GAT to update nodes, the attention mechanism simultaneously considers both low-
and high-order neighbors, and reasonably allocates the attention coefficient according to
the order, which makes node updates more appropriate and practical, and the prediction
results are more accurate.

2.3.4. Attention Mechanism

We present the following explanations for the definition of the attention mechanism
in signed networks.

1. The first-order neighbor of node i is the node directly associated with node i; therefore,
first-order neighbor nodes have the greatest influence on node i.

2. With increasing order, the influence of high-order neighbors of node i on node i
decreases gradually.

3. The positive and negative links of node i have the opposite influence on node i.
4. The above influences specifically refer to attention and are well implemented in the

attention accessibility matrix output by the gating mechanism.

In the proposed method, the expression and updating rules of the attention weight are
affected by the attention accessibility matrix M̃m, which makes the attention weight follow
the rule of “low-order high attention, high-order low attention, different signs attention
opposite” in a signed network. The attention weight is calculated as follows.

coef[i, j] =
exp

(
LeakyReLU

(−→a T
[
W~hi‖W~hj

]))
∑k∈N(i) exp

(
LeakyReLU

(−→a T
[
W~hi‖W~hk

])) (14)



Biomolecules 2021, 11, 799 11 of 20

α[i, j] =
coef[i, j] · M̃m[i, j]

∑k∈N(i) abs
(

coef[i, k] · M̃m[i, k]
) (15)

Here, α[i, j] is the attention weight between nodes i and j, ·T represents transposition,
|| represents the vector connection operation, parameter W is used to realize feature dimen-
sion transformation of each node, parameter~α is used to calculate the attention coefficient
of nodes i to j, function abs() is an operation that provides the absolute value, N(i) is the
set of neighbor nodes of node i, and the expression of N(i) is given in Equation (16), where
n_nodes is the total number of nodes.

N(i) =
{

n | M′m[i, n] 6= 0, 0 ≤ n < n_nodes
}

(16)

The updating rules of node features are shown in Equation (17). The low- and high-
order neighbors of node i constitute set N(i), which impacts node i.

~hi = tanh

 ∑
j∈N(i)

α[i, j] ·W~hj

 (17)

2.3.5. Algorithm

The specific implementation algorithm of the proposed SN-GGAT is given in Algorithm 1.

Algorithm 1 Gated Graph Attention for Signed Network (SN-GGAT)

Input:
PPIs adjacency matrix A;
The number of nodes n;
The order of accessibility matrix m;
Epochs E.

Output:
Node feature matrix Z;
Reconstructed adjacency matrix Ar .

1: M1, M′
1, M̃1 ← A

2: if m! = 1 then
3: for i ∈ {2, . . . , m} do
4: Mi ← sgn

(
M′i−1 · A

)
5: M ′i ← sgn

(
(1− α)Mi + αM′i−1

)
6: M̃i ← (1− β)M̃i−1 + βM′i
7: end for
8: end if
9: for epoch ∈ {1, . . . , E} do

10: for i ∈ {0, · · · , n− 1} do
11: coe f [i, j]← softmax

(
LeakyReLU

(
~aT
[
W~hi‖W~hj

]))
12: α[i, j]← coef[i, j] · M̃m[i, j]/ ∑k∈N(i) abs

(
coef[i, k] · M̃m[i, k]

)
13: ~hi ← tanh

(
∑j∈N(i) α[i, j] ·W~hj

)
14: end for
15: Z ← concat

(
~h0,~h1, . . . ,~hn−1

)
16: Ar ← sgn

(
Z · ZT)

17: Update parameters with Ar
18: end for

Here, in lines 1 to 8, the m-order gating accessibility matrix, m-order memory accessi-
bility matrix, and m-order attention accessibility matrix are obtained by iterating the gating
mechanism, and lines 11 to 13 correspond to the node update process.
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From lines 15 to 18, we obtained the node’s feature matrix and used the idea of the
inner product decoder to calculate node similarity to obtain the reconstructed adjacency
matrix. Here, the loss function uses cross entropy with logits when updating parameters.

3. Results and Discussion
3.1. Link Sign Prediction of the Saccharomyces Cerevisiae PPI Signed Network

In this section, we used the Saccharomyces cerevisiae core dataset to test the validity
of the proposed SN-GGAT, and introduce the computation settings, evaluation criteria, test
results, and a discussion of the results.

3.1.1. Computation Settings

In the literature [33], the second-order accessibility matrix was used as the feature
representation of nodes, and good link prediction results were obtained in signed networks.
Therefore, in our algorithm, the second-order accessibility matrix was input as the feature
set of the model.

In this test, we set up two attention convolutional layers. The output dimensions of
each layer were 128 and 32, respectively; the multi-head attention mechanism was used in
the first layer; and the number of heads was 6. The activation function of the first layer
used the elu function, which is used in the original GAT algorithm, and the activation
function of the second layer used the tanh function. During training, we used the Adam
optimizer with a learning rate of 0.002 to optimize the parameters.

In the gating mechanism, we used the second-order memory accessibility matrix
and the second-order attention accessibility matrix with the best test results in the node
update process, where the hyperparameters were as follows: α = 0.8 and β = 0.2. Finally,
the node embedded representation of the model output participated in the subsequent
link prediction.

3.1.2. Evaluation Criteria

In this test, we used three commonly used machine learning evaluation indexes, i.e.,
accuracy, precision, and recall, which are defined in Equations (18)–(20), respectively.

Accuracy =
TP + TN

TP + FP + TN + FN
(18)

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

Here, TP denotes true positive (representing the number of samples with positive
predictive values and positive labels), FP denotes false positive (representing the number
of samples with positive predictive values but negative labels), TN denotes true nega-
tive (representing the number of samples with negative predictive values and negative
labels), and FN denotes false negative (representing the number of samples with negative
predictive values but positive labels).

3.1.3. Test Results

We compared the proposed method with the state-of-the-art PPI prediction meth-
ods, including Wong’s method [34], Du’s method [35], DeepFE-PPIs [23], and Song’s
method [36]. These methods are summarized as follows:

• Wong’s method: this method is a combination of the Rotating Forest (RF) model and
a new feature representation for PPIs detection. In this method, the response matrix
(PR) method is used to transform the amino acid sequence into a matrix, and then the
texture descriptor based on local phase quantization (LPQ) is used to extract the local
phrase information in the matrix.
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• Du’s method: This method uses a deep neural network to learn protein representation
from common protein descriptors effectively, and extracts useful features of protein
pairs by a layer-wise abstraction.

• DEEPFE-PPIs: This method employs a new residue representation called Res2vec,
which provides effective input for the downstream deep learning model. PPIs can be
accurately inferred when protein structure knowledge is completely unknown.

• Song’s method: In this method, a random projection ensemble classifier (RPEC) is
used to identify new PPIs based on the evolutionary information contained in protein
amino acid sequences.

We used 5-fold cross validation on the S.cerevisiae core dataset and compared the test
results with other state-of-the-art methods. When performing 5-fold cross-validation, we
divided the entire dataset into five parts in equal proportions, and took one part as the
test set and the other four parts as the training set without repeating each time. In these
five tests, each test was run repeatedly three times, and the index values obtained from
the 3 times were averaged as the result of each test. The comparison results are shown
in Table 1 and Figure 7, where the overall statistical significance level of all tests run is
5% (i.e., p < 0.05). Note that SN-GAT is the test result obtained without using the gating
mechanism (or the parameter m of the gating mechanism is equal to 1), i.e., the memory
accessibility and attention accessibility matrices used in the node update process are the
adjacency matrix A of the PPI signed network.

The results demonstrate that SN-GGAT achieved remarkable PPI prediction results
and outperformed the compared methods in all evaluation criteria. Introducing the gating
mechanism allows the node to consider high-order neighbor information during the node
update process and assigns different weights to both high- and low-order neighbors. The
prediction results of SN-GGAT were more accurate than those of SN-GGAT; therefore,
the gating mechanism plays an important role in SN-GGAT, which is the reason why our
algorithm outperforms other existing prediction algorithms.

Table 1. Performance comparison of SN-GGAT with other state-of-the-art methods on the S. cerevisiae
core dataset.

Method Test Set Accuracy (%) Precision (%) Recall (%)

SN-GGAT 1 96.43 98.01 94.96
2 97.04 98.40 95.78
3 96.25 97.82 94.78
4 96.34 98.28 94.50
5 96.81 98.57 95.14

Average 96.57 ± 0.34 98.22 ± 0.30 95.03 ± 0.48

SN-GAT 1 95.72 97.61 93.95
2 96.03 97.99 94.14
3 95.19 96.69 93.85
4 95.54 97.79 93.40
5 95.91 98.26 93.67

Average 95.68 ± 0.33 97.67 ± 0.60 93.80 ± 0.28

Song’s method Average 95.64 ± 0.52 96.75 ± 0.45 94.47 ± 0.47
DeepFE-PPIs Average 94.78 ± 0.61 96.45 ± 0.87 92.99 ± 0.66
Du’s method Average 94.43 ± 0.30 96.65 ± 0.59 92.06 ± 0.36

Wong’s method Average 93.92 ± 0.36 96.45 ± 0.45 91.10 ± 0.31

In addition, we found a biologically interesting example. In our prediction, there is an
interaction between Ctk1 and Snf1. The interaction between the two proteins is not shown
in the database, at least not in the Saccharomyces cerevisiae core dataset of DIP database.
However, Driessche et al. [37] found a physical interaction between Ctk1 and Snf1 in
their two-hybrid system. Ctk1 is a kinase involved in transcriptional control, and Snf1 is a
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kinase that regulates glucose-dependent genes. Driessche et al. showed that Ctk1 and Snf1
co-regulate GSY2 in vivo by Northern blot analysis. This finding supports the view that
Ctk1 interacts with Snf1 in the functional module of cell response to glucose restriction.
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Figure 7. Accuracy, Precision, and Recall values (Mean ± SD) of SN-GGAT method and the compared methods.

3.1.4. Parameter Discussion

In our algorithm, the most important hyperparameter is parameter m of the gating
mechanism (the order m of the accessibility matrix). After conducting nearly twenty
tests, we found that when m = 2, the result obtained using the second-order memory
accessibility matrix and second-order attention accessibility matrix was excellent. The test
results obtained by considering different values of m are shown in Figure 8a–c.

As can be observed in the results described above, the index values obtained using
the second-order memory accessibility matrix are greater than those obtained using the
adjacency matrix (first-order memory accessibility matrix), and model performance was
optimal when using the second-order memory accessibility matrix. However, the model’s
performance was poor when the third- or fourth-order memory accessibility matrices were
used. We summarize possible reasons for these results as follows.

1. The first-order neighbors of a node have the highest influence on the node; therefore,
the result obtained using m = 1 were second only to the result obtained using m = 2.

2. As m = 1 only considers first-order neighbor nodes as neighbors and does not
consider second-order neighbor nodes, m = 2 will consider high-order information
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more comprehensively. The gating mechanism reasonably allocates the attention
weight for the first- and second-order nodes, thus improving the test results when
m = 2.

3. When m > 2, the model’s result was very poor. There may be two reasons for
this. First, according to the principle of the defined gating mechanism, the higher
the accessibility matrix’s order, the higher the number of high-order nodes that are
assigned attention. When the attention weight is calculated using Equation (15), under
the influence of high-order neighbors, the proportion of the influence of first-order
neighbors on nodes decreases, thereby worsening the model’s final effect. Second,
we explain this phenomenon through an intuitive example: my friend (first-order
neighbor) has a great influence on me, and my friend’s friend (second-order neighbor)
also has a certain influence on me; however, a friend of my friend’s friend (third-order
neighbors) may have a minimal influence on me, and I may not even meet them
(third-order neighbors) in real life. Therefore, the test results obtained with m = 3 are
not ideal.

Generally, when m = 2, our gating mechanism achieved highly satisfactory results.
The subject of considering high-order information without reducing the attention of low-
order neighbors to themselves will be researched in future work.
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Figure 8. Test results obtained with different m values on the S.cerevisiae core dataset. Where (a–c) are the Accuracy,
Precision, and Recall with different m values, respectively.
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3.2. Link Sign Prediction of the Human PPI Signed Network

In this section, we predict the human–protein interaction, verify the performance of
our method by comparing it with three state-of-the-art methods, and discuss the biologi-
cal meanings.

3.2.1. Test Results

We predicted the link of the signed network composed of human protein and evaluated
the model by using the value of auPR, where auPR refers to the area under the PR (precision-
recall) curve. The higher the value of auPR, the better the performance of the model. We
performed 10-fold cross validation on the Human dataset, and the test results are shown in
Figure 9.

We took the average value of ten results, drew the average curve of PR, and compared
it with DPPIs [28], DeepFE-PPIs [23], and Liu’s method [27]. The comparison results are
shown in Figure 10. DPPIs uses a convolutional neural network combined with random
projection and data expansion to predict PPIs, and its auPR value is 0.4127. DeepFE-PPIs
employ a new residue representation called Res2vec, which provides effective input for the
downstream deep learning model. The auPR value of this method is 0.4273. Liu’s method
uses GCNs to learn the location information of proteins in a PPI network and combines the
sequence and location information of amino acids to generate strong protein characteriza-
tion, with an auPR value of 0.4542. The SN-GGAT method has the best performance, and
the auPR value is 0.5104, which is higher than the other three methods.
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Figure 9. The test results obtained by using the SN-GGAT method to execute the link signed prediction task on the Human
dataset, where each sub-graph represents one prediction result.
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Figure 10. Performance comparison of SN-GGAT with other state-of-the-art methods on the Human
dataset. The auPR is the mean of 10-fold cross validation.

By analyzing the prediction results, we found that most of the predicted interactions
satisfy the balance theory in the entire signed network. The explanation of satisfying the
balance theory is shown in Figure 11a, and the analysis result is shown in Figure 11b.

The edge of

 satisfying balance

 theory: 91.8 %

 The edge of

 satisfying balance

 theory: 91.8 %

The edge of

 unsatisfied balance

 theory: 8.2 %

 The edge of

 unsatisfied balance

 theory: 8.2 %

(a) (b)

Figure 11. (a) An example of PPI satisfying balance theory in signed networks. According to the
balance theory, it can be inferred that the connection between protein A and protein B is positive,
negative, positive, and positive through routes 1, 2, 3, and 4, respectively. Since the theoretically
positive quantity is more than the theoretically negative quantity, if the connection edge between
protein A and protein B is predicted to be positive, it means that the predicted protein interaction
satisfies the balance theory in the entire signed network. (b) The analysis result of the interaction
network obtained after the prediction. It shows the proportion of edges satisfying balance theory
and unsatisfied balance theory in the entire signed network.

This analysis result shows that in the entire signed network after prediction, 91.8%
of the connected edges satisfy the balance theory. At the same time, it also shows that the
balance theory plays a key role in the gating mechanism and sign propagation process. The
introduction of balance theory into SN-GGAT has an important impact on the performance
of the model.
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3.2.2. Discussion in Biological Meanings

In our test, we constructed the protein–protein interactions as a signed network. The
SN-GGAT method expands the PPI network by predicting unknown protein interactions
(i.e., the connection edges in the PPI network were significantly increased) so that the
entire PPI network is rich in more interactive information. From a biological point of
view, SN-GGAT can provide important clues for the in-depth study of protein functions by
accurately predicting protein interactions. In the current bioinformatics research, some new
methods [38–40] using the PPI network to predict protein function have been proposed.
SN-GGAT can expand the existing PPI network and increase the training samples of protein
function prediction by increasing the number of edges in the protein–protein interaction
network, so as to improve the accuracy of protein function prediction. In addition, the
accurate prediction of protein interactions can also promote the in-depth study of gene
expression regulatory networks in biological life activities and other complex life activities.
In sum, the SN-GGAT method we proposed has made considerable contributions to
biological research, especially in research based on PPI networks and other bioinformatics-
related research.

4. Conclusions

Protein–protein interaction usually refers to the binding or chemical reaction between
proteins through spatial conformation or chemical bond, while a protein–protein inter-
action network is composed of proteins through their interactions. These interactions
are involved in cell cycle regulation, gene expression regulation, biological signal trans-
duction, and energy and substance metabolism processes. The accurate prediction of
protein–protein interactions in biological systems plays an important role in understanding
the working principle of proteins, the functional connections between proteins, and the
reaction mechanism of biological signals and energy metabolism.

In order to accurately predict PPIs, we characterized PPIs as a signed network and
realized PPI prediction via link prediction of the signed network. We developed the
SN-GGAT method, which combines the concepts of signed network, balance theory, and
accessibility matrix. The proposed method selects high-order neighbor nodes based on a
gating mechanism and improves the attention mechanism of the original GAT. In addition,
node features are updated according to the rules of “low-order high attention, high-order
low attention, different sign attention opposite”; thus, the concept of GAT is extended to
signed networks and applied to PPI prediction. We compared the proposed SN-GGAT to
four state-of-the-art methods on the Saccharomyces cerevisiae core dataset. The test results
demonstrated that the proposed method obtained the highest accuracy and has strong
competitiveness. Finally, we tested the proposed method again on the Human protein
interaction dataset. We learned that most of the predicted PPIs satisfy the balance theory in
the entire signed network. This conclusion shows that the idea of incorporating balance
theory into the algorithm is correct and necessary.

In the future, we plan to further study the attention mechanism of signed networks to
effectively mine and use hidden high-order information to improve the accuracy of PPI
prediction. In addition, the PPI is predicted in this paper, and we will continue in-depth
study in the future, such as experimental verification of the predicted results.
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