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Simple Summary: Immunotherapy has played a pivotal role in the management of relapsed DLBCL.
Stem cell transplant and CAR T-cell therapy are curative treatment modalities for relapsed disease.
Despite this, a subset of patients continues to progress, and their outcomes remain dismal. Newer
therapeutic options to optimize outcomes as well as minimize toxicity are warranted.

Abstract: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease. B-cell receptor (BCR)
pathway is essential for malignant B-cell growth, survival, and proliferation. Various immune cells,
including T-cells and macrophages in the tumor microenvironment (TME) contribute to tumor cell
survival and pathogenesis of chemo-resistance. The presence of many targets on the malignant
B-cells and in the TME has led to emergence of novel therapeutic agents. Stem cell transplant is
the oldest treatment modality leveraging immune system in DLBCL. Subsequently, CD20 targeting
monoclonal antibody and chimeric antigen receptor (CAR) T-cell therapy changed the treatment
landscape of DLBCL. Recently, multiple novel immunotherapeutic agents have been added in the
armamentarium for the management of DLBCL, and many are under development. In this review
article, we will review latest updates of immunotherapeutic agents in the management of DLBCL.

Keywords: diffuse large B-cell lymphoma (DLBCL); autologous stem cell transplant (autoSCT);
allogeneic stem cell transplant (alloSCT); CAR T-cell therapy; bispecific T-cell engager antibody;
immunotherapy; nivolumab; pembrolizumab; checkpoint inhibitors

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin’s
lymphoma (NHL), representing approximately 30–40% of new cases each year. Using gene
expression profiling (GEP), it can be classified into two subtypes according to the cell of
origin (COO): germinal center B-cell (GCB) and non-germinal center B-cell (non-GCB) [1].
GCB and non-GCB subtypes account for 40% and 60% of de-novo DLBCL, respectively.
Patients with the GCB subtype have better outcomes when compared to those with the
non-GCB subtype [1–3]. Recently, a number of molecular abnormalities have identified
subsets of DLBCL which carry unfavorable prognoses. MYC translocation is reported in
10–15% of DLBCL. In the CORAL (Collaborative Trial in Relapsed Aggressive Lymphoma)
study, relapsed 8q24/MYC positive DLBCL had an inferior 4-year progression-free survival
(PFS) (18% vs. 42%) and overall survival (OS) (29% vs. 62%), with salvage chemotherapy
followed by autologous stem cell transplant (autoSCT), when compared to MYC negative
DLBCL [4]. Double or triple hit lymphoma (DHL/THL) is a subtype of DLBCL which
is characterized by MYC and BCL2 and/or BCL6 gene rearrangements by FISH, and
represents 6–14% of DLBCL cases [5]. It carries the worst prognosis among all DLBCL
cases [6–9]. Even if a DHL is deemed chemo-sensitive to salvage chemotherapy, the 4-year
PFS after autoSCT is 28% [10]. Double-expressor lymphomas (DEL: Myc positive ≥40%
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and Bcl2 + in >50% by IHC) account for 40% of newly diagnosed DLBCL and 50% of
relapsed refractory DLBCL. DELs have a better prognosis than DHL, however, this is worse
than the “standard” DLBCL [7,11]. Relapsed chemo-sensitive DEL patients have a 4-year
PFS of 48% after autoSCT when compared to 58% of “standard” DLBCL [10]. DELs are
associated with the non-GCB subtype, while DHL/THL are typically associated with the
GCB subtype. In a study involving 893 patients with de-novo DLBCL, 66% of DEL patients
were of the ABC subtype, and 39% of non-DEL patients were of the ABC subtype [12].
Additionally, 27% of GCB–DLBCL cases express a 104-gene double-hit signature (DHITsig),
and only half of these patients have concurrent MYC and BCL2 rearrangements. Patients
with DHITsig experience inferior outcomes after R-CHOP than those without DHITsig
(5 year time to progression, 57% and 81%, respectively). Moreover, these patients carry
poor outcomes regardless of their MYC/BCL2 rearrangement status [13].

With the increased availability of deep genomic sequencing, novel, molecularly de-
fined subsets of DLBCL are being identified. Schimtz et al. identified four genetic sub-
types of DLBCL using exome and transcriptome sequencing: MCD (co-occurrence of
MYD88L265P and CD79B mutations), BN2 (BCL6 fusions and NOTCH2 mutations), N1
(NOTCH1 mutations), and EZB (EZH2 mutations and BCL2 translocations). The BN2 and
EZB subtypes were associated with favorable survival, while the MCD and N1 subtypes
carry inferior outcomes when treated with chemoimmunotherapy [14]. Similarly, Chapuy
et al. classified DLBCL into five different subgroups according to the presence of low-
frequency alterations, somatic copy number alterations (SCNA), and structural variants
(SV). These included low-risk ABC–DLBCLs of extrafollicular/marginal zone origin, (C1),
high-risk GCB–DLBCLs with BCL2 SVs and alterations of PTEN and epigenetic enzymes,
(C3), low-risk GCB–DLBCLs with distinct alterations in BCR/PI3K and JAK/STAT, as
well as BRAF pathway components and multiple histones, (C4), and a COO-independent
group of tumors with a biallelic inactivation of TP53, 9p21.3/CDKN2A and associated
genomic instability, (C2) [15]. Further refinement of the genetic subtypes of DLBCL was
performed, which included the MCD, N1, A53, BN2, ST2, MYC+, and MYC− subsets [16].
Furthermore, another study demonstrated five distinct subtypes of DLBCL using genomic
sequencing: MYD88, BCL2, SOCS1/SGK1, TET2/SGK1, and NOTCH2 [17]. Although
our understanding of genetic subtypes and their association with clinical features and
treatment outcomes is increasing with time, it is not routinely used clinically, and currently
remains under investigation.

2. CD20 Directed Monoclonal Antibody (mAb)

Rituximab is the first immunotherapy used in the treatment of DLBCL. The addi-
tion of rituximab to chemotherapy has been shown to be superior in terms of complete
remission, as well as event-free, progression-free, and overall survival when compared
to chemotherapy alone in newly diagnosed DLBCL patients [18–23]. Obinutuzumab is a
type II glycoengineered anti-CD20 mAb, and has a superior antibody-dependent cellular
cytotoxicity (ADCC) and phagocytosis than rituximab [24]. A randomized phase III trial,
comparing addition of obinutuzumab or rituximab to CHOP chemotherapy in previously
untreated advanced DLBCL, did not demonstrate any difference in the progression-free
and overall survival [25]. Furthermore, rituximab is typically combined with salvage
chemotherapy and other therapeutic regimens for the treatment of relapsed refractory
DLBCL [26–29]. We routinely use rituximab in newly diagnosed and relapsed refractory
settings.

3. Autologous Stem Cell Transplant

Rituximab plus an anthracycline-based chemo-immunotherapy (R-CHOP) is the stan-
dard treatment for newly diagnosed DLBCL, and provides long-term remissions in up
to 70% of patients [20,23,30]. Approximately 30% of patients eventually relapse. Salvage
chemotherapy followed by autoSCT offers durable remissions in approximately half of pa-
tients with relapsed DLBCL. In the pre-rituximab era, the PARMA trial compared autoSCT
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with consolidative chemotherapy in 215 chemo-sensitive relapsed NHL patients. After
two cycles of salvage DHAP chemotherapy, 109 patients with chemo-sensitive disease
were randomized either to autoSCT or to four additional cycles of DHAP consolidative
chemotherapy. AutoSCT resulted in superior response rates (84% vs. 44%), event-free
survival (EFS) (46% vs. 12%), and OS (53% vs. 32%) [31]. In the post-rituximab era, the
CORAL and the NCIC-CTG LY.12 study were performed to evaluate the impact of the
incorporation of rituximab in the salvage setting. The CORAL study randomized relapsed
refractory CD20 positive DLBCL patients to either the R-ICE or R-DHAP salvage regimens,
and responding patients proceeded to autoSCT. Response rates were similar after three
cycles of R-ICE and R-DHAP (63.5% vs. 62.8%, respectively), and no significant difference
for the three-year EFS or OS was noted between R-ICE and R-DHAP treatments [28]. Simi-
larly, the Canadian study NCIC-CTG LY.12 compared GDP to DHAP in transplant eligible
patients with relapsed refractory aggressive NHL, and reported no difference in the overall
response rates (ORR) (45.2% vs. 44%, respectively), EFS, and OS following autoSCT [26,27].

The CORAL study randomized patients with relapsed DLBCL to rituximab mainte-
nance or observation alone following autoSCT and did not observe any difference in the EFS,
PFS, or OS [28]. The BMT CTN 0401 study substituted rituximab with radioimmunother-
apy, as a part of the BEAM conditioning regimen, and did not observe an improvement
in outcomes [32]. The Center for International Blood and Marrow Transplant Research
(CIBMTR) registry study did not observe any difference in OS, PFS, relapse, or non-relapse
mortality (NRM) with the addition of rituximab to the BEAM conditioning regimen in 862
relapsed chemo-sensitive DLBCL patients undergoing autoSCT [33].

Factors Affecting Outcomes of AutoSCT

The age adjusted international prognostic index (IPI) score incorporates clinical vari-
ables such as age, serum LDH, ECOG performance status, Ann Arbor stage, and extra-nodal
involvement. In the CORAL trial, patients with a high IPI score (2–3) experienced a lower
EFS when compared to those with a low IPI score (0–1) (18% vs. 40%) [28]. The second line
age-adjusted IPI (sAAIPI) score, consisting of LDH, stage III or IV disease, and performance
status, predicts PFS and OS in relapsed refractory DLBCL treated with ICE chemotherapy
followed by autoSCT. Three-year PFS and OS were 70% and 74% for low-risk sAAIPI
(0 factor), 39% and 49% for intermediate risk sAAIPI (1 factor), and 16% and 18% for
high-risk sAAIPI (two to three factors) [34].

The timing of disease relapses affects the post-transplant outcomes. Three-year PFS
was significantly lower for patients experiencing an early relapse (<12 months) when
compared to late relapse (>12 months) in the CORAL trial (20% vs. 45%) [28]. Primary
refractory disease portends poor outcomes with salvage chemotherapy followed by au-
toSCT [27,35,36]. The SCHOLAR-1 study evaluated the outcomes of refractory DLBCL
(progressive or stable disease to first-line or salvage chemotherapy, or relapse within
12 months of autoSCT), and revealed a poor response rate to the next line of therapy (ORR
26% and CR 7%), a median survival of 6.3 months and a one-year survival of 28% [37].
The MSKCC study reviewed the outcomes of primary refractory DLBCL patients who
underwent salvage chemotherapy followed by autoSCT. Patients were grouped into pri-
mary partial responders (partial response (PR) to initial therapy) or primary progressors
(minimal or no response to initial therapy) [38]. The Three-year PFS was 49% in primary
partial responders compared to 17% in primary progressors. Moreover, the overall response
rate (complete response (CR), PR) was 68% in the primary partial responders versus 40% in
the primary progressors. Patients with a Deauville response from one to three had a 3-year
PFS of 68% when compared to 30% in Deauville score four patients and 0% in Deauville
score five patients [38]. Recently, phase III studies comparing CAR T-cell therapy with the
standard of care (autoSCT) in relapsed refractory DLBCL patients have completed accrual
and results are awaiting (NCT03391466, NCT03570892, NCT03575351).

The PET scan response after salvage chemotherapy is predictive of the autoSCT
outcomes [39]. Patients with a Deauville score of one to three in response to salvage
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chemotherapy experienced a higher three-year PFS and OS of 77% and 86%, respectively,
compared to 49% and 54% [40]. Another study evaluated the impact of pre-transplant
PET scans following salvage chemotherapy. PET-negative CR after salvage was associated
with an improved four-year PFS (64% vs. 32%) and OS (75% vs. 56%) when compared to
PET-positive patients [41]. Patients with PR from salvage chemotherapy are at higher risk
of failure than CR [40]. A recent CIBMTR registry analysis showed that patients with a
chemo-sensitive PET-positive PR following salvage chemotherapy experienced a five-year
PFS of 40% after autoSCT [42]. Based on the above-mentioned evidence, we routinely
perform PET scans after salvage chemotherapy. We consider autoSCT in chemo-sensitive
relapsed DLBCL patients who have achieved partial or complete remission (Deauville
score one to three) to salvage chemotherapy, and reserve CAR T-cell therapy to patients
with stable or progressive disease (Deauville score four to five). We do not routinely offer
rituximab maintenance therapy after autoSCT.

4. Allogeneic Stem Cell Transplant

Allogeneic stem cell transplant (alloSCT) is one of the curative treatment modalities in
DLBCL. However, its utility is limited partly due to a high non-relapse mortality (NRM),
and the availability of newer therapeutic options, including CAR T-cell therapy. Although
CRS and ICANS caused by CAR T-cell therapy can be life threatening, NRM is typically
low. Moreover, the responses to CAR T-cell therapy are independent to the disease burden,
which makes it an attractive treatment option in chemo-refractory disease when compared
to alloSCT. Thus, CAR T-cell therapy has essentially replaced alloSCT as a preferred treat-
ment modality in those patients who have failed multiple lines of therapy, and those with
post-autoSCT relapse. A recent CIBMTR analysis demonstrated a remarkable decline in the
use of alloSCT for DLBCL and a sharp increase in the use of CAR T-cell therapy. Although
CAR T-cell therapy offers durable remissions in relapsed DLBCL patients, approximately
50% of these patients still experience disease relapse, and their outcomes are dismal [43,44].
AlloSCT has a role in such circumstances [45,46]. Moreover, alloSCT has been shown to
provide durable remissions in high-risk DLBCL, such as DHL and DEL [47], or in disease
that has been unresponsive to multiple prior therapies. AlloSCT can be considered in
situations where CAR T-cell therapy is not feasible, such as refractory cytopenia or the
presence of myelodysplastic syndrome. Unlike CAR T-cell therapy, which specifically
targets the CD19 antigen on lymphoma cells, alloSCT offers a strong immune response
against multiple unknown tumor antigens through the graft-versus-lymphoma effect that
is exerted by the donor stem cells [48,49].

Table 1 summarizes the outcomes of alloSCT for DLBCL. The CIBMTR study evaluated
the outcomes of 503 DLBCL patients who underwent alloSCT after disease progression,
following prior autoSCT [46]. The three-year NRM, relapse, PFS, and OS were 30, 38, 31,
and 37%, respectively. A Karnofsky performance status (KPS) of <80%, chemoresistance,
an autoSCT to alloSCT interval of <1 year, and myeloablative conditioning were associated
with an inferior PFS. Similarly, the European Society for Blood and Marrow Transplantation
(EBMT) analysis reported the outcomes of alloSCT in 101 DLBCL patients who progressed
after autoSCT [50]. At 3 years, the NRM was 28.2%, the relapse rate was 30.1%, the PFS
was 41.7%, and the OS was 53.8%. A high NRM was noted in older patients (≥45 years)
and in those with an early relapse (<12 months) after autoSCT. The relapse rate was high
in refractory patients, and a time interval to relapse after autoSCT of <12 months was
associated with a lower PFS. In addition, recent studies have shown a higher rate of NRM
and a lower relapse rate with myeloablative conditioning regimens (MAC) when compared
to reduced intensity conditioning regimens (RIC) in alloSCT treatment for NHL, offsetting
the survival advantage associated with MAC regimens [49,51]. Our practice corroborates
with previous studies, and we typically reserve alloSCT for post-CAR T-cell relapse, the
presence of concurrent myelodysplasia, or the failure of CAR T-cell therapy production.
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Table 1. Outcomes of allogeneic stem cell transplants in DLBCL.

Study No of
Pts Conditioning Regimen Acute GVHD

(Grade 2–4)
Chronic

GVHD (1-yr) NRM (1-yr) Relapse PFS OS

Thomson et al.
[52], 2009 48 RIC 100% 17% 22% 29% 33% (4-yr) 48% (4-yr) 47% (4-yr)

Sirvent et al.
[53], 2010 68 RIC 100% 39% 41% 23% 41% (2-yr) 44% (2-yr) 49% (2-yr)

Lazarus et al.
[54], 2010 79 MAC 100% 42% (100-day) 23% 41% 30% (1-yr) 29% (1-yr) 33% (1-yr)

Van Kampen
et al. [50], 2011 101 MAC (37%) vs. RIC

(63%) 33% 42% 24.5% 24% (1-yr) 51.5% (1-yr) 64.7% (1-yr)

Bacher et al.
[51], 2012 396

MAC (n = 165) vs. RIC
(n = 143) vs. NMA

(n = 88)

43% vs. 43%
vs. 44%

35% vs. 39%
vs. 33%

47% vs. 31%
vs. 29%

23% vs. 32%
vs. 37% (1-yr)

30% vs. 37%
vs. 34% (1-yr)

38% vs. 46%
vs. 45% (1-yr)

Fenske et al.
[46], 2016 503 MAC (25%) vs. RIC

(75%) 36% 40% 23% 33% (1-yr) 44% (1-yr) 54% (1-yr)

Modi et al. [49],
2020 70 MAC (67%) vs. RIC

(23%)
36.2% vs. 8.7%

(Grade 3–4)

27.7% vs.
43.5%

(Extensive)

39.7% vs.
39.1% (3-yr)

25.5% vs.
17.4% (3-yr)

34.2% vs.
34.7% (3-yr)

34.4% vs.
43.4% (3-yr)

RIC: Reduced intensity conditioning regimen; MAC: Myeloablative conditioning rmyeegimen; NMA: Non-myeloablative; NRM: Non-
relapsed mortality; PFS: Progression-free survival; OS: Overall survival; Yr: Year; GVHD: Graft-versus-host-disease.

5. Chimeric Antigen Receptor T-Cell Therapy

The chimeric antigen receptor (CAR) consists of an extracellular antigen recognition
domain, which binds to cell surface antigens, and an intracellular signaling domain that
provides an activation signal. T-cell receptor activation requires two signals: the first signal
is delivered through the T-cell receptor, and the second signal is provided by a costimula-
tory molecule that allows the proliferation of T-cells. The universal presence of CD19, CD20,
and CD22 antigens on malignant B-cells make them the perfect targets for cellular therapies.
CD19-directed autologous chimeric antigen receptor T-cell (CAR T-cell) therapy has revolu-
tionized the treatment paradigm for DLBCL (Figure 1). Currently, axicabtagene ciloleucel
(axi-cel, Yescarta®), tisagenlecleucel (tisa-cel, Kymriah®), and lisocabtagene maraleucel
(liso-cel, Breyanzi®) have been approved by the US Food and Drug Administration (FDA)
for the treatment of relapsed refractory DLBCL. The ZUMA-1 multicenter phase II single
arm trial evaluated axi-cel in DLBCL, primary mediastinal B-cell lymphoma (PMBCL), and
transformed follicular lymphoma (FL), and those which were refractory to prior therapy
or had relapsed following autoSCT. The overall response rate (ORR) was 83% and the CR
rate was 58%. At a median follow-up of 27.1 months, the median duration of response was
11.1 months, the median OS was not obtained, and the median PFS was 5.9 months [55].
Moreover, one third of the patients with (11/33) PR and half of the patients (11/24) with
stable disease at 1 month achieved CR at 6 months. Similarly, the JULIET trial evaluated
tisa-cel in relapsed refractory DLBCL patients who were ineligible for autoSCT, or who
had disease progression following autoSCT and demonstrated an ORR of 52%, and a CR
of 40% [56]. Approximately 54% of patients with PR achieved CR. One-year survival
was 49%. Liso-cel is a third CD-19-directed autologous CAR T-cell product with a 4-1BB
co-stimulatory domain, which is administered as a sequential infusion of two components
(CD8+ and CD4+ CAR T-cells) at equal target doses (1:1). The TRANSCEND NHL 001
study evaluated liso-cel in relapsed refractory DLBCL, PMBCL, transformed DLBCL from
indolent lymphoma, and FL grade 3B. At a median follow-up of 18.8 months, the ORR
was 73%, and the CR rate was 53% [57]. Various large, retrospective reports of real-world
experiences in using CAR T-cell therapy have shown a similar efficacy [58–62] (Table 2).
Given the comparable efficacy and toxicity profiles of approved CAR T-cell therapies,
currently the choice of therapy is largely guided by patient’s insurance.
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Table 2. Clinical trials of CAR T-cell therapy in lymphoma.

Trial CAR-T
Product

Costimulatory
Domain

No of
Pts

Bridging
Chemotherapy Lymphodepleting Chemotherapy Patient Population ORR/CR

(%)
CRS/ Grade ≥ 3

(%)
ICANS/ Grade ≥ 3

(%)

ZUMA-1 [55] Axi-cel CD28 111 No
Fludarabine (Flu) 30 mg/m2 and

Cyclophosphamide (Cy)
500 mg/m2 × 3 days

DLBCL ≥ 2 lines,
transformed FL (tFL),

PMBCL
82/58 93/13 64/28

JULIET [56] Tisa-cel 4-1BB 165 Yes (92%)
Flu 25 mg/m2 and

Cy 250 mg/m2 × 3 days, or
bendamustine 90 mg/m2 × 2 days

DLBCL ≥ 2 lines, tFL 52/40 58/23 21/12

TRANSCEND-NHL
001 [57] Liso-cel 4-1BB 342 Yes (59%) Flu 30 mg/m2 and

Cy 300 mg/m2 × 3 days
DLBCL ≥ 2 lines, tFL,

PMBCL 73/53 42/2 30/10

Nastoupil et al. [60] Axi-cel CD28 165 Yes (53%) Flu 30 mg/m2 and
Cy 500 mg/m2 × 3 days

DLBCL, PMBCL, tFL 82/64 92/7 69/31

Jacobson et al. [58] Axi-cel CD28 122 Yes (45%) Not available

DLBCL, PMBCL, tFL,
transformed marginal

zone lymphoma (tMZL),
transformed CLL

70/50 93/16 70/35

Sesques et al. [62] Axi-cel/
Tisa-cel CD28/4-1BB 70 Yes (97%) Bendamustine (2%); Flu and Cy DLBCL, PMBCL, tFL,

tMZL 63/48 85/8 28/10

Jaglowski et al.
(CIBMTR) [59] Tisa-cel 4-1BB 70 Not available Not available DLBCL, tFL 59.6/38.3 NA/4.3 NA/4.3

Pasquini et al.
(CIBMTR) [61] Axi-cel CD28 453 Not available Not available Large B-cell lymphoma 70/52 83/14 61/NA

ORR: Overall response rate; CR: Complete response; CRS: Cytokine release syndrome; ICANS: Immune effector cell-associated neurotoxicity syndrome; NA: Not available; DLBCL: Diffuse large B-cell lymphoma;
FL: Follicular lymphoma; PMBCL: Primary mediastinal B-cell lymphoma.
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It is important to mention that above-mentioned studies differ in their efficacy and
toxicities mainly due to the differences in the study design, population, and lymphode-
pleting chemotherapy. The ZUMA-1 study reported higher ORR and CR rates when
compared to other studies, where bridging chemotherapy was not allowed. It is likely
that the ZUMA-1 study may have included patients with a relatively indolent disease
biology when compared to others [55–57]. Furthermore, the UK study reported a lower
ORR when compared to other studies, which could be secondary to the prolonged time
from the patient selection to CAR T-cell infusion (median 63 days) [62]. The CD28 costimu-
latory domain results in rapid T-cell expansion, which leads to an earlier and more severe
cytokine release syndrome (CRS), while the use of the 4-1BB costimulatory domain results
in a slower expansion of T-cells, as well as a lower incidence and severity of both CRS and
immune effector cell-associated neurotoxicity syndrome (ICANS). CAR T-cell therapy is
well tolerated in patients with an advanced age [63], multiple comorbidities or a borderline
performance status [60], and side effects are, in general, manageable. Several strategies
have been employed to mitigate the toxicities that are associated with CAR T-cell therapy.
Recently, the use of prophylactic corticosteroids (oral dexamethasone 10 mg daily day zero
through day two) has shown to reduce the incidence and severity of CRS (incidence 80%,
all grade ≤ 2) and ICANS (incidence 58%, grade 3 ≥ 13%) following axi-cel administra-
tion [64]. No impact on the response rate was noted. CAR T-cell therapy is known to induce
granulocyte-macrophage colony-stimulating factor (GM-CSF) production, which mediates
inflammatory reactions and neurotoxicity. The ZUMA-19 trial, investigating lenzilumab
(an anti-GM-CSF monoclonal antibody) in combination with axi-cel in relapsed refractory
large B-cell lymphoma, is undergoing [65]. Given the improvement in CRS and ICANS
with prophylactic corticosteroids, we routinely offer dexamethasone 10 mg daily for 3 days
following axi-cel infusion.

Outcomes of the patients who progress following CAR T-cell therapy are poor [43].
The US lymphoma CAR T-cell consortium reported the outcomes of 136 patients (out of
275, 49%) who had experienced disease progression after axi-cel treatment. The median
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OS from disease progression was 6 months. Among 74% who received further therapy,
the ORR was 29%, with a CR of 17%, and a median PFS of 55 days. CD19 losses were
found in approximately 30% of patients at progression [44]. Antigen escape is one of
the mechanisms of CAR T-cell resistance, where the malignant cells that are treated with
CAR T-cells display the partial or complete loss of the CD19 antigen. To overcome this
problem, dual CAR T constructs or tandem CAR T, which is a single CAR construct that
contains two single-chain fragment variables (scFvs) to concomitantly target multiple target
tumor antigens, have been used [66]. In addition, dual-targeted CAR T-cells (CD19/CD22,
CD19/CD20) have shown promising activity in acute lymphoblastic leukemia (ALL), as
well as B-cell malignancies [67–69]. AUTO3, anti-CD19/CD22 CAR-T treatment, with or
without pembrolizumab, has demonstrated an ORR of 64% and a CR of 55% in a phase I/II
study of relapsed refractory DLBCL [70]. CAR T-cell exhaustion and immunosuppressive
TME are other plausible etiologies of CAR T-cell failure. PD1 blockade with pembrolizumab
has demonstrated an ORR of 27% in patients with a progression of NHL after CD19 CAR T-
cell therapy [71]. The ZUMA-6 investigated the safety and efficacy of axi-cel in combination
with atezolizumab (four doses every 3 weeks) in relapsed refractory DLBCL patients and
noted an ORR of 90% with a CR of 60%. CAR T-cell expansion was greater than two-fold
higher than observed in the ZUMA-1 trial [72].

A proportion of patients with a proliferative disease could not receive CAR T-cell
therapy in a timely manner; this was either due to a manufacturing failure or delays. The
median time from enrollment to infusion was 54 days in the JULIET trial [56], and the
median time from leukapheresis to axi-cel delivery was 17 days in the ZUMA-1 study [55].
Approximately 31% of enrolled patients in the JULIET trial could not receive CAR T-cell
infusion secondary to disease progression, and around 7% had a manufacturing failure.
Similarly, approximately 10% of patients in the ZUMA-1 trial did not receive CAR T-
cell infusion. Moreover, T-cell dysfunction with a decrease in functional T-cells is more
prevalent in patients who have had multiple lines of prior therapy. Allogeneic CAR T-cells
(off the shelf CAR T) can overcome these factors, limiting the access of CAR T-cell therapy
to high-risk populations. The off-the-shelf, allogeneic CAR T-cell product, PBCAR0191, has
shown a CR of 33% (standard lymphodepletion) and 71% (escalated lymphodepletion) in
13 patients with CD19-positive relapsed refractory NHL. Neither GVHD nor the presence
of a CRS or ICANS grade of over three was noted [73]. Table 3 shows the selected ongoing
studies of allogeneic and dual-construct CAR T-cell therapy.

Table 3. Selected ongoing trials of Immunotherapy in DLBCL.

Intervention Molecular Target Trial Phase Indication Primary
Endpoint Status

R-CHOP/PoV-R-CHP plus Glofitamab BiTE (CD3/CD20) NCT04914741/
COALITION I/II Untreated DLBCL Safety Recruiting

Glofitamab plus R-CHOP BiTE (CD3/CD20) NCT04980222 II Untreated DLBCL CR Recruiting

Mosunetuzumab or in combination with
PoV BiTE (CD3/CD20) NCT03677154 I/II Untreated DLBCL Safety, ORR,

CR Recruiting

Tafasitamab plus lenalidomide plus
R-CHOP vs. R-CHOP Anti-CD19 mAb NCT04824092/

FrontMIND III Untreated DLBCL PFS Recruiting

Venetoclax plus PoV plus R-CHP Anti-CD79b ADC NCT04790903 I Untreated DLBCL Safety Recruiting

Induction and Maintenance Avelumab Anti-PD-L1
antibody NCT03244176 I Untreated DLBCL Safety Recruiting

Relapsed Refractory Setting

Glofitamab plus GemOx vs. R-GemOx BiTE (CD3/CD20) NCT04408638 III RR DLBCL OS Recruiting

Epcoritamab vs. standard of care BiTE (CD3/CD20) NCT04628494 III RR DLBCL OS Recruiting

Blinatumomab plus lenalidomide BiTE (CD3/CD20) NCT02568553 I RR NHL Safety Recruiting

TNB-486 (CD19/CD3 BiTE) BiTE (CD3/CD20) NCT04594642 I RR NHL Safety Recruiting
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Table 3. Cont.

Intervention Molecular Target Trial Phase Indication Primary
Endpoint Status

Loncastutixmab plus rituximab vs.
R-GemOx Anti-CD19 ADC NCT04384484/

LOTIS-5 III RR DLBCL PFS Recruiting

Loncastuximab Tesirine and Ibrutinib Anti-CD19 ADC NCT03684694/
LOTIS-3 I/II RR DLBCL, MCL Safety Recruiting

PoV plus R-GemOx vs. R-GemOx Anti-CD79b ADC NCT04182204/
POLARGO III RR DLBCL OS Recruiting

PoV plus R-ICE vs. R-ICE Anti-CD79b ADC NCT04833114 III RR DLBCL EFS Recruiting

Nivolumab plus ipilimumab and adaptive
T-cell therapy

Anti-PD-1 and
CTLA-4 antibody NCT03305445 Ib/II RR DLBCL Safety, CR Recruiting

Copanlisib and nivolumab Anti-PD-1 antibody NCT03484819 II RR DLBCL,
PMBCL ORR Recruiting

Pembrolizumab plus anti-CD20 antibody Anti-PD-1 antibody NCT03401853 II RR DLBCL, FL ORR Recruiting

Atzolizumab plus R-GemOx Anti-PD-L1
antibody NCT03321643 I RR DLBCL Safety Recruiting

Pembrolizumab Plus Vorinostat Anti-PD-1 antibody NCT03150329 I RR DLBCL, FL,
HL Safety Recruiting

Camrelizumab plus Apatinib Anti-PD-1 antibody NCT04476459 I/II RR DLBCL ORR Recruiting

Tislelizumab plus Lenalidomide Anti-PD-1 antibody NCT04796857 I/II RR DLBCL ORR Recruiting

Varlilumab plus Nivolumab Anti-CD27/anti-
PD-1antibody NCT03038672 II RR NHL ORR Recruiting

Nivolumab plus lenalidomide Anti-PD-1 antibody NCT03015896 I/II RR NHL, HL Safety Recruiting

DPX-Survivac along or with
pembrolizumab with or without low-dose

cyclophosphamide
Anti-PD-1 antibody NCT04920617 II RR DLBCL ORR Recruiting

AUTO3 (CD19/CD22 CAR T) with
Pembrolizumab

CAR T/Anti-PD-1
antibody

NCT03287817/
ALEXANDER I/II RR DLBCL Safety, ORR Recruiting

CD19 CAR-T Expressing IL7 and CCL19
Combined with PD1 mAb

CAR T/Anti-PD-1
antibody NCT04381741 I RR DLBCL ORR Recruiting

C-CAR066 (anti-CD20 CAR T-cell therapy) CAR T-cell NCT04316624 I
RR DLBCL who

failed CD19 CAR
T-cell therapy

Safety Recruiting

anti-CD19 and anti-CD20 dual specific
CAR T-Cells CAR T-cell NCT04486872 I RR DLBCL Safety Recruiting

MB-CART2019.1 (CD19/CD20 CAR T) vs.
SOC CAR T-cell NCT04844866 II RR DLBCL PFS Recruiting

LUCAR-20S (Anti-CD20 CAR T) CAR T-cell NCT04176913 I RR DLBCL, FL,
MCL, CLL Safety Recruiting

Autologous Anti-CD20 CAR-T CAR T-cell NCT03277729 I/II RR NHL Safety Recruiting

Autologous Anti-CD22 CAR-T CAR T-cell NCT04088890 I/Ib RR NHL Safety Recruiting

Autologous anti-CD19/CD20 CAR T CAR T-cell NCT04215016 I RR DLBCL Safety Recruiting

Autologous anti-CD19/CD20 CAR T CAR T-cell NCT04007029 I RR NHL, CLL Safety Recruiting

Autologous anti-CD19/CD22 CAR T CAR T-cell NCT03233854 I RR NHL Safety Recruiting

Acalabrutinib with Anti-CD19 CAR-T CAR T-cell NCT04257578 I/II RR NHL Safety Recruiting

PoV: Polatuzumab Vedotin; DLBCL: Diffuse large B-cell lymphoma; RR: Relapsed Refractory; NHL: Non-Hodgkin’s lymphoma; MCL:
Mantle cell lymphoma; PMBCL: Primary Mediastinal B-cell lymphoma; FL: Follicular lymphoma; HL: Hodgkin’s lymphoma; CLL:
Chronic lymphocytic leukemia; OS: Overall survival; EFS: Event-free survival; ORR: Overall response rate; CR: Complete remission; PFS:
Progression-free survival; BiTE: Bispecific T-cell Engager; mAb: Monoclonal antibody; ADC: Antibody drug conjugate.
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6. Immune Checkpoint Inhibitor Therapy

The programmed death-1 (PD-1) receptor is expressed by activated T-cells, B-cells, NK
cells, and macrophages. It regulates the T-cell-mediated immune response through binding
to its ligands, programmed cell-death protein-1 ligand-1 (PD-L1) and PD-L2. Tumor cells
express PD-L1 and PD-L2, which subsequently down-regulates T-cell activation, and
indirectly helps them to escape the immune response. Upregulation of CTLA-4 in T-cells is
another mechanism through which tumor cells suppress the immune response. (Figure 1).
In Hodgkin’s Lymphoma (HL), an amplification of 9p24.1 has been shown to increase the
expression of PD-L1 and PD-L2, and is associated with a shorter PFS [74]. Subsequently,
PD-1 blockade by the anti-PD-1 antibodies nivolumab and pembrolizumab has shown
promising results in relapsed [75–78] and newly diagnosed [79,80] HL.

Unlike HL, DLBCL cells do not frequently express PD-L1. PD-L1 gene alteration has
been reported in approximately 25–31% of DLBCL patients [81,82]. A study evaluated the
impact of PD-L1 positivity on tumor cells and their microenvironment (mPD-L1) in DLBCL.
The expression of PD-L1 on tumor cells and mPD-L1 was observed in 11% and 15.3%
of cases, respectively. PD-L1 and mPD-L1-positive DLBCL were significantly associated
with the non-GCB subtype and Epstein-Barr virus positivity. Patients with PD-L1-positive
DLBCL had a poor OS when compared to PD-L1-negative DLBCL patients, while no
difference in OS was observed between mPD-L1-positive and mPD-L1-negative DLBCL
patients [83]. Likewise, another study reported that DLBCL with PD-L1 alterations experi-
enced an inferior PFS following front-line chemoimmunotherapy; however, the in relapsed
setting, PD-L1 alterations were associated with a response to anti-PD-1 antibodies [82].

Checkpoint inhibitors (CPI) have shown disappointing results in DLBCL. Nivolumab
was evaluated in relapsed refractory lymphoma and multiple myeloma in a phase I,
multicenter study. Among eleven patients with DLBCL, the ORR was 36% (CR = 18% and
PR = 18%), and the median PFS was only 7 weeks. At a median follow-up of 22.7 weeks for
DLBCL patients, one of the four patients had a continued response [84]. Checkmate 036, the
combination of nivolumab plus ipilimumab, yielded an ORR of 20% in relapsed refractory
NHL patients (10/15 with DLBCL), with a median PFS of only 1.5 months [85]. Pidilizumab,
an-anti-PD-1 monoclonal antibody, was evaluated in a phase II study of DLBCL patients
undergoing autoSCT. In patients without progressive disease, pidilizumab was offered at
every 42 days for 3 cycles, beginning 30 to 90 days after autoSCT. The ORR among patients
with a measurable disease post-autoSCT was 51%, and the CR and PR rates were 34%
and 17%, respectively. The 16 month PFS from the first treatment was 72%. Among those
patients who had remained PET-positive at the conclusion of salvage therapy, the 16 month
PFS was 70% [86]. Furthermore, pembrolizumab treatment, as a maintenance therapy
in chemo-sensitive DLBCL patients undergoing autoSCT, revealed an 18 month PFS of
59% [87]. Recently, a phase II study evaluating the effect of treatment with nivolumab,
3 mg/kg every 2 weeks, in relapsed refractory DLBCL patients who were ineligible for
autoSCT, or had failed autoSCT, was conducted. At a median follow-up of 9 months in
the autoSCT-failed cohort and 6 months in the autoSCT-ineligible cohort, the ORR values
were 10% and 3%, respectively. The median PFS and OS were 1.9 and 12.2 months in the
autoSCT-failed cohort, and 1.4 and 5.8 months in the autoSCT-ineligible cohort, respectively.
Of the evaluable samples in the analysis of 9p24.1, 16% had a low-level copy gain and 3%
contained amplifications. The low response rates in DLBCL were attributed to infrequent
genetic alterations in 9p24.1 [88]. The combination of pembrolizumab and R-CHOP was
evaluated in 30 newly diagnosed DLBCL cases, and the ORR and CR were 90% and 77%,
respectively. At a median follow-up of 25.5 months, the two-year PFS was 83% [89].

Atezolizumab, a humanized IgG1 anti-PD-L1 antibody, in combination with 6 cycles of
R-CHOP followed by 12 months of consolidation, was evaluated in 42 untreated advanced
DLBCL patients. The ORR was 87.5%, and the two-year PFS and OS were 74.9% and
86.4%, respectively [90]. A number of early clinical trials have shown a modest activity of
atezolizumab in combination with various therapeutic agents in relapsed refractory DLBCL
patients [91,92]. Durvalumab, a humanized IgG1 anti-PD-L1 antibody, in combination
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with R-CHOP, has demonstrated a CR rate of 54% in treatment-naïve DLBCL patients [93],
and has shown a fair activity in combination with ibrutinib in relapsed refractory DLBCL
patients [94]. Ipilimumab, an anti-CTLA-4 antibody, has shown insignificant activity in
relapsed refractory B-cell NHL [95–97]. Altogether, these data suggest that immune CPI
therapies have failed to yield a clinically significant efficacy in DLBCL patients, while the
addition of immune CPI therapies to first-line chemoimmunotherapeutic regimens has
demonstrated an improvement in responses when compared to historical control rates.
However, the long-term survival data are immature, and larger randomized trials are
warranted. Ongoing studies of CPI with CAR-T and other agents are shown in Table 3.

7. Anti-CD47 Antibody

CD47 or “Do Not Eat Me” is an antiphagocytic signal that is expressed by cancer
cells and enables immune evasion by macrophages. Its expression is associated with a
poor prognosis. Anti-CD47 antibodies can induce the phagocytosis of tumor cells by
the blockade of CD47 and its ligand, SIRPα. Anti-CD47 antibodies induce an antitumor
T-cell response. Hu5F9-G4, an IgG4 humanized anti-CD47 monoclonal antibody (mAb), is
associated with an ORR of 40% and a CR of 33% in relapsed refractory DLBCL patients [98].
Given the encouraging activity of anti-CD47 antibodies, various trials that incorporate this
agent in combination with other regimens are ongoing.

8. Bispecific T-Cell Engager (BiTE) Antibody

BiTE antibodies are a newer form of immunotherapy for B-cell NHL. BiTE antibodies
target antigens on tumor cells, while another end targets T-cells. It binds to tumor antigen
and T-cells simultaneously, and facilitates the T-cell killing of cancer cells (Figure 1). The
antigen-experienced T-cell subsets drive cancer cell death, while naïve T-cells are not
activated. BiTE antibodies also increase the secretion of cytokines, which lead to changes
in the tumor microenvironment. Blinatumomab was the first CD3/CD19 BiTE evaluated
in a phase I study of relapsed refractory NHL in 76 patients, and 14 DLBCL patients
were included. Among 35 patients who were treated with the maximum tolerated dose
of 60 µg/m2/day, the ORR was 69%, and 55% for DLBCL patients (CR 36%) [99]. In a
phase II study of blinatumomab in relapsed refractory DLBCL patients, the ORR after
one cycle was 43%, the CR rate was 19%, and the median PFS was 3.7 months [100].
Blinatumomab was evaluated as a second salvage therapy, following platinum-based first
salvage chemotherapy for relapsed refractory NHL, and the ORR at 12 weeks was 37% with
a CR rate of 22% [101]. Based on these encouraging results, research into the combination
of blinatumomab with lenalidomide (NCT02568553) or pembrolizumab (NCT03340766) is
ongoing.

Several next generation BiTE antibodies are under development (Table 4). Notably,
these antibodies have shown encouraging activity in relapsed refractory NHL patients,
including those who fail CAR T-cell therapy [102–105]. Moreover, they are available off-the-
shelf, and have a prolonged half-life, which allows a more convenient, once-weekly dose.
Glofitamab is a BiTE antibody with a 2:1 configuration, allowing for the bivalent binding
to CD20 on B-cells, and monovalent binding to CD3 on T-cells [105]. BiTE antibodies have
shown encouraging activity and have offered complete remission in patients who have
received multiple prior lines of therapy, including CAR T-cell therapy. Currently BiTE
antibodies are not FDA approved, and therefore their use remains under investigation.
Several trials incorporating these agents in first-line or in salvage settings are ongoing
(Table 3).
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Table 4. Trials of BiTE antibodies in B-cell non-Hodgkin’s lymphoma.

BiTE Antibody No of
Pts Pt Population Dosing ORR (%) CR (%) Median PFS

(Months) CRS ICANS

Epcoritamab [104] 68
R/R NHL

(DLBCL = 46;
FL = 12; MCL = 4)

SC: 0.0128–60 mg
R2PD = 48 mg

DLBCL
12–60 mg = 68%;
48–60 mg = 91%

FL
12–48 mg = 80%

DLBCL
12–60 mg = 46%;
48–60 mg = 55%

FL
12–48 mg = 60%

≥12 mg = 9.1;
≥48 mg = NR Grade 1–2 = 58% Grade

3 = 3%

Mosunetuzumab +
Polatuzumab [103] 22

R/R NHL
(DLBCL = 12; FL3B = 3;
tFL = 4; FL 1-3A = 3)

IV: 1-2-60 mg; PoV
1.8 mg/kg every

3 weeks

Aggressive
NHL = 63.2%;

Post-CAR
T = 57.1%

FL = 100%

Aggressive
NHL = 47.4%;

Post-CAR
T = 28.6%

FL = 100% Grade 1 = 9.1% None

Odronextamab
(REGN1979) [102] 136 R/R NHL

(DLBCL = 78)

0.03–320 mg
weekly × 12, then

every 2 weeks

DLBCL ≥ 80 mg,
no Car-T = 55%

DLBCL≥80 mg,
prior

Car-T = 33%

DLBCL≥80 mg,
no Car-T = 55%

DLBCL ≥ 80
mg, Prior

Car-T = 21%

61% all grades;
Grade 3 ≥ 7%

Grade
3 = 3.7%

Glofitamab [105] 171

R/R NHL
(DLBCL = 73;

FL1-3A = 44; tFL = 29;
Richter’s = 10;
PMBCL = 3)

R2PD = 2.5/10/30
Aggressive
NHL = 48%;

DLBCL = 41.4%

DLBCL ≥ 10 mg
= 55.3%;

tFL ≥ 10 mg
= 64.3%

Aggressive
NHL = 33.1%;
DLBCL 28.8%

DLBCL ≥ 10 mg
= 42.1%;
tFL ≥ 10

mg = 64.3%

50.3% all grades;
grade 3–4 = 3.5% 43.3%

NHL: Non-Hodgkin’s Lymphoma; R/R: Relapsed refractory; DLBCL: Diffuse large B-cell lymphoma; FL: Follicular lymphoma; MCL: Mantle cell lymphoma; ORR: Overall response rate; CR: Complete remission;
CRS: Cytokine release syndrome; ICANS: Immune effector cell-associated neurotoxicity syndrome; R2PD: Recommended phase 2 dose.
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9. Antibody Drug Conjugates (ADC)

Polatuzumab Vedotin (PoV) is an anti-CD79b-directed ADC, and delivers monomethyl
auristatin E (MMAE) inside malignant B-cells. The combination of PoV with bendamustine
and rituximab (BR) has been shown to improve the CR (40% vs. 17.5%), PFS (median, 9.5
vs. 3.7 months), and OS (median, 12.4 vs. 4.7 months) when compared to BR in transplant-
ineligible relapsed refractory DLBCL patients [29]. PoV in combination with lenalidomide
and rituximab was evaluated in transplant-ineligible or failed relapsed refractory DLBCL
patients. At a median follow-up of 9.5 months, the ORR and CR were 39% and 27%,
respectively, and the median PFS and OS were 6.3 and 10.9 months, respectively [106].
Most recently, a phase III study (POLARIX), comparing PoV plus R-CHOP with R-CHOP
alone in newly diagnosed DLBCL patients, has finished accrual and results are awaiting.

Loncastuximab tesirine (ADCT-402) is a humanized anti-CD19-directed ADC, deliver-
ing a pyrrolobenzodiazepine dimer cytotoxin, SG3199. It has shown an ORR of 48.3%, a
CR of 24.1%, and a median PFS of 4.9 months in a phase II trial (LOTIS-2) involving relapse
refractory DLBCL patients [107]. Currently, loncastuximab tesirine is being evaluated in
combination with R-CHOP in untreated DLBCL patients.

Tafasitamab (MOR208) is an Fc-modified humanized anti-CD19 mAb. In a phase
II trial (L-MIND) of relapsed DLBCL patients who were ineligible for transplant, the
combination of tafasitamab and lenalidomide demonstrated an ORR of 57.5% and a CR
of 40%. At a median follow-up of ≥35 months, the median PFS was 11.6 months, and
the median OS was 33.5 months. The median PFS, duration of response, and OS were
significantly longer in patients receiving tafasitamab and lenalidomide as second-line
therapy when compared to those receiving third- or later-line treatment (23.5 months,
43.9 months, and 45.7 months when compared to 7.6 months, not reached, and 15.5 months,
respectively) [108]. A phase II study of tafasitamab in combination with bendamustine
when compared to BR in RR DLBCL is ongoing.

All the above-mentioned therapeutic options are non-curative and are often used in
relapsed refractory DLBCL to bridge to stem cell transplant or CAR T-cell therapy. Given
the impact of BR plus PoV on lymphocyte recovery and peripheral T-cell collection, we typ-
ically use this regimen following T-cell collection. Moreover, CD19 expression is typically
maintained after the cessation of tafasitamab or loncastuximab tesirine treatments, and
prior treatment with either of these agents does not preclude CAR T-cell therapy [109,110].
A study involving 14 DLBCL patients with their disease progressing after loncastuximab
tesirine and subsequently undergoing CD19-directed CAR T-cell therapy revealed an ORR
of 50% (CR 43% and PR 7%) [110]. Thus, we often consider CD19-directed agents in
chemo-refractory patients, to control their disease prior to CAR T-cell therapy.

10. Conclusions

Tremendous progress has been made in understanding the molecular pathways that
are involved in the pathogenesis of DLBCL. Immunotherapy approaches for the treatment
of DLBCL have transformed the therapeutic landscape of the relapsed disease state. Be-
ginning with traditional immunotherapy approaches, such as rituximab and stem cell
transplant, the current treatment for DLBCL includes CART-cell therapy and immune
checkpoint inhibitors for a subset of patients. Despite the groundbreaking advances in
this area, there remain a number of challenges, including the emergence of resistance and
toxicity. A multitude of clinical trials utilizing novel treatment strategies to overcome these
challenges are underway, with bispecific antibodies being at the forefront. As these new
approaches to leverage the host immune response unfold, the next decade is likely to bring
a revolution to this area.
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