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Abstract: Problem—Since the outbreak of the COVID-19 pandemic, mass testing has become essential
to reduce the spread of the virus. Several recent studies suggest that a significant number of COVID-
19 patients display no physical symptoms whatsoever. Therefore, it is unlikely that these patients
will undergo COVID-19 testing, which increases their chances of unintentionally spreading the virus.
Currently, the primary diagnostic tool to detect COVID-19 is a reverse-transcription polymerase chain
reaction (RT-PCR) test from the respiratory specimens of the suspected patient, which is invasive and
a resource-dependent technique. It is evident from recent researches that asymptomatic COVID-19
patients cough and breathe in a different way than healthy people. Aim—This paper aims to use a
novel machine learning approach to detect COVID-19 (symptomatic and asymptomatic) patients
from the convenience of their homes so that they do not overburden the healthcare system and also do
not spread the virus unknowingly by continuously monitoring themselves. Method—A Cambridge
University research group shared such a dataset of cough and breath sound samples from 582 healthy
and 141 COVID-19 patients. Among the COVID-19 patients, 87 were asymptomatic while 54 were
symptomatic (had a dry or wet cough). In addition to the available dataset, the proposed work
deployed a real-time deep learning-based backend server with a web application to crowdsource
cough and breath datasets and also screen for COVID-19 infection from the comfort of the user’s
home. The collected dataset includes data from 245 healthy individuals and 78 asymptomatic and
18 symptomatic COVID-19 patients. Users can simply use the application from any web browser
without installation and enter their symptoms, record audio clips of their cough and breath sounds,
and upload the data anonymously. Two different pipelines for screening were developed based on the
symptoms reported by the users: asymptomatic and symptomatic. An innovative and novel stacking
CNN model was developed using three base learners from of eight state-of-the-art deep learning CNN
algorithms. The stacking CNN model is based on a logistic regression classifier meta-learner that uses
the spectrograms generated from the breath and cough sounds of symptomatic and asymptomatic
patients as input using the combined (Cambridge and collected) dataset. Results—The stacking
model outperformed the other eight CNN networks with the best classification performance for
binary classification using cough sound spectrogram images. The accuracy, sensitivity, and specificity
for symptomatic and asymptomatic patients were 96.5%, 96.42%, and 95.47% and 98.85%, 97.01%,
and 99.6%, respectively. For breath sound spectrogram images, the metrics for binary classification
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of symptomatic and asymptomatic patients were 91.03%, 88.9%, and 91.5% and 80.01%, 72.04%,
and 82.67%, respectively. Conclusion—The web-application QUCoughScope records coughing and
breathing sounds, converts them to a spectrogram, and applies the best-performing machine learning
model to classify the COVID-19 patients and healthy subjects. The result is then reported back to
the test user in the application interface. Therefore, this novel system can be used by patients in
their premises as a pre-screening method to aid COVID-19 diagnosis by prioritizing the patients for
RT-PCR testing and thereby reducing the risk of spreading of the disease.

Keywords: artificial intelligence; COVID-19; pre-screening; crowdsourcing application; deep learning;
cough and breath sounds; spectrogram

1. Introduction

The novel coronavirus-2019 (COVID-19) disease has infected 320 million and caused
death to around 5.5 million people worldwide as of 15 January 2022 [1]. This has led
to countries imposing strict lockdowns to reduce the infection rate, which has severely
affected the economic and social lives of people. Mass vaccination has helped some
countries, but some countries have entered into second and third waves of infection. Due
to the emerging new variants, the pattern of infection and effectiveness of vaccination is
still under question. The common symptoms of COVID-19 include fever, cough, shortness
of breath, and pneumonia. People with a compromised immune system or elderly people
are more likely to develop serious illnesses but the younger population is also affected,
especially by the new variants [2–6].

Currently, diagnosis of COVID-19 is done by time-consuming, expensive, and expert-
dependent reverse transcription-polymer chain reaction (RT-PCR) testing. This kit is not
easily available in some regions due to a lack of adequate supplies, medical professionals,
and healthcare facilities. Moreover, it requires patients to travel to a laboratory facility to
be tested, thereby potentially infecting others along the way. Due to the delay in obtaining
the results of RT-PCR, rapid antigen detection tests have also been used in many countries,
but they suffer from low accuracy [7–9]. Recently, Artificial Intelligence (AI) has been
implemented in the health sector widely [10], such as on chest X-rays [11–14] and computed
tomography (CT) scans [15–17], which have also been used for early detection of COVID-
19 and other lung abnormalities. Recently, electrocardiogram (ECG) trace images have
been used with AI for the detection of COVID-19 and other cardiovascular diseases [18].
Hasoon et al. [19] proposed a method for classification and early detection of COVID-
19 through image processing using X-ray images. The evaluation results showed high
diagnosis accuracy, from 89.2% up to 98.66%. Alyasseri et al. [20] provided a comprehensive
review of the deep learning and machine learning (ML) techniques for COVID-19 diagnosis
from studies between December 2019 and April 2021. This paper included more than
200 studies that were carefully selected from several publishers, such as IEEE, Springer, and
Elsevier. It provided COVID-19 public datasets established in and extracted from different
countries. Al-Waisy et al. [21] proposed a novel hybrid multimodal deep learning system
for identifying COVID-19 virus in chest X-ray (CX-R) images and termed it the COVID-
DeepNet system. It aids expert radiologists in rapid and accurate image interpretation,
and helps in correctly and accurately diagnosing patients with COVID-19 with an accuracy
rate of 99.93%. Abdulkareem et al. [22] proposed a model based on ML and the Internet
of Things (IoT) to diagnose patients with COVID-19 in smart hospitals. Compared with
benchmark studies, the proposed SVM model obtained the most substantial diagnosis
performance (up to 95%). Obaid et al. [23] proposed a prediction mechanism that uses
a long short-term memory (LSTM) deep learning model that has been carried out on a
coronavirus dataset that was obtained from the records of infections, deaths, and recovered
cases across the world. Furthermore, they have stated that by producing a dataset which
includes features (temperature and humidity) of geographic regions that have experienced
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severe virus outbreaks, risk factors, spatiotemporal analysis, and social behavior of people,
a predictive model can be developed for areas where the virus is likely to spread. All of the
above approaches would need the patient to go to a medical center to provide a sample
or undergo testing [18]. However, the asymptomatic COVID-19 patients will not undergo
any test until the disease reaches a level of concern. Therefore, these COVID-19 patients
can easily spread the disease. Moreover, vaccinated patients, when infected by the virus,
are often asymptomatic or show very mild symptoms, and can spread the disease very
easily. Thus, there is a need for an early screening tool for such patients in the convenience
of their homes.

Machine learning has been used for many applications in the field of speech and
audio [24–26], including machine learning techniques for spectrogram images [27–29]. It
is used for the screening and early detection of different life-threatening diseases. It is
stated that breathing, speech, sneezing, and coughing can be used by machine learning
models to diagnose different respiratory illnesses such as COVID-19 [30–32]. Different body
signals such as respiration or heart signals have been used by researchers to automatically
detect different lung and heart diseases (such as wheeze detection in asthma [33–35]). The
human voice has been used for early detection of several diseases such as Parkinson’s
disease, coronary artery disease, traumatic brain injury, and brain disorders. Parkinson’s
disease was linked to the softness of speech which can result from a lack of vocal muscle
coordination [36,37]. Different voice parameters such as vocal frequency, vocal tone, pitch,
rhythm, rate, and volume can be correlated with coronary artery disease [38]. Invisible
illnesses such post-traumatic stress disorder [39], traumatic brain injury, and psychiatric
conditions [40] can be linked with audio information. Human-generated audio can be used
as a biomarker for the early detection of different diseases and can be a cheap solution
for mass population screening and pre-screening. This becomes even more useful and
comfortable to the user if it is related to their daily activities and the data acquisition can be
done non-invasively.

Recent works have showed how respiratory sounds (e.g., coughing, breathing, and
voice) from patients who tested positive for COVID-19 in hospitals differ from sounds of
healthy people. Digital stethoscope data from lung auscultation is used as a diagnostic
signal for COVID-19 [41], while the coughs 48 COVID-19 patients versus patients with
other pathological coughs collected with phones were used to detect COVID-19 using an
ensemble of CNN models [42]. In [11], speech recordings from hospitalized COVID-19
patients were used to automatically detect the health status of the patients. Thus, it is
possible to identify whether a person is infected by the virus or not by utilizing respiratory
signals like breath and cough sounds.

Data collection from COVID-19 patients is challenging due to the possibility of get-
ting infected and the datasets are often not publicly available. McFarlane et al. [43] had
stressed the need for a COVID-19 cough database which would help the development of
an algorithm for detecting COVID from coughs. They used a database of 73 individual
cough events from public media and named it NoCoCoDa. They stressed the need for
uniformity/consistency in the dataset to help develop reliable algorithms. Grant et al. [44]
have utilized crowd-sourced recorded speech, breath, and cough data from 150 COVID-
19-positive cases to train a machine learning model. They investigated random forest
and deep neural networks using mel-frequency cepstral coefficients (MFCCs) and relative
spectral perceptual linear prediction (RASTA-PLP) features and have achieved a 0.7983 area
under the curve (AUC) for detecting COVID-19 using speech sound analysis and a 0.7575
AUC for detecting COVID-19 using breathing sounds. Mouawad et al. [45] used MFCC
features of cough and vowel ‘eh’ pronunciation from a dataset collected by the Corona
Voice Detect project in partnership with Voca.ai and Carnegie Mellon University. They
used XGBoost machine learning classifier and achieved an F1-score of 91% for cough and
89% for vowel “eh”. Erdogam and Narin [46] discussed the features of cough spectrogram
data with the help of empirical mode decomposition (EMD), discrete wavelet transform
(DWT) and the ReliefF algorithm on a dataset from a free-access site, achieving a 98.06%
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F1-score in detecting COVID from cough sounds. Pahar et al. in [47] have investigated
machine learning classifiers, long short-term memory (LSTM), and convolutional neural
network (CNNs), and found that the ResNet50 network of the Coswara dataset [48] and
Sarcos dataset [49] achieved an AUC of 0.98. Imran et al. [42] proposed a mobile app
called AI4COVID-19, which records 3 s of cough sounds to analyze automatically for the
detection of COVID-19 within 2 min using transfer learning. The pipeline consists of two
stages: cough detection and collection, and COVID-19 diagnosis. In the cough detection
engine, a user must record 3 s of good quality cough sounds, and a mel spectrogram image
of the wave is analyzed with a convolutional neural network (CNN). After the cough is
detected, the system passes to the COVID-19 diagnosis to decide the result. It consists
of three AI approaches, the deep transfer learning multi-class classifier (DTL-MC), the
classical machine learning multi-class classifier (CML-MC), and the deep transfer learning
binary-class classifier. Some key limitations of the current AI4Covide-19 are (1) limited
training data, (2) limited data to generalize the model, (3) an AI model is not publicly
available. In another study by Pal and Sankarasubbu [50], the authors investigated deep
neural networks (DNNs) on a dataset in which 328 cough sounds had been recorded from
150 patients of four different types: COVID-19, asthma, bronchitis, and healthy. In the
study, Pal and Sankarasubbu’s trained DNN could distinguish the COVID-19 coughs from
others with an accuracy of 96.83% [50]. These studies confirm that COVID-19 coughs
have a unique pattern. Bagad et al. [51] found that a pre-trained ResNet18 classifier could
identify COVID-19 coughs with an AUC of 0.72 using COVID-19-confirmed cough samples
collected over the phone from 3621 individuals. Laguarta et al. [52] had an AUC of 0.97
and a sensitivity of 98.5% with a pre-trained ResNet50 model for distinguishing COVID-19
coughs from non-COVID-19 patients using coughs which trained on 4256 subjects and
tested on the remaining 1064 subjects [52]. Belkacem et al. [53] reported a complete hard-
ware system that can be used to collect cough samples, temperature (via thermos camera)
and airflow (via spirometer) and transmit this information to a database using smartphones.
Next, cough samples and other health details with expert opinion were used to train a
machine learning network to classify the samples as either COVID-19, bronchitis, flu, cold,
or other. They used the existing motivation from recent papers that cough samples and ma-
chine learning networks are very useful in distinguishing between COVID-19 and healthy
patients, but confirmed it with other data (airflow and body temperature). However, they
have not mentioned the performance of their approach. A similar approach was adopted
by Rahman et al. [54] utilizing chest X-rays, CT Scans, cough samples, temperature, and
symptom inputs from patients. Although both the above approaches make the final results
very reliable, they cannot be used immediately due to the hardware or extra health details
needed for those systems.

Brown et al. [55] collected both cough and breathing sounds, then investigated how
such data can aid with COVID-19 diagnosis. They provided handcrafted features for cough
and breath sounds such as duration, onset, tempo, period, root mean square (RMS) energy,
spectral centroid, roll-off frequency, zero-crossing, mel-frequency cepstrum (MFCC), and
delta MFCC. Combined with deep transfer learning, VGGish, which is a convolution net-
work designed to extract audio features, automatically achieved an accuracy of 0.80 ± 0.7
for two-class classification problems using the cough and breathing data. This dataset has
also been used by Coppock et al. [56] in a pilot study, even before the dataset was made
public, with their deep learning network achieving an AUC of 0.846. Kumar et al. [57], with
their developed deep convolutional network, achieved a weighted F1-score of 96.46% in
distinguishing between non-COVID and COVID-19 patients. This dataset was shared with
our team under a data-sharing agreement, and was used to develop a machine learning
pipeline in combination with Qatari data.

The scope for having a more reliable and robust machine learning network trained
and validated using a diverse database (due to limitations in terms of inconsistency and
low-quality recordings in the available datasets) has motivated the current work. This work
proposes a novel machine-learning framework using the combined Cambridge and Qatari
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cough and breathing sound databases. Most of the previous works either used classical
machine learning with hand-crafted features or used pre-trained models to classify the
spectrograms. A very limited number of works used combined datasets and no work has
used the novel stacking concept for increasing model performance. Moreover, none of the
AI-enabled data collection applications can show instant outcomes of the users’ data. Most
applications are mere crowd data collection applications. We developed an AI-enabled
web application as a pre-screening tool to decrease the pressure on health centers and
provide a faster and more reliable testing mechanism to reduce the spread of the virus. Our
contribution can be summarized as follows:

Conduct a literature review of related works to prove the potential applicability of the
proposed solution.

Point out the limitations of related works and how the proposed solution may over-
come those problems.

To the best of the authors’ knowledge, this is the first time an innovative and novel stacking-
based CNN model using spectrograms of cough and breath sounds have been proposed.

Experimentally prove cough sounds have latent features to distinguish COVID-19
patients from non-COVID patients.

A web application with a backend server was created that allows the user to share
symptoms and cough and breath data for COVID-19 diagnosis anonymously from a
computer, tablet, or Android or iOS mobile phone.

To the best of our knowledge, QUCoughScope (https://www.qu-mlg.com/projects/
qu-cough-scope, accessed on 5 May 2021) is the first solution that is not just an application
to collect crowd-sourced data. Rather, we have implemented a deep-learning pipeline in
the backend to immediately provide the screening outcome to the user.

This article consists of six sections. In the introduction, we explained the problem
of the current COVID-19 testing approach and how it can be addressed with the help of
our pre-screening tool. Section II highlights related works, while Section III introduces the
methodology, with details of the dataset, data preparation, and experiment, and Section IV
summarizes all the results. Section V explains the implementation details while Section VI
concludes the article.

2. Methodology

The overall methodology of the study is summarized in Figure 1. This study used
cough and breath sounds of COVID-19 (symptomatic and asymptomatic) and healthy sub-
jects after converting these sounds into spectrograms to identify COVID-19 patients. This
paper discusses four different binary classification experiments: healthy and COVID-
19 symptomatic (i) and asymptomatic (ii) subjects using cough sound spectrograms;
healthy and COVID-19 symptomatic (iii) and asymptomatic (iv) subjects using breath
sound spectrograms.

For all four experiments, novel stacking machine learning models were deployed, in
which the eight CNN models were used as the base learners and then a logistic regression-
based meta learner was used to detect COVID-19 from cough and breath sound spec-
trograms. Detailed descriptions of the dataset, preprocessing, and the experiments are
presented below.

2.1. Dataset Description

Several public datasets are available such as Coswara [48], CoughVid [58], and the
Cambridge dataset [55]. However, the Cambridge dataset was not completely public, and
the team has made it available upon request. Among the accessible datasets, the Cambridge
dataset was the most reliable as it was acquired in a well-designed framework. Moreover,
the authors have collected a similar cough and breath dataset from COVID-19-infected and
healthy subjects with our proposed framework.

https://www.qu-mlg.com/projects/qu-cough-scope
https://www.qu-mlg.com/projects/qu-cough-scope
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Cambridge dataset: The Cambridge dataset was designed for developing a diagnostic
tool for COVID-19 based on cough and breath sounds [55]. The dataset was collected
through an app (Android and web application (www.covid-19-sounds.org (accessed on
5 May 2021))) that asked volunteers for samples of their coughs and breathing as well as
their medical history and symptoms. Age, gender, geographical location, current health
status, and pre-existing medical conditions were also recorded. Audio recordings were
sampled at 44.1 kHz and subjects were from different parts of the world. Cough and breath
sound samples were collected from 582 healthy subjects and 141 COVID-19-positive pa-
tients. Among them, 264 healthy subjects and 54 COVID-19 patients had cough symptoms
while 318 healthy subjects and 87 COVID-19 patients had no symptoms (Table 1).

Table 1. Details of the total Dataset.

Experiments
Healthy COVID-19

Cambridge QU Cambridge QU

Symptomatic
(Cough/Breath) 264 32 54 18

Asymptomatic
(Cough/Breath) 318 213 87 78

Total 582 245 141 96

Qatari dataset: The QU cough dataset [59] consists of both cough and breath data from
symptomatic and asymptomatic patients. Cough and breath sound samples were collected
from 245 healthy subjects and 96 COVID-19-positive, respectively. Among them, 32 healthy
subjects and 18 COVID-19 patients had cough symptoms while 213 healthy subjects and
78 COVID-19 patients had no symptoms (as shown in Table 1).

In this study, we investigated the cough and breath sounds to overcome the limitations
of some related works. We have therefore investigated two different pipelines for cough
and breath. Moreover, for both cough and breath, we investigated symptomatic and
asymptomatic patients’ data. Both datasets were merged to train, validate, and test the
models in this study. Table 2 shows the experimental pipelines used in this study.

2.2. Pre-Processing Stage

As shown in Figure 1, the input data (i.e., user cough and breath sounds) were
converted to spectrograms, which were then tested using a 5-fold cross validation ap-
proach with 80% for training and 20% for testing. The detailed pre-processing stage is
mentioned below:

www.covid-19-sounds.org
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Table 2. Experimental pipelines for this study.

Pipelines COVID-19 Healthy

Pipeline I
(Symptomatic)

a. Cough
b. Breath

a. Cough
b. Breath

Pipeline II
(Asymptomatic)

a. Cough
b. Breath

a. Cough
b. Breath

2.2.1. Audio to Spectrogram Conversion

Since the dataset was collected using web and Android platforms, it was first organized
into two sub-sets: cough and breath sounds. Then, each of these subsets was subdivided
into symptomatic and asymptomatic groups. Each of the symptomatic and asymptomatic
breath and cough sounds for COVID-19 and healthy groups were visualized in the time
domain to see potential differences among them (Figure 2).

Firstly, we converted cough and breath sounds to spectrograms. A spectrogram is a
visual representation of an audio signal that shows the evolution of the frequency spectrum
over time. A spectrogram is usually generated by performing a Fast Fourier Transform
(FFT) on a collection of overlapping windows extracted from the original signal. The
process of dividing the signal in short-term sequences of fixed size and applying FFT on
those independently is called short-time Fourier transform (STFT). The spectrogram is
the squared magnitude of the STFT of the signal, s(t) for a window width, w. These are
the parameters used for STFT: n_fft = 2048, hop_length = 512, win_length = n_fft, and
window = ‘hann’.

2.2.2. Five-Fold Cross-Validation

The training dataset had to be balanced to avoid biased training. This was done with
the help of the data augmentation approach, an effective method for providing reliable
results evident in many of the authors’ recent publications [11,12,60–63]. In this study,
two augmentation strategies (scaling and translation) were utilized to balance the training
images shown in Table 3. The scaling operation is the magnification or reduction of the
frame size of the image; 2.5% to 10% image magnifications were used in this work. Image
translation was done by translating images horizontally and vertically by 5% to 10%. The
complete image set was divided into 80% training and 20% testing sub-sets for five-fold
cross-validation, and 10% of training data were used for validation, whose primary purpose
was to avoid model overfitting. Table 3 shows the number of training, validation, and test
images used in the two experiments on symptomatic and asymptomatic patients.

As discussed earlier, eight pre-trained CNN models were used in the study and were
implemented using PyTorch library with Python 3.7 on an Intel® Xeon® CPU E5-2697 v4@
2.30 GHz and 64 GB RAM, with a 16-GB NVIDIA GeForce GTX 1080 GPU. Eight of the
pre-trained CNN models were trained using the same training parameters and stopping
criteria mentioned in Table 4. Five-fold cross-validation results were averaged to produce
the final receiver operating characteristic (ROC) curve, confusion matrix, and evaluation
matrices. Here, 80% of the images were used for training and 20% for testing per fold.
Image augmentations were used in the training set, and 20% of the non-augmented training
set was used for validation to avoid overfitting of the models [64]. We also used a logistic
regression classifier as a meta-learner for the final prediction in the stacking model where
‘lbfgs’ solver with L2 regularization was used and the maximum iteration was 100.
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Table 3. Number of mages per class and per fold used for different pipelines.

Categories Classes Total Samples Training Samples Validation
Samples

Test
Samples

Symptomatic
(Cough/Breath)

Healthy 296 213 × 10 = 2130 24 59

COVID-19 72 52 × 38 = 1976 6 14

Asymptomatic
(Cough/Breath)

Healthy 531 383 × 5 = 1915 42 106

COVID-19 165 119 × 17 = 2023 13 33

Table 4. Details of training parameters for classification.

Training Parameters for Classification

Batch Size Learning
Rate

Number
of Epochs

Epoch
Patience

Stopping
Criteria Optimizer

Parameters 32 0.001 30 15 15 ADAM

2.3. Stacking Model Development

In this study, we used a CNN-based stacking approach in which the eight state-
of-the-art CNN models (Resnet18 [65], Resnet50 [65], Resnet101 [65], InceptionV3 [65],
DenseNet201 [66], Mobilenetv2 [67], EfficientNet_B0 [68], and EfficientNet_B7 [68]) were
used as a base learner and multiple best-performing models were used to train a logistic
regression based meta learner classifier for the final decision. A single dataset A consists
of data vectors (xi) and their classification score (yi). At first, a set of base-level classifiers
M1, . . . . . . , Mp is generated and the outputs are used to train the meta-level classifier, as
illustrated in Figure 3.
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We used five-fold cross-validation to generate a training set for the meta-level classifier.
Among these folds, base-level classifiers were used on four folds, leaving one fold for testing.
Each base-level classifier predicts a probability (0 to 1) over the possible class values. Thus,
using input x, a probability distribution is created using the predictions of the base-level
classifier set M:

PM(x) =
(

PM(c1 |x ), PM(c2 |x ), . . . . . . ., PM(
cp |x

))
(1)

where (c1, c2, . . . . . . , cp) is the set of possible class values and PM(ci |x ) denotes the prob-
ability that example x belongs to a class cj as estimated (and predicted) by classifier M
in Equation (1). The class ci with the highest-class probability is predicted by classifier
Mj. The meta-level classifier Mf and attributes are thus the probabilities predicted for each
possible class by each of the base-level classifiers, i.e., PMj(ci |x ) for i = 1, . . . ., p and j = 1,
. . . ., N. The pseudo-code for the stacking approach is shown in Algorithm 1.
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Algorithm 1: Stacking classification

Input: training data D = {xi, yi}m
i=1

Output: a stacking classifier H
1: Step 1: learn base-level classifiers
2: for t = 1 to T do
3: learn ht based on D
4: end for
5: Step 2: construct new data set of predictions
6: for i =1 to m do
7: Dh = {xi

′, yi}, where xi
′ = {h1(xi), . . . . . . , hT(xi)}

8: end for
9: Step 3: learn a meta-classifier
10: learnH based on Dh
11: return H

2.4. Performance Metrics

To evaluate the performance of the COVID-19 detection classifiers, we used the re-
ceiver operating characteristic (ROC) and area under the curve (AUC) along with preci-
sion, sensitivity, specificity, accuracy, and F1-Score as shown in Equations (2)–(6). Here,
TP, TN, FP, and FN represent the true positive, true negative, false positive, and false
negative, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where accuracy is the ratio of the correctly classified samples to all the samples.

Precision =
TP

TP + FP
(3)

where precision is the rate of correctly classified positive class samples among all the
samples classified as positive.

Sensitivity =
TP

TP + FN
(4)

where sensitivity is the rate of correctly predicted positive samples in the positive class samples,

F1 = 2
Precision× Sensitivity
Precision + Sensitivity

(5)

where F1 is the harmonic average of precision and sensitivity.

Speci f icity =
TN

TN + FP
(6)

where specificity is the ratio of accurately predicted negative class samples to all negative
class samples.

The performance of deep CNNs was assessed using different evaluation metrics
with 95% confidence intervals (CIs). Accordingly, the CI for each evaluation metric was
computed, as shown in Equation (7):

r=z
√

metric(1 − metric)/N (7)

where N is the number of test samples, and z is the level of significance that is 1.96 for 95% CI.
In addition to the above metrics, the various classification networks were compared

in terms of elapsed time per image, or the time it took each network to classify an input
image, as shown in Equation (8).

∆T = T2 − T1 (8)
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In this equation, T1 is the starting time for a network to classify a cough sound, S and
T2 is the end time when the network has classified the same cough sound, S.

3. Results and Discussion

This section describes the performance of the different classification networks on
healthy and COVID-19 cough and breath sound spectrograms for symptomatic and
asymptomatic patients. As mentioned earlier, two different experiments using cough
and breath sound spectrograms were conducted: (i) symptomatic COVID-19 and healthy,
and (ii) asymptomatic COVID-19 and healthy. The comparative performance of different
CNNs for these classification schemes is shown in Table 5A,B.

Overall accuracies for five-fold cross-validation from the top three CNN models for
symptomatic and asymptomatic patients using cough sounds are 95.38%, 94.29%, and
93.25% and 98.5%, 98.28%, and 96.84%, respectively. The top three networks for symp-
tomatic and asymptomatic patients using cough sounds are Resnet50, Resnet101, and
DenseNet201 and Mobilenetv2, DenseNet201, and Resnet101, respectively. On the other
hand, the overall accuracies from the top three CNN models for symptomatic and asymp-
tomatic patients using breath sounds are 90.33%, 87.57%, and 84.53% and 75.6%, 69.72%,
and 68.4%, respectively. The top three networks for symptomatic and asymptomatic
patients using breath sounds are EfficientNet_B0, MobileNetv2, and ResNet101 and Effi-
cientNet_B7, ResNet101, and MobileNetv2, respectively. It is evident from the results that
cough sound-based stratification models perform better than breath sound-based models,
for both symptomatic and asymptomatic patients.

Table 5. Comparison of different CNN performances for binary classification for symptomatic and
asymptomatic patients’ (A) cough and (B) breath sounds.

(A)

Scheme Network
Overall Weighted 95% CI Inference

Time (Sec)Accuracy Precision Sensitivity F1-Score Specificity

Symptomatic

Resnet18 93.20 ± 2.57 93.65 ± 2.49 93.21 ± 2.57 93.35 ± 2.55 89.94 ± 3.07 0.0024

Resnet50 95.38 ± 2.14 95.41 ± 2.14 95.38 ± 2.14 95.39 ± 2.14 90.47 ± 3.00 0.0061

Resnet101 94.29 ± 2.37 95.41 ± 2.14 94.29 ± 2.37 94.53 ± 2.32 97.56 ± 1.58 0.0108

Inception_v3 90.76 ± 2.96 91.53 ± 2.84 90.76 ± 2.96 91.02 ± 2.92 86.19 ± 3.52 0.0238

DenseNet201 93.25 ± 2.56 93.78 ± 2.47 93.21 ± 2.57 93.39 ± 2.54 90.99 ± 2.93 0.0258

Mobilenetv2 90.49 ± 3.00 90.78 ± 2.96 90.49 ± 3.00 90.61 ± 2.98 81.92 ± 3.93 0.0055

EfficientNet_B0 90.20 ± 2.89 90.15 ± 2.90 91.30 ± 2.88 91.20 ± 2.89 78.97 ± 4.16 0.0106

EfficientNet_B7 91.30 ± 2.88 91.40 ± 2.86 91.31 ± 2.88 91.35 ± 2.87 82.12 ± 3.92 0.0428

Stacking
CNN model 96.50 ± 1.88 96.30 ± 1.93 96.42 ± 1.90 96.32 ± 1.92 95.47 ± 2.12 0.0389

Asymptomatic

Resnet18 96.70 ± 1.33 96.68 ± 1.33 96.69 ± 1.33 96.66 ± 1.33 92.29 ± 1.98 0.0027

Resnet50 94.97 ± 1.62 95.12 ± 1.60 94.98 ± 1.62 94.80 ± 1.65 85.07 ± 2.65 0.0058

Resnet101 96.84 ± 1.30 96.84 ± 1.30 96.84 ± 1.30 96.84 ± 1.30 94.42 ± 1.71 0.0121

Inception_v3 96.26 ± 1.41 96.30 ± 1.40 96.27 ± 1.41 96.19 ± 1.42 89.65 ± 2.26 0.0235

DenseNet201 98.28 ± 0.97 98.27 ± 0.97 96.28 ± 1.41 97.11 ± 1.24 99.20 ± 0.66 0.0260

Mobilenetv2 98.50 ± 0.90 98.30 ± 0.96 96.45 ± 1.37 97.25 ± 1.21 99.20 ± 0.66 0.0052

EfficientNet_B0 93.82 ± 1.79 93.74 ± 1.80 93.82 ± 1.79 93.72 ± 1.80 85.96 ± 2.58 0.0118

EfficientNet_B7 95.40 ± 1.56 95.40 ± 1.56 95.40 ± 1.56 95.31 ± 1.57 88.13 ± 2.40 0.046

Stacking
CNN model 98.85 ± 0.79 97.76 ± 1.10 97.01 ± 1.27 97.41 ± 1.18 99.6 ± 0.47 0.0411
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Table 5. Cont.

(B)

Scheme Network
Overall Weighted 95% CI Inference

Time (sec)Accuracy Precision Sensitivity F1-Score Specificity

Symptomatic

Resnet18 81.49 ± 3.97 70.27 ± 4.67 82.27 ± 3.90 75.80 ± 4.38 81.49 ± 3.97 0.0027

Resnet50 80.66 ± 4.04 70.83 ± 4.64 81.83 ± 3.94 75.93 ± 4.37 80.67 ± 4.03 0.0060

Resnet101 84.53 ± 3.69 73.01 ± 4.54 84.01 ± 3.74 78.12 ± 4.22 84.53 ± 3.69 0.0098

Inception_v3 81.49 ± 3.97 71.05 ± 4.63 82.05 ± 3.92 76.15 ± 4.35 81.49 ± 3.97 0.0254

DenseNet201 83.98 ± 3.75 72.43 ± 4.57 83.43 ± 3.8 77.54 ± 4.26 83.98 ± 3.75 0.026

Mobilenetv2 87.57 ± 3.37 69.50 ± 4.7 87.50 ± 3.38 77.47 ± 4.27 87.57 ± 3.37 0.0048

EfficientNet_B0 90.33 ± 3.02 70.28 ± 4.67 90.28 ± 3.03 79.03 ± 4.16 90.33 ± 3.02 0.0104

EfficientNet_B7 81.77 ± 3.94 70.99 ± 4.64 81.99 ± 3.93 76.09 ± 4.36 81.77 ± 3.94 0.0434

Stacking
CNN model 91.03 ± 2.92 71.91 ± 4.59 88.9 ± 3.21 79.62 ± 4.12 91.5 ± 2.85 0.0265

Asymptomatic

Resnet18 66.75 ± 3.50 53.95 ± 3.7 66.66 ± 3.50 59.64 ± 3.64 78.54 ± 3.05 0.0025

Resnet50 66.67 ± 3.50 55.45 ± 3.69 66.67 ± 3.50 60.54 ± 3.63 75.27 ± 3.21 0.0047

Resnet101 69.72 ± 3.41 56.45 ± 3.68 69.71 ± 3.41 62.38 ± 3.60 73.52 ± 3.28 0.0118

Inception_v3 67.10 ± 3.49 57.10 ± 3.68 68.26 ± 3.46 62.18 ± 3.60 81.25 ± 2.90 0.0243

DenseNet201 67.97 ± 3.47 55.91 ± 3.69 67.97 ± 3.47 61.35 ± 3.62 79.88 ± 2.98 0.0271

MobileNetv2 68.40 ± 3.45 53.22 ± 3.71 67.10 ± 3.49 59.36 ± 3.65 78.54 ± 3.05 0.0048

EfficientNet_B0 68.30± 3.46 57.45 ± 3.67 68.62 ± 3.45 62.54 ± 3.60 76.50 ± 3.15 0.0128

EfficientNet_B7 75.60 ± 3.19 54.20 ± 3.70 72.59 ± 3.31 62.06 ± 3.61 80.20 ± 2.96 0.0511

Stacking
CNN model 80.01 ± 2.97 56.02 ± 3.69 72.04 ± 3.33 63.3 ± 3.58 82.67 ± 2.81 0.0687

Interestingly, the stacking CNN model outperformed all CNN models for both cough
and breath sounds, as can be seen from Table 5. It achieved accuracies of 96.5% and 98.85%
for symptomatic and asymptomatic patients’ cough sounds, respectively. On the contrary,
it produced accuracies of 91.03% and 80.01% for symptomatic and asymptomatic patients’
breath data, respectively. It is clear that breath sounds were unable to classify healthy
subjects and COVID-19 patients reliably, whereas cough sounds performed better for both
symptomatic and asymptomatic patients.

Figure 4 shows the area under the curve (AUC)/receiver-operating characteristic
(ROC) curve (also known as AUROC (area under the receiver-operating characteristic))
for the symptomatic and asymptomatic patients’ cough and breath data. These ROC
curves clearly depict that the stacking model performs better than any individual CNN
model for cough and breath data, however, as mentioned earlier, cough sounds can reli-
ably distinguish COVID-19 patients from the healthy group. It can also be seen that the
best-performing scheme is the asymptomatic COVID-19 patients’ stratification using cough
sounds. The asymptomatic patients are the ones who are spreading the virus unknowingly,
and our trained network performs well in detecting them from their cough sounds. There-
fore, this COVID-19 screening framework can significantly help in screening suspected
populations and reducing the risk of spread.
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Figure 4. ROC curve for healthy and COVID-19 patients’ classification using cough sounds for
(A) symptomatic patients and (B) asymptomatic patients, and using breath sounds for (C) symp-
tomatic patients and (D) asymptomatic patients.

Figure 5 shows the confusion matrix for the outperforming-stacking model for the
cough data of symptomatic and asymptomatic patients and the breath data of symptomatic
and asymptomatic patients. It can be noticed that even with the best-performing model,
eight out of 72 COVID-19 spectrogram images were miss-classified as healthy and 9 out of
296 healthy spectrogram images were mis-classified as COVID-19 images for symptomatic
cough sound spectrogram images. On the other hand, five out of 165 COVID-19 images
were mis-classified as healthy and only two out of 531 healthy spectrogram images were
mis-classified as COVID-19 images for asymptomatic cough sound spectrogram images.
Once again, consistent with the results from Figure 4, the cough sounds performed very
well in distinguishing between the asymptomatic subjects.

For symptomatic breath sound spectrogram images, eight out of 72 COVID-19 images
were miss-classified as healthy and 25 out of 296 healthy spectrogram images were mis-
classified as COVID-19 images while 47 out of 165 COVID-19 images were mis-classified
as healthy and 92 out of 531 healthy spectrogram images were mis-classified as COVID-
19 images for asymptomatic breath sound spectrogram images. It is evident from the
confusion matrices that the cough sound spectrogram outperformed the breath sound
spectrogram. This outstanding performance of any computer-aided classifier using non-
invasively acquirable cough sounds can significantly help with fast diagnosis of COVID-19
immediately and in the comfort of the user’s home.
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Figure 5. Confusion matrices for healthy and COVID-19 classification using cough sounds for
(A) symptomatic patients and (B) asymptomatic patients, and using breath sounds for (C) symp-
tomatic patients and (D) asymptomatic patients using best performing stacking CNN models.

Figure 6 shows a comparison of accuracy versus the inference time for each image
for different CNN networks and the stacking CNN model for symptomatic and asymp-
tomatic data. Inference times of the best-performing stacking network for symptomatic and
asymptomatic cough sounds were about 0.0389 and 0.0411 s, respectively. Even though the
inference time for the stacking model was higher than for most of the individual models,
the inference time was still small enough to be suitable for real-time applications [69].
Therefore, to enable real-time application, we have deployed the best-performing stacking
models in a web application that can be used from any mobile browser to make it indepen-
dent from Android and iOS platforms. The next section describes the development and
deployment steps of the AI-enabled web application.

AI-Enabled Application for COVID-19 Detection

An AI-enabled application was developed using Flutter, a cross-platform app develop-
ment framework maintained by Google which uses the Dart programming language. The
utility of using a cross-platform framework over native frameworks like Swift or Kotlin
is that we can maintain multiple platforms like Android, iOS, and even desktop using a
single codebase. This will in essence provide us with the maximum coverage for users,
quicker development and continuous integration, seamless deployment and maintenance,
easier cloud integration, and increased stability. Furthermore, using Flutter instead of
other cross-platform frameworks like Ionic comes with the benefit of developing almost
near-native code with complete access to native plugins and device hardware features in
device AI using built-in GPU. We deployed an application entitled QUCoughScope [70]
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that allows patients to upload cough and breath sounds along with clinical history. For
our purposes, the application requires access to the microphone of the smartphone and
records cough and breath sounds. The mobile-recorded audio signal and symptoms, once
received by the server machine, undergo an STFT operation to convert raw audio signals
into spectrogram images without any pre-processing. The deployed Google computation
engine-based backend AI-based server analyzes the uploaded sounds to classify them as
healthy or COVID-19-positive.
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In the prototype system, the user fills in some demographic data, as well as a list
of confirmed symptoms. Next, once the app collects cough and breath sounds from the
user, these are transferred to the server using HTTPS protocol. The server performs signal
processing and machine learning classification to determine whether the cough and breath
sounds like those of COVID-19 patients or not (Figure 7). Our app then notifies the
users about their status. The application displays the results and also stores them in a
cloud database.
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Table 6. Comparison of the proposed work with similar studies. 

Papers Dataset Phenomenon Reported Method Performance 

N. Sharma 

(2020) 

[48] 

Healthy and COVID-19-

positive: 941 

Cough, Breathing, 

Vowel, and Counting 

(1–20) 

Random forest classifier using 

spectral contrast, MFCC, 

spectral roll-off, spectral 

centroid, mean square energy, 

polynomial fit, zero-crossing 

rate, spectral bandwidth, and 

spectral flatness.  

Accuracy: 76.74% 

C. Brown et 

al. (2021) 

[55] 

COVID-19-positive: 141, 

Non-COVID: 298, 

COVID-19-positive with 

Cough: 54, 

Non-COVID-19 with Cough: 

32, Non-COVID-19 asthma: 20 

Cough and Breathing 

CNN-based approach using 

spectrogram, spectral 

centroid, MFCC.  

Accuracy: 80% 

V. Espotovic 

(2021) 

[71] 

COVID-19-Positive: 84, 

COVID-19-Negative: 419 
Cough and Breathing 

Ensemble-boosted approach 

using spectrogram and 

wavelet.  

Accuracy: 88.52% 

Figure 7. Illustration of a generic framework for the QUCoughScope application.

Our pipeline is divided into two parts: symptomatic (cough) and asymptomatic users
(no symptoms). Once the spectrogram is generated, our AI-enabled server checks whether
the user has a cough or not, based on which two separate pipelines are carried out. If
the user has entered that he/she has a cough, the symptomatic pipeline is activated. It
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was observed that differentiating between COVID-19-positive and healthy users based on
symptomatic and asymptomatic patients’ cough sounds plays a more important role than
breath sounds.

4. Conclusions

This work presents a novel stacking approach with deep CNN models for the au-
tomatic detection of COVID-19 using cough and breath sound spectrogram images for
symptomatic and asymptomatic patients. As can be seen in comparison Table 6, the
proposed innovative stacking approach has provided the best performance compared to
similar studies.

Table 6. Comparison of the proposed work with similar studies.

Papers Dataset Phenomenon Reported Method Performance

N. Sharma (2020)
[48]

Healthy and
COVID-19-positive: 941

Cough, Breathing, Vowel,
and Counting (1–20)

Random forest classifier
using spectral contrast,
MFCC, spectral roll-off,
spectral centroid, mean

square energy, polynomial
fit, zero-crossing rate,

spectral bandwidth, and
spectral flatness.

Accuracy: 76.74%

C. Brown et al. (2021)
[55]

COVID-19-positive: 141,
Non-COVID: 298,

COVID-19-positive with
Cough: 54,

Non-COVID-19 with
Cough: 32,

Non-COVID-19
asthma: 20

Cough and Breathing
CNN-based approach

using spectrogram,
spectral centroid, MFCC.

Accuracy: 80%

V. Espotovic (2021)
[71]

COVID-19-Positive: 84,
COVID-19-Negative: 419 Cough and Breathing

Ensemble-boosted
approach using

spectrogram and wavelet.
Accuracy: 88.52%

R.Islam (2022)
[72]

COVID-19-Positve: 50,
Healthy: 50 Cough

CNN-based approach
using zero-crossing rate,
energy, energy entropy,

spectral centroid, spectral
entropy, spectral flux,

spectral roll-offs, MFCC.

Accuracy: 88.52%

Proposed Study COVID-19-Positve: 237,
Healthy: 827 Cough and Breathing

Stacking-based CNN
based approach using

spectograms

For symptomatic,
accuracy: 96.5% and for
asymptomatic, accuracy:

98.85%

The performance of eight different CNN models was evaluated for the classification
of different studies: binary classification of healthy and COVID-19 using cough and breath
sound spectrogram images for symptomatic and asymptomatic patients. The study also
evaluated the performance of the stacking CNN model in which the top three models
were used as a base learner, and predictions of those models were used to train a logistic
regression-based meta learner classifier for the final decision. The stacking CNN model
outperformed other networks and the best classification accuracy, sensitivity, and specificity
for binary classification using cough sound spectrogram images with symptomatic and
asymptomatic data were found to be 96.5%, 96.42%, and 95.47% and 98.85%, 97.01%, and
99.6%, respectively. The best classification accuracy, sensitivity, and specificity for binary
classification with symptomatic and asymptomatic breath sound data were found to be
91.03%, 88.9%, 91.5%, 80.01%, 72.04%, and 82.67% respectively. Thus, it is clear that cough
sounds spectrogram images are more reliable in detecting COVID-19 patients than breath
sound spectrograms. Moreover, the network has shown the best performance in detecting
the asymptomatic patients, who are unknowing super-spreaders. The proposed web
application can also help in crowdsourcing more data and further increasing the robustness
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of the solution. Therefore, automatic COVID-19 detection using cough sound spectrogram
images can play a crucial role in computer-aided diagnosis as a fast diagnostic tool, which
can detect a significant number of people in the early stages and can reduce healthcare
costs and burden significantly.

The limitations of this work include (i) a less diverse dataset in terms of ethnicity, as
the datasets are from the UK and Qatar, (ii) less intuitiveness of the application in terms
of not being able to distinguish between cough or breath sounds from other sounds, even
though we have an option for the user to confirm the recorded sound, (iii) the dataset has
limited RT-PCR verified labelled data.

These limitations can be minimized in future work, as the application is being pro-
posed to many doctors and government organizations (nationally and internationally) so
that the network can be trained with a more diverse dataset to improve itself. Doctors
and government organizations can help in providing RT-PCR labelled datasets, as this
convenient solution can be a much better replacement of low sensitivity rapid antigen
test kits, which are widely used for quicker results. The authors are working to train an
anomaly detection model to ensure that the user can only submit cough and breathing
sounds while other sounds will not be accepted. This will improve the robustness of the
proposed system.
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