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This article presents a brief review of the past and present literature pertinent to laser effects on

sperm motility parameters, improvement of oocyte maturation and characterization of semen in

livestock. The aim was, on one hand, to make the readers aware of such knowledge and on the

other hand to trigger the interest of the animal reproduction scientific community in attempting

some laser techniques that have not yet been fully exploited in the field of artificial insemination.

With respect to the conventional methods, laser is a more sensitive and less costly technology

that can be used for improving artificial insemination and embryo production system. Since

1980s, laser treatment came on the biological samples scene; its applications have continuously

been developed thereafter. Exploitation of laser light by various researchers for improving the

reproductive efficiency of sperm cells and the maturation rate in different livestock is
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Introduction

Over the past two decades, the assisted reproductive technolo-

gies (ARTs), namely artificial insemination (AI), in vitro mat-
uration (IVM), in vitro fertilizations (IVF), intracytoplasmic
sperm injection (ICSI), and somatic cell nuclear transfer

(SCNT), for different species have been evolved effectively
[1–6].

Artificial insemination offers many advantages to commer-
cial livestock production and is routinely used in several

domestic animals such as cattle, sheep and horses [7]. The tech-
nique represents a very important and a promising issue to
increase animal production. Improvement of sperm motility

is expected to have direct qualitative and quantitative impacts
on AI of livestock. As it is well known, the role of a spermato-
zoon is to deliver the male’s genetic material to the oocyte dur-

ing fertilization; consequently motility is considered as one of
the most important parameters. For motility, spermatozoa
require development of a tail (flagellum). Mammalian sperm
is characterized by the fusion of mitochondria in a mitochon-

drial sheath located around the apical portion of the tail. In
different species [8] a direct relationship between motility and
mitochondrial activity was shown.
Evaluation of oocytes quality is of high importance, since
improvement of maturation rate represents the corner stone

of the above mentioned technologies. Many researchers con-
ducted experiments and suggested procedures for improving
oocytes maturity using different types of media such as a basal
medium (M199) [9], and DMEM/F12-based media [10] and/or

different incubation times [11,12]. The success of in vitro pro-
duced embryo depends on the quality and competence of
gametes involved in oocyte maturation, fertilization, and early

embryonic development.
During the last two decades of the 20th century, the effects

of laser on biological tissues have been studied widely [13–17].

It has been clearly demonstrated that low level laser irradia-
tion, also known as photobiomodulation, has pronounced bio-
logical effects. Laser irradiation of fibroblasts [18], and other
biological structures, such as the neuromuscular junction [19]

are some examples of such biological application of lasers. In
addition of studying the cells’ response to laser light irradia-
tion, recent studies dealt with laser effects on spermatozoa

[20–23], and oocytes [24,25]. The positive effects of low level
laser irradiation include the increase of cellular metabolism
and improvement of structural characteristics, as has been con-

firmed in the literature [13,26,27].
Many studies have focused on utilization of laser effect on

sperm motility parameters. Notwithstanding, there have been

very few studies concerning the effects of laser on oocyte mat-
uration. Over the last couple of years there has been an expo-
nential growth in the areas of utilization of lasers (pulsed or
continuous wave (CW)) which is reflected by an increasing

number of publications, and thus its utility as an assisting tech-
nology has been proved. Below, a summary is presented of lit-
erature pertinent to the effect of laser irradiation on improving

AI, oocyte maturation, and embryo production system in
domestic animals.

Laser and improvement of sperm parameters

Sperm consists of a head containing condensed DNA,
followed by a short neck (midpiece) containing mitochondria

and a thin tail (flagellum) responsible for motility [11,25]. The
spermatozoon motility depends on energy supply. Both of
energy metabolism in mitochondria and the motility system

of the cells are involved in the activation of the sperm
flagellum. ATP on the other hand can be produced by
mammalian spermatozoa via both of aerobic and anaerobic
glycolysis [28-30]. Previously published works showed the

potential of low-power laser irradiation of spermatozoa in
increasing their motility and raising the ATP amount in cells.
The first paper published on this topic was that of Goldstein

[31]. Thereafter, it has been clearly evidenced that He–Ne



Table 1 Types of lasers used in animal reproduction researches and relevant parameters.

Laser Operation mode Wavelength (nm) (color) Photon energy (eV) Application Species and reference

DPSS CW 405 (violet) 3.07 Molecular analysis (LIF) Buffalo [68]

Nd:YAG

second harmonic

CW and pulsed 532 (green) 2.34 Irradiation Buffalo [20]

He–Ne CW 632.8 (red) 1.96 Irradiation

(activation and/or sterilization)

Bovine [21,23,62],

chicken [39],

Turkey [53,54],

rabbit [55]

Diode laser CW 655 (red) 1.90 Irradiation Dog [49,50]

Nd:YAG Pulsed 1064 (IR) 1.17 Elemental analysis (LIBS) Buffalo [68]

DPSS: Diode pumped solid state laser.

CW: Continuous wave.

IR: Infrared.
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laser irradiation (at wavelength 632.8 nm) of active living
human sperm improved their motility and speed [32–35].

During the years 1996 and 1997 other works have been pub-
lished dealing with coherent light (laser) and incoherent light
(visible) motility stimulation of bull, ram, mouse and human

spermatozoa [36–41]. The hyperactivated motility of human
sperm irradiated with visible light (400–800 nm) has been
increased significantly while the concentration of intercellular

Ca2+ accompanied with a reduction in the hyperactivated
motility increased very fast when voltage-dependent Ca2+

channel was blocked [41]. Biochemical and topological
analysis of bovine sperm cells showed change in sperm

metabolism due to low-level laser treatment; however it has
been mentioned that more studies are necessary to establish
an optimal dose to increase the fertility potential of these cells

[42]. Wenbin et al. [43] found that laser irradiation increased
sperm fructose fermentation, respiration, the amount of
phosphorus (32P) uptake and the Ca2+ absorption, thus there

was an increase of motility and survival time of spermatozoa.
According to Zan-Bar et al. [40], the effects of light are
mediated through reactive oxygen species (ROS). Indeed,
although high ROS level can lead to cell death (by ATP

depletion and lipid peroxidation), at low level, ROS can play
a major role in activation of many cellular processes. In the
case of spermatozoa, ROS, including superoxide anion,

H2O2, and reactive nitrogen species as nitric oxide (NO)
can cause sperm hypercapacitation and the acrosome reaction
[44–46]. The energy delivery time is, in fact, an essential

parameter in laser irradiation, since there should be enough
time for the cell to obtain more metabolites from the medium
needed for reactions where laser irradiation is involved in.

This is similar to the mechanisms of photodynamic therapy
(PDT), where the presence of oxygen is needed for the
production of an oxygen singlet (1O2) [47,48]. However, the
laser light photon energy E (E = hc/k where h is Planck’s

constant, c is the speed of light and k is the wavelength) is
a decisive parameter for the time needed to obtain the
required effect. Table 1 lists parameters of lasers mostly used

in animal reproduction applications.
In the year 2005, Corral-Baqués et al. [49] demonstrated

that irradiating dog sperm with a 655 nm diode laser light at

4.00, 6.00, and 10.00 J/cm2 improves its motility features and
seems to maintain its functional characteristics up to 45 min
after irradiation. In 2009 the same research group extended

their investigations on the effects of low-level laser irradiation
on dog spermatozoa and its dependence on the laser output
power [50]. The results showed that irradiation with different

output powers had different effects on semen parameters
including motility, average velocity, linear coefficient and beat
cross frequency. Yazdi et al. [51] reported on the effect of

830 nm diode laser irradiation on human sperm motility.
Significant increase in the irradiated sperm motility has been
obtained after exposure to 4.00 and 6.00 J/cm2 for 60 and

45 min respectively.
Zan-Bar et al. [40] reported the effect of red laser light

(660 nm) on ram and tilapia sperm. They found that the use
of such red light irradiation led to a slight increase in motility

and fertility in ram spermatozoa compared with higher values
for the two parameters in tilapia sperm. In an interesting
study, Abdel-Salam et al. [20] reported that irradiation of

buffalo semen with green laser light (532 nm) at 0.31 J/cm2

and 0.38 J/cm2 doses improved semen quality such as motility,
progressive, VCL (curvilinear velocity), VSL (progressive

velocity), VAP (average path velocity), and ALH (mean ampli-
tude of lateral head displacement) for short exposure times
from 4 to 5 min. They interpreted the obtained improvement
in semen quality as being due to the shorter wavelength used

where the photon energy is higher than in case of using red
laser with longer wavelength and low photon energy.

Laser and semen storage

It is well known that semen of domestic animals cannot be
stored for longer time without a loss of fertilizing capability

even if oxygenated and stored with appropriate diluents at
reduced temperature [52]. Recent article [53] reported that
He Ne laser irradiation has differential action on biostimula-

tion of turkey, chicken and pheasant spermatozoa. This work
is considered the first elucidate of the possibility for restoration
of motility of cryopreserved avian spermatozoa by biostimula-

tion provided via He Ne laser irradiation. Previously, the qual-
ity of stored turkey semen was found to be improved
significantly following He–Ne laser irradiation with energy
doses ranging from 3.24 J/cm2 to 5.40 J/cm2 and in particular

at fluences close to 4.00 J/cm2 laser prevented in vitro liquid
storage-dependent damage [54]. It was found in another study
[55] that laser irradiation increased the sperm motility param-

eter, viability, and cell energy charge in rabbit semen. The
authors concluded that laser irradiation might be a viable tech-
nique for enhancing the quality of semen in long-term storage.
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Previous studies by Passarella et al. [13] demonstrated that
irradiation with He–Ne laser of energy density 5 J/cm2 led to
an increase in proton electrochemical potential and ATP syn-

thesis in isolated mitochondria. The increase of ATP synthesis
has been interpreted by the authors as being due to laser
induced protomotive force. Sperm-fertilizing capacity can be

affected by changing sperm motility due to all factors enhanc-
ing or hindering ATP production or availability. Iaffaldano
et al. [55] found that He–Ne laser irradiation improved rabbit

sperm preservation during liquid storage modulating sperm
qualitative functions that may be related to biostimulation of
rabbit spermatic cells and increased cytochrome c oxidize activity.

Laser and bacterial contamination

The extent of microbial contamination is an important param-

eter to consider in quality control of semen that is used for arti-
ficial insemination or direct mating. Semen is an ideal medium
for establishment and growth of many microorganisms includ-
ing bacteria and fungi. Other sources of contamination include

inflammatory foci in the genital tract, the skin of animals,
semen collection, the processing equipment, animal handlers
and laboratory personnel during manipulation. Bartlett [56]

considered that low number of bacteria in frozen semen, capa-
ble of being transferred during coitus, should be accepted as
‘‘normal’’ because the endometrium of healthy animals could

be highly resistant to microbial infection. Parez and Thibier
[57] reported that there was no evidence of a relationship
between the presence of potentially pathogenic bacteria and
the fertilizing ability of semen. To minimize these adverse

effects, antibiotics are included in the composition of the
ram semen extenders to prevent bacterial growth [58,59].
Addition of variable alternatives antibiotics in extenders to

control microbial contamination in semen has been weakened
by the increasing appearance of antibiotic resistant strains and
a growing list of opportunistic and potential pathogens in

semen [60]. Novel methods for controlling the contaminants
such as the use of antibodies (monoclonal and genetically-
engineered antibodies), anti-idiotype vaccines, visible wave-

lengths radiation, and exploitation of natural inhibitors in
the semen should be looked at as variable alternatives or sup-
plements to antibiotic treatment [61]. Hussein et al. [62]
reported that in Friesian bulls semen medium, reduced bacte-

rial growth and improved semen quality were observed 2, 4,
and 8 min after irradiation by light emitting diode (LED)
(680 nm, 10 mW) and diode laser (DL) (660 nm, 100 mW). It

has been found that such red wavelengths improved semen
quality in some of the exposed samples. This coincided with
the previous work [63], which showed the importance of red

wavelength for the increase of semen viability.
Laser and oocyte maturation

In all assisted reproductive technologies, namely IVM, ICSI,
and SCNT, the evaluation of the oocytes quality is of high
importance; however the improvement of the maturation rate

represents the corner stone of these technologies. In fact there
are very few studies concerning the effects of laser on oocyte
maturation. Soares et al. [24] used He–Ne Laser (632 nm) to
irradiate bovine oocytes. These authors found that laser is

capable of modulating events in granulosa cells that may lead
to changes in oocyte. Also, Moreno-Millan and Ocaña-Quero
[64] used low laser power to treat immature oocyte, and found
that He–Ne laser with doses of 0.40 J/cm2 and 2.00 J/cm2

affected the maturation process negatively and caused nuclear
damage. Researches indicate that the mechanisms involved in
laser interaction with biological cells are due to photons

absorption by cellular photoreceptors that trigger chemical
reactions such as glycolysis and oxidative phosphorylation.
This could accelerate RNA transcription and DNA replica-

tion. In addition, it is widely known that laser light accelerates
mitosis and affects different metabolic processes through
changes induced in the mitochondrial membrane [65]. As men-
tioned by Karu [66] the absorption of different light wave-

lengths by cytochromes from the internal mitochondrial
membrane increases ATP synthesis. Oocyte suffers from
numerous transformations during its maturation to be ready

for fertilization and following embryo development. These
transformations are mainly induced by granulosa cells, which
facilitate communication to oocyte through the gap junctions

[34]. Previously published results, using He–Ne laser for irradi-
ation, revealed that the mitochondrial membrane potential has
been increased [26,17]. It is most probable that the same mech-

anism takes place also in case of using other laser wavelengths.
Shorter wavelength laser light is especially a good candidate to
induce effects similar to those obtained by He–Ne laser irradi-
ation at shorter irradiation time and lower energy doses. This

is mainly due to the fact that the shorter is the laser light wave-
length the higher is its photon energy. For example, the He–Ne
laser photon energy is 1.87 eV while the second harmonic of

Nd:YAG laser 532 nm (green) and the diode pumped solid
state laser, DPSS, 405 nm (violet) have photon energies of
2.25 eV, 2.92 eV respectively. Consequently the effect of

shorter wavelength laser irradiation will be higher on the mito-
chondria [24]. This is in agreement with what has been
reported by Fujiwara et al. [34] who interpreted the induced

chemical energy as being due to the absorption of laser energy
by proteins of mitochondrial respiratory chain.
Laser characterization of semen

Smuk et al. [67] studied random laser action in bovine semen
when excited by a Q-switched frequency doubled Nd:YAG
laser, without any analytical investigations. Abdel-Salam and

Harith [68] used laser spectrochemical analytical techniques
such as laser induced breakdown spectroscopy (LIBS) and
laser induced fluorescence (LIF) for characterization of semen

samples. Via LIBS those authors obtained information about
the elemental seasonal variations in the seminal plasma. Ca,
Mg, Zn and Fe were found to be higher in winter than in sum-

mer in buffaloes’ seminal plasma. They also found that ele-
ments’ concentrations in seminal plasma have direct relation
to the sperm parameters and consequently LIBS can be used
for indirect assessment of semen parameters. LIF that is nor-

mally used for detection of selective species and studying struc-
ture of molecules has been exploited by the same authors to
estimate sperm count in buffalo semen samples [68]. The sperm

count could be correlated to the intensity of the fluorescence
emission and provided the basis for instrumentation for
in situ rapid determination of sperm counts with no need for

conventional microscopic or time consuming imaging tech-
niques in the laboratory.
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Conclusions

As mentioned above, the aim of this brief review was to dem-
onstrate what have been published in the topic of improvement

of sperm parameters and maturation rate of domestic animals
oocytes via laser irradiation. Such improvement can contribute
effectively in enhancement of in vitro embryo production. The

publications in this field are still very limited, and investigated
mainly the irradiation effect of red laser (k = 632.8 nm) to
improve the system of sperm parameters and in vitro embryo
production [20,24,33,49,68]. However, negative effects on

sperm parameters and on the maturation process of the oocyte
have been obtained using such red laser for irradiation [50,64].

We do expect that the use of the shorter wavelengths, e.g.

k = 532 nm and k = 405 nm is promising and more reason-
able than longer laser wavelength for biostimulative purposes
because they will be better absorbed by the cellular chromoph-

ores. However, studies indicated that the cellular photorecep-
tors are capable of absorbing photons that may trigger
chemical reactions at certain wavelengths [24–26,56]. The laser

fluence (J/cm2) is the key point of the impacts on the biological
cells. However, and as mentioned by Passarella and Karu [69]
the overall mechanism of light interaction with the biological
samples needs more research work to be fully understood. In

view of the photosensitivity of numerous molecules, it is possi-
ble to exploit photobiomodulation in photomedicine and bio-
technology [69]. In the above review it has been shown that

lasers show up in the field of livestock reproduction as an easy,
time saving, less costly and effective technique in addition of
having the possibility of its use in situ, namely in cattle farms

and veterinary clinics.
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