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Structural magnetic resonance imaging (MRI) studies using voxel-based morphometry (VBM) and tract-based
spatial statistics (TBSS) have been inconsistent in demonstrating impairments in gray matter (GM) and white
matter (WM) structures in bipolar disorder (BD). This may be a consequence of significant confounding effects
of medication, illness history and selection of controls in existing studies. Study of bipolar II or not-otherwise-
specified (BD II/NOS) disorder provides a solution to these confounds and a bridge to unipolar cases across the
affective spectrum.
Thirty-eight euthymic, antipsychotic- andmood stabilizer-naïve young adults (mean age = 20.9 years)with BD
II/NOS and 37 age-, cognitive ability- and gender-matched healthy controls (HCs) underwent MRI. Voxel-wise
and regional gray matter volume comparisons were conducted using voxel-based morphometry (VBM). Tract-
based spatial statistics (TBSS) were used to assess whole-brain WM, as indexed using fractional anisotropy
(FA), mean diffusivity (MD), parallel and perpendicular diffusion values. No between-group differences were
observed for whole-brain VBM comparisons. By contrast, in comparison to HCs, participants with BD II/NOS
had significant widespread reductions in FA and increased MD and perpendicular diffusion values in virtually
all the major cortical white matter tracts.
These data suggest pathophysiological involvement ofWMmicrostructures – but not GMmacrostructures – in high
functioning BD II/NOS patients at an early age and before significant clinical adversity has been recorded. We
propose that white matter development is a valid candidate target for understanding genetic and environmental
antecedents to bipolar disorder and mood disorder more generally.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

In recent years a large number of structural MRI studies have used
either voxel-based morphometry (VBM) to look at volumetric differ-
ences in gray matter (GM) structures or diffusion tensor imaging
(DTI) to assess whitematter (WM)microstructure in functional psychi-
atric disorders. In bipolar I disorder (BD I), alterations in GM volumes
have been reported in many studies but there has been little consisten-
cy of effect. Thus, two recent meta-analyses have reported significantly
decreased GM volumes in the temporal and prefrontal cortices (Arnone
et al., 2009; Selvaraj et al., 2012), while a recent mega-analysis (i.e., an
analysis of individual patient data from multiple studies) reported
significantly increased temporal lobe, right putamen and right lateral
ventricular volumes among BD I patients in comparison to controls
(Hallahan et al., 2011). Several factors contribute to this heterogeneity.
erms of the Creative Commons
which permits non-commercial
d the original author and source

arneford Hospital, Oxford OX3
865 204198.
odwin).

lished by Elsevier Inc. All rights reser
First, lithium treatment, past and present, has been associated with rel-
atively preserved brain volumes (Hafeman et al., 2012; Hallahan et al.,
2011; Mitsunaga et al., 2011; Moore et al., 2000). Second, BD I patients
are often treated with antipsychotics in manic episodes, and over the
long term, which may influence brain dimensions as in schizophrenia
(Ho et al., 2011). Third, the uncertain cumulative effects of physical ill-
ness and poor lifestyle choices may produce acquired brain changes in
mature patients with BD I. Finally, case control imaging studies fre-
quently use poorly defined methods to recruit controls, which results
in excessive heterogeneity between control samples, well illustrated
in meta-analyses (Kempton et al., 2008). Cases and controls should be
recruited using very similarmethods,which is always difficult in clinical
case series.

Reports of white matter abnormalities in mood disorder patients
date from the early days of CT and MR imaging. So-called WM
hyperintensities were frequently attributed to vascular pathology
(Brown et al., 1992) and were most noticeable in older patients
(Aylward et al., 1994; Dupont et al., 1995) but also described earlier in
the disease course (Botteron et al., 1992). More recent studies using
quantitative DTI in samples of mature but not elderly patients with BD
I (Sexton et al., 2009) have generally describedmore diffuse differences
between cases and controls. As in the case of studies of GM, consistency
ved.
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has been lacking across DTI studies. For example, decreases in fractional
anisotropy (FA) – themost frequently used scalarmeasure of diffusion –

have been reported in regions of theprefrontal cortex (PFC) (Adler et al.,
2004), corpus callosum (Wang et al., 2008a), cingulum (Wang et al.,
2008b), uncinate fasciculi (McIntosh et al., 2008; Sussmann et al.,
2009), superior longitudinal fasciculi (Zanetti et al., 2009) and anterior
thalamic radiations (McIntosh et al., 2008; Sussmann et al., 2009),
while in other studies, increases in FA have been reported in regions
such as the corpus genu (Yurgelun-Todd et al., 2007), PFC (Versace
et al., 2008), precentral gyrus (Wessa et al., 2009) and uncinate fasciculi
(Versace et al., 2008). Variation in findings across studies is potentially
due to the confounding factors already described for GM studies above.

Imaging studies have supported the overarching hypothesis that BD
I disorder is in some sense a brain disease. Unanswered has been
whether the underlying structural differences reflect the consequences
of the illness's medium term vascular complications and treatment,
relate directly to bipolar psychopathology or are part of a more general
developmental brain abnormality seen across the affective spectrum. In
order to explore this latter hypothesis, we resolved to assess WM and
GM structures in a mood stabilizer- and antipsychotic-naïve group of
euthymic individuals with bipolar disorder early in the disease course
(i.e., prior to significant clinical intervention). The group in which this
approach is most feasible are euthymic, antipsychotic- and mood
stabilizer-naïve individuals with BD II or BD not-otherwise-specified
(NOS) recruited from the community (as in epidemiological studies)
together with healthy control (HC) participants well matched for age,
gender, cognitive ability and recruitment route. The further advantage
of such cases is the bridge they provide across the affective spectrum
between BD I on the one hand and unipolar disorder on the other. We
hypothesized that young adults with BD II/NOS would display reduc-
tions in FA across the major white matter tracts previously implicated
in mature BD I (e.g., callosal, association and limbic fibers).

2. Methods

2.1. Participants and screening

Participants were 38 unmedicated individuals with BD II/NOS
(NOS = 13) and 37 HC participants, group-matched on age, gender
and cognitive ability. Thirty-three participants (16 BD) were recruited
and underwent structural imaging protocols in the first phase between
2006 and 2008. The remaining 42 participants (22 BD) were recruited
and scanned in a second phase (2011 and 2012). Case and control num-
bers were balanced across the two recruitment phases. All participants
were scanned on the same 3 T Siemens Trio system using the same
image acquisition protocols (details below).

In order to ensure homogeneity across control and BD participant
groups, all participants were recruited from the same population
and via the same recruitment route: advertisements were published
in a local paper, placed in the community and within the University
of Oxford. All volunteers expressing interest in participating were
given complete details of the study protocols and invited to attend a
screening session. Given the difficulty in recruiting our patient popula-
tion (i.e., unmedicated individuals with BD II/NOS), individuals previ-
ously identified as at-risk for BD (or already meeting full DSM-IV
criteria) who had previously participated in other research studies at
the University of Oxford's Department of Psychiatry (who had also
consented to be contacted about future studies) were sent information
about the study protocols and invited to take part in the present study
via e-mail. Both recruitment methods (advertisement, referrals from
other studies) were used to recruit healthy controls and participants
with BD II/NOS, in order to ensure the same recruitment route across
studies. Following complete description of the study's procedures,
all participants provided written informed consent. The study pro-
tocols were approved by the National Health Service Research
Ethics Committee.
All participants were screened using the Mini-International Neuro-
psychiatric Interview (MINI) (Sheehan et al., 1998). This identified the
formal criteria for the diagnosis of bipolar disorder for participants in
the BD II/NOS group. HC participants were excluded for: (1) any history
of head injury or neurological condition; (2) other contraindication to
scanning; (3) current or previous use of psychotropic medication; and
(4) current or past psychiatric disorder, including substance use and de-
pression, as assessed using the MINI. Exclusion criteria for BD II/NOS
participants were: (1) any history of head injury or neurological condi-
tion; (2) other contraindication to scanning; (3) current major depres-
sive, manic or hypomanic episodes at the time of scanning; (4) any
current psychotropic medication; (5) any past treatment with an
antipsychotic or mood stabilizer (e.g., lithium, anticonvulsants); and
(6) any current psychiatric disorder (with the exception of BD and
anxiety disorders).

All of the thirty-eight BD II/NOS participants had a history of one or
more hypomanic episodes as defined using the MINI. Out of the thirty-
eight BD II/NOS participants, 25 participants (10 from phase 1) also had
a history of one or more major depressive episodes, and therefore met
the criteria for BD II. The remaining 13 BD participants (six from phase
1) were classified as NOS. Among the BD II/NOS participants, four met
the criteria for past alcohol abuse, twomet the criteria for past marijua-
na abuse and one met the criteria for past codeine abuse and past
anorexia. None of the BD II/NOS or HC participants met the criteria for
a current substance or alcohol use disorder. Two of the BD II/NOS partic-
ipants reported a family history of bipolar disorder. Three of the partic-
ipants in the BD II/NOS group had received previous SSRI treatment, and
all had been medication-free for a minimum of three months prior to
scanning.

In addition to theMINI, participants completedpsychometric assess-
ments of cognitive ability (phase one:Wechsler Abbreviated Scale of In-
telligence (WASI) (Wechsler, 1981); phase two: Raven's Matrices
(Raven et al., 1998)), current depressive symptoms (Hamilton Depres-
sion Rating Scale (HAM-D) (Hamilton, 1960)), lifetime and current
bipolar symptoms (Mood Disorders Questionnaire (MDQ) (Hirschfeld
et al., 2000); Young Mania Rating Scale (YMRS) (Young et al., 1978)),
impulsivity (Barratt Impulsiveness Scale (BIS-11) (Patton et al.,
1995)), and state and trait affect (Positive and Negative Affect Scales
(PANAS) (Watson et al., 1988)). Cases and controls were matched on
cognitive ability (raw data not shown).

2.2. Image acquisition

All data were acquired using the same 3 T Siemens Trio system
(Siemens Medical Systems, Erlangen) at the Oxford Centre for Clinical
Magnetic Resonance Research, using a protocol consisting of an axial
T1-weighted 3D structural (TR = 2040 ms; TE = 4.7 ms, TI = 900 ms,
flip angle = 8°; 1 mm isotropic voxels; acquisition time = 5 min 56 s),
and an axial multi-slice diffusion weighted EPI (TR = 9300 ms; TE =
94 ms; B values = 0, 1000 s/mm2; bandwidth = 1628 Hz/px; direc-
tions = 60 [+0]; averages = 3; 2.5 mm isotropic voxels; no. slices =
50 (whole brain); acquisition time: 21 min 2 s).

2.3. Statistical analyses

2.3.1. Demographic and clinical characteristics
The demographic and clinical characteristics of participants in the

BD II/NOS and HC groups were analyzed using χ2 (e.g., gender,
handedness) and one-way analysis of variance (ANOVA) analyses,
as appropriate.

2.3.2. Global WM, GM and CSF volumes
Individual participant T1-weighted images were brain-extracted

(Smith, 2002) and whole-brain segmented into GM, WM and CSF fol-
lowing bias field correction using FMRIB's automated segmentation
tool, FAST (Zhang et al., 2001). Total GM, WM and CSF volumes were



Table 1
Demographic, clinical characteristics and mean brain volumes of bipolar II/NOS and
healthy control participants.

Healthy controls
(n = 37)

Bipolar II/NOS
(n = 38)

Variables N (%) N (%)

Study 1 17 (46) 16 (43)
Male 20 (54) 20 (53)
Right-handed 34 (92) 36 (95)

Mean (St. dev.) Mean (St. dev.)
Age 21.2 (2.3) 20.9 (3.1)
MDQ 0.1 (.03) 9.5 (1.7)⁎⁎⁎

HAM-D 2.3 (2.3) 6.1 (5.6)⁎⁎⁎

YMRS 0.3 (0.5) 1.8 (2.5)⁎⁎

BIS-11 54.7 (7.0) 69.4 (10.1)⁎⁎⁎

PANAS-state
Positive 29.7 (6.8) 30.2 (6.8)
Negative 11.7 (2.3) 13.6 (3.3)⁎

PANAS-trait
Positive 33.7 (5.3) 32.1 (6.8)
Negative 13.3 (3.1) 20.4 (7.1)⁎⁎⁎

Brain volumes (% of total)
Gray matter 42.8 (1.4) 43.1 (1.4)
White matter 37.3 (1.7) 37.4 (1.8)
CSF 19.9 (1.7) 19.5 (1.4)

MDQ = Mood Disorders Questionnaire; HAM-D = Hamilton Depression Inventory;
YMRS = Young Mania Rating Scale; PANAS = Positive and Negative Affect Scales;
CSF = Cerebrospinal Fluid.
⁎ p ≤ .005.
⁎⁎ p ≤ .001.
⁎⁎⁎ p ≤ .0001.
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calculated for each participant by summing the partial volume esti-
mates in each tissue class, then expressing as a percentage of total
brain volume (i.e., the sum of GM, WM and CSF volumes).

2.3.3. Gray matter: Voxel-based morphometry (VBM)
Whole-brain GM was analyzed using FSL-VBM as has been de-

scribed previously (Douaud et al., 2007). The analysis was conducted
in the standard way: A study-specific GM template was created by
segmenting individual images into GM, WM and CSF, affine register-
ing to the GM ICBM-152 template and averaging the images to form
the template. Individual participant images were then non-linearly
registered to the study-specific template, and each voxel divided
by the Jacobian of the warp field in order to compensate for any
expansion/contraction caused by the non-linear registration. All im-
ages were smoothed using FSL-VBM's default 3 mm Gaussian kernel
(~7 mm full width half maximum; FWHM). This kernel size was
selected in order to maximize sensitivity to volumetric changes in
small structures (e.g., thalamus, hippocampus, anterior cingulate)
(Honea et al., 2005). Between-group comparisons of whole-brain
GM data were conducted using permutation-based non-parametric
testing (Nichols and Holmes, 2002) while controlling for phase. No
other covariates were included. Whole-brain comparisons were
corrected for multiple comparisons across space (p b .05) using
Threshold-Free Cluster Enhancement (TFCE; Smith and Nichols,
2009).

2.3.4. White matter microstructures: Tract-based spatial statistics (TBSS)
DTI datawere analyzed using TBSS (Smith et al., 2006). For each par-

ticipant, three separate image acquisitions were combined and aver-
aged, then brain extracted and corrected for eddy current distortions
andheadmovements prior to undergoing dti_fit to calculate FA (a scalar
index of diffusionwhere 0 indicates completely isotropic diffusion and 1
indicates completely anisotropic diffusion), MD (a scalar index of the
total magnitude of diffusion irrespective of direction), parallel (the
dominant (major) direction of diffusion; assumed to represent diffusion
in the direction of the fiber tract) and perpendicular (the average of
the two orthogonal minor directions of diffusion; assumed to represent
diffusion perpendicular to the fiber tract) diffusion values. Diffusion
data were aligned to common space using nonlinear registration.
Individual participant aligned FA, MD and parallel and perpendicular
diffusion data were then projected onto the mean FA skeleton in order
to obtain voxel-wise comparisons. Between-group comparisons of
whole-brain FA, MD, parallel and perpendicular diffusion data were
conducted using permutation-based non-parametric testing (Nichols
and Holmes, 2002) andwere corrected for multiple comparisons across
space (p b .05) using TFCE (Smith and Nichols, 2009) while controlling
for phase. In order to confirm our primary findings and to explore any
possible interactions between study phase and diagnostic group, post-
hoc comparisons of regional FA between HC and BD II/NOS participants
were conducted.

2.3.4.1. Mean whole-brain FA, MD, parallel and perpendicular diffusion
values. For each participant, average whole-brain FA, MD, parallel and
perpendicular diffusion values (i.e., mean across the entire skeleton)
were calculated using fslstats and entered into SPSS. Between-group
comparisons were then conducted using ANOVAs.

2.3.4.2. Medication effects. Targeted region-of-interest (ROI) analyses
were conducted to test for the effects of past SSRI treatment on early
versus late developing white matter tracts (i.e., the splenium and unci-
nate fasciculus, respectively). Masks were defined using the ICBM-DTI
white-matter labels and JHU white-matter tractography atlases and
thresholded using the mean FA skeleton. Individual ROI values were
converted to Z-scores and analyzed using multivariate analyses of
variance.
3. Results

3.1. Demographic and clinical characteristics

Results of between-group comparisons are shown in Table 1. No sig-
nificant differences in gender, handedness, age and PANASpositive affect
(state and trait) were observed between participants with BD II/NOS, in
comparison to HC participants. As expected, BD II/NOS participants
scored significantly higher than HC participants on measures of impul-
sivity, experience of manic symptoms/hypomania (i.e., the MDQ), cur-
rent depressive affect, state and trait negative affect, and current manic
symptoms. However, consistent with previous findings (Chandler et al.,
2009), depression and mania scores were low among euthymic partici-
pants with BD II/NOS (HAM-D = 6.1; YMRS = 1.8), so all participants
were euthymic at the time of scanning.

3.2. Global GM, WM, CSF volumes and VBM

No significant differences in global GM, WM and CSF volumes were
found between BD II/NOS and HC participants (Table 1). The study had
sufficient power to detect a difference of 2.25%, 3.25% and 5.50% for
WM, GM and CSF volumes, respectively (alpha = 0.05; beta = 0.80)
(Erdfelder et al., 1996). Therewere no significant between-group differ-
ences in voxel-based GM morphometry.

3.3. Tract-based spatial statistics (TBSS)

3.3.1. BD II/NOS vs. HCs
Findings from whole-brain comparisons of FA, MD and perpendicu-

lar diffusion are shown in Fig. 1. Significantwidespread reductions in FA,
accompanied by increases in MD and perpendicular diffusivity, were
observed among BD participants across themean skeleton including re-
gions of the genu, body, splenium, forceps major and minor, bilateral
cingula, anterior thalamic radiations, external capsules, inferior fronto-



Fig. 1. Results of whole-brain comparisons of FA, MD and perpendicular diffusion. The mean FA skeleton for each group is shown in green, and regions of significantly reduced FA (TFCE-
corrected for multiple comparisons across space) are shown in blue. Regions of significantly increased MD and perpendicular diffusion (TFCE-corrected for multiple comparisons across
space) are shown in yellow and pink, respectively. BDs = bipolar II/NOS; HCs = healthy controls. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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occipital fasciculi, inferior and superior longitudinal fasciculi, uncinate
fasciculi and brainstem. No significant differences in parallel diffusion
were observed between HC and BD II/NOS participants. Across partici-
pants, there was no significant effect of study phase on whole-brain
FA, MD, parallel or perpendicular diffusion values. Post-hoc compari-
sons of regional FA revealed no significant main effects of study phase
or interaction effects between study phase and group (p N .05).
3.3.2. Mean whole-brain FA, MD, parallel and perpendicular
diffusion values

Given the relatively diffuse nature of white matter alterations ob-
served (i.e., alterations within regions of almost all of the major cortical
white matter tracts), we calculated the mean FA, MD, parallel and per-
pendicular diffusion values across the skeleton as a whole, in order to
test thehypothesis of gross alterations in diffusion irrespective of specif-
ic anatomical loci (e.g., as might result from artifacts such as excess
motion within the patient group). There were no significant between-
group differences in FA, MD, parallel or perpendicular diffusion values
when averaged across the entire skeleton (F's b 1; p's N .35) between
HC and BD II/NOS participants.

3.3.3. Subtype analyses
Findings from whole-brain comparisons of FA between participants

with BD II vs. HC participants and BD NOS vs. HC participants are shown
in Fig. 2. In comparison to HCs, both BD II and NOS groups had signifi-
cant widespread reductions across the mean FA skeleton, including re-
gions of the genu, body, splenium, forceps major and minor, bilateral
anterior thalamic radiations, external capsules, inferior fronto-occipital
fasciculi, inferior and superior longitudinal fasciculi, uncinate fasciculi
and brainstem.

Whole-brain increases in MD and perpendicular diffusion across
the mean skeleton were observed among BD NOS participants across
regions of genu, body, splenium, forceps major and minor, bilateral
anterior thalamic radiations, cingula, external capsules, inferior
fronto-occipital fasciculi, inferior and superior longitudinal fasciculi
and uncinate fasciculi. Exploratory analyses using a less stringent
threshold (p b .06, TFCE-corrected) revealed comparable increases



Fig. 2. Results of whole-brain comparisons of FA among participants with BD II and BDNOS in comparison to healthy controls. Themean FA skeleton for each group is shown in green, and
regions of significantly reduced FA (TFCE-corrected for multiple comparisons across space) are shown in blue. BD II = bipolar II disorder; HCs = healthy controls; BDNOS = bipolar dis-
order not-otherwise-specified. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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for BD II participants versus HCs in perpendicular diffusion across the
mean skeleton, including regions of genu, body, splenium, major and
minor forceps, right cingulum, bilateral anterior thalamic radiations,
external capsules, inferior fronto-occipital fasciculi, inferior and su-
perior longitudinal fasciculi and uncinate fasciculi.

No significant differences in whole-brain FA,MD, parallel or perpen-
dicular diffusion values were observed between participants with BD II
versus those with BD NOS.
3.3.4. Medication effects: ROI analyses
In comparison to HC participants, participants with BD II/NOS had

significant reductions in FA within the splenium (F = 13.23, p = .001)
and uncinate fasciculus (left: F = 6.99, p = .010; right: F = 5.91, p =
.018) ROIs. After removing the BD II/NOS participants with previous
short-term exposure to SSRIs (n = 3), these effects remained
(F's ≥ 5.98, p's ≤ .017). There were no significant differences between
BD II/NOS participants with and without previous exposure to SSRIs
(F's ≤ .31, p's ≥ .58).
4. Discussion

To our knowledge, GM and WM structures have not been assessed
previously in an adequately powered study of unmedicated individuals
with BD II or BD NOS. There were no differences in voxel-based GM
morphometry, global WM, GM or CSF volumes between groups despite
sample sizes sufficient to detect differences at previously reported levels
(Drevets et al., 1997). In contrast, we found significant widespread
differences in WM, as indexed by decreased FA and increased MD and
perpendicular diffusion, among euthymic, antipsychotic- and mood
stabilizer-naïve individuals with BD II/NOS compared with controls.
The reductions observed were more profound and more widespread
than those typically observed hitherto within a single study of BD I or
BD II disorder.

4.1. Gray matter

The absence of any GM abnormalities among individuals with BD
II/NOS contrasts with previous reports of significant decreases in GM
volumes, whose location varied across studies, among individuals
with BD II (Ha et al., 2009; Narita et al., 2011). The likely explanation
is the relatively young age of our participants (mean age =
20.9 years) in comparison to previous studies (i.e., 35.2 years
(Ha et al., 2009); 40.8 years (Narita et al., 2011)). While some evi-
dence of age-related reductions in GM volumes in BD I already
exists (e.g., Doty et al., 2008; Hallahan et al., 2011) very little is cur-
rently known about the temporal trajectory in the size of GM struc-
tures in BD I or II (reviewed in Selvaraj et al., 2012). Given the
relatively large size of our sample, and our recruitment of cases and
controls from the same population, the absence of a GM effect pro-
vides a strong negative finding. It implies that GM reductions in
older samples are acquired as a consequence of illness course. This
is compatible with the very limited prospective data available for
BD I (Moorhead et al., 2007). Exploring the impact of successful treat-
ment and the relationship between GM changes and cognitive impair-
ment is of obvious clinical relevance for future work (Goodwin, 2009).

4.2. White matter

The reductions in FA encompassed projection, association, callosal
and limbic system fibers, just as reported previously in some studies
for mature BD I cases (e.g., McIntosh et al., 2008; Sussmann et al.,
2009;Wang et al., 2008a). Although the FA reductionswerewidespread
there was no global difference between groups, suggesting some
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degree of specificity. Our findings are also consistent with previous
reports of reduced FA in callosal, projection, and association fibers
among mature, medicated individuals with BD II (Ha et al., 2011;
Liu et al., 2010), and with findings from the two previous small
scale published studies of antipsychotic- and mood stabilizer-naïve ad-
olescents during first-episodemania (Adler et al., 2006) andmanic psy-
chosis (Lu et al., 2011)which also reported relatively large reductions in
FA. Nevertheless, previous DTI and VBM studies have reported a range
of semi-conflicting findings (see Introduction) with respect to WM
and GM structures in BD, and the effects of medication have been iden-
tified as a possible confound in this literature (Hafeman et al., 2012).
Preclinical data increasingly suggest ameliorative/protective effects of
lithium (frequently used to treat patients with BD over the long-term)
on WM tissue; e.g., lithium has been shown to increase remyelination
(Makoukji et al., 2012). As such, our exclusion of participants with pre-
vious exposure to lithiummay account for the diffuse nature of the ob-
served reductions in FA. This interpretation is further supported by two
recent reports of attenuated FA reductions among lithium-treated pa-
tientswith BD, in comparison to their non-lithium-treated counterparts
(Benedetti et al., 2011; Macritchie et al., 2010). Thus, our study may
show more clear-cut differences because we controlled for the con-
founding factors which have influenced the interpretation of the earlier
studies.

Although often considered a less severe form of BD than the para-
digm illness, the growing research base suggests comparable levels of
impairment across both BD I and II (Jansen et al., 2011; Maina et al.,
2007). The prevalence of the two conditions is approximately equal
and BD NOS doubles the total rate to 4–5% of the population (Kessler
et al., 2005; Merikangas et al., 2007). Only a small number of studies
have previously attempted to characterize the neurostructural corre-
lates of bipolar II disorder (BD II) (Ha et al., 2009, 2011; Liu et al.,
2010; Narita et al., 2011) using VBM or DTI, or to study cases never
treated with antipsychotics or mood stabilizers (Adler et al., 2006; Lu
et al., 2011). The two recent studies reporting alterations in WM in BD
II showed heterogeneous effects and could not control for the possible
confounding effects of medication exposure or duration of illness (Ha
et al., 2011; Liu et al., 2010). Nevertheless, using a somewhat different
scalar measure of diffusion (apparent diffusion coefficient; ADC), Ha
et al. (2011) reported increased diffusivity among individuals with BD
II in comparisonwith both controls and BD I participants acrossmultiple
tracts encompassing temporal and frontal regions (Ha et al., 2011).
Thus, it is possible that increases in diffusivity may be present across
both medicated and unmedicated individuals with BD II.

The BD NOS group remains poorly characterized both clinically and
neurobiologically but severity of co-morbidity appears to be less than
BD I and BD II (Angst et al., 2010). Given the small number of NOS
participants included in this study (n = 13) these findings should be
interpreted cautiously and require replication in a larger sample.

Three participants with BD II/NOS had previously received short-
term SSRI therapy, although all had been medication free for at least
three months prior to scanning. After removing these participants
with past SSRI treatment, reductions in FA within early and late devel-
oping tracts (i.e., the splenium and uncinate fasciculus (Lebel et al.,
2008)) remained significant in the BD II/NOS group, in comparison
with control participants. No significant between-group differences in
FA were observed between BD II/NOS participants with and without
previous exposure to SSRIs.

4.3. Limitations

To our knowledge, this is the largest DTI study conducted in
antipsychotic- and mood stabilizer-naïve individuals with BD, the larg-
est DTI study of individuals with BD II and the first DTI study of individ-
uals with BD NOS. Our image acquisition protocols and data analysis
have beenwell-validated previously (Smith et al., 2006) and are consis-
tent with previous studies in mature samples of BD I patients (Sexton
et al., 2012). Its advantage in controlling for confounds present in
most other studies has been described.

These strengths, however, are tempered by the fact that these are
not patients as found in clinic samples. While participants from both
groups (healthy controls and participants with BD II/NOS) were
recruited from the same population (the University of Oxford and
surrounding general community) and using closely similar methods,
we are not able to report the total number of participants screened
and define a true epidemiological sample. Participants were recruited
and screened over a number of years and many were first identified as
part of separate studies and then referred to this study (see Methods).
They meet the criteria for DSM-IV diagnoses and may map well onto
populations also discovered at random in epidemiological samples;
however how they relate specifically to treatment-seeking individuals
with BD (e.g., with respect to long-term outcome) remains unclear.
It is therefore critical that Angst has demonstrated in his seminal pro-
spective studies that cases recruited from the general population who
meet the criteria for DSM-IV BD in late adolescence have important
long-term morbidity (Angst, 1998). Caution should nonetheless be
taken when interpreting these findings with respect to mature patients
with BD.

The meaning of reduced FA values (and increased MD) remains to
be discovered. At the microstructural level, changes in myelination,
straightening of fiber orientation and increased fiber density occur in
development and may dominate FA measures in normal brains. While
most individuals show increases in FA, a small percentage show de-
creases over time in the relevant adolescent age group (Lebel and
Beaulieu, 2011). Diffusion tensor imaging may nonetheless be subject
to othermacrostructural factors likeWMvolume (whichwas not differ-
ent between our groups on VBM) and aberrantmixing of tracts of differ-
ent fiber orientations, which we cannot entirely exclude. However, the
corpus callosum is composed mainly of uniformly oriented fibers
(Basser et al., 2000) so FA values derived from this region are unlikely
to be influenced by the presence of crossing fibers. In fact we found
reductions in FA in the corpus genu, body and splenium.

Potential artifacts also have to be excluded. We did not employ
cardiac gating during diffusion-weighted image acquisition. Intra-
individual comparisons of diffusion data obtained with and without
cardiac gating demonstrate convincing effects of cardiac pulsation on
DTI data (Habib et al., 2010; Kim et al., 2010). However, despite such
intra-individual effects, research suggests very minimal effects of cardi-
ac pulsation on FA andMD in group studies (Habib et al., 2010) and pre-
vious studies suggest no differences in pulse or blood pressure between
control participants and participants with a bipolar phenotype (some
of whom already meet the criteria for BD II/NOS) recruited from the
same population as the present study (Yip et al., 2012). There were
also no significant between-group differences in average FA across the
entire FA skeleton (as might occur due to excess motion in the patient
group).

4.4. Implications

The diffuse reduction in FA observed here occurred in a notably young
patient sample andwas accompanied by increases in perpendicular – but
not parallel – diffusion values, suggesting decreased fiber coherence or
myelination (Song et al., 2002) in BD II/NOS. It is consistent with the hy-
pothesis that the abnormality is neurodevelopmental and not acquired as
a result of medication or illness course (Lu et al., 2011). FA increases
during adolescence as shown by the cross-sectional study of healthy
subjects and this occurs at different rates in different brain structures;
thus, the splenium stabilizes much earlier (by age 15 years) than the
uncinate fasciculus which is probably still changing at age 30 (Lebel
et al., 2008). Our findings show effects in both. In the case of the
splenium, the age of our subjects (mean age = 20.9 years) suggests
that developmentwould be complete, and hence implies that the differ-
ence in FA would be enduring. This finding complements and probably
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explains the findings of similar differences in mature patients. Data
from healthy twins strongly suggest that FA and MD are under genetic
control (Brouwer et al., 2012).

The findings generate an important hypothesis — that diffuse WM
abnormalities provide a neurodevelopmental marker of vulnerability
to affective disorders including but not limited to BD. The BD II/NOS
group is intermediate between BD I and unipolar disorder in relation
to phenomenology and anxiety co-morbidity (Angst et al., 2010).
And there is already a convincing study showing very comparable
WMeffects in 20 year-oldswith first episodemajor depressive disorder
(MDD) (Zhu et al., 2011) as well as in mature patients with MDD
(Korgaonkar et al., 2011); preliminary findings have also suggested a
link between WM abnormalities in MDD and generalized anxiety
disorder (Cullen et al., 2010; Hettema et al., 2012; Korgaonkar et al.,
2011). A small study of at risk adolescents with a family history of
mood disorder showed the same effect (Huang et al., 2011): other stud-
ies in MDD suggest that treatment resistance may be associated with
lower FA (Zhou et al., 2011) while resilience to MDD may be related
to higher FA measures (Frodl et al., 2012). Future studies should assess
the relationship betweenWMalterations and effective treatment to de-
termine whether FA might be a useful biomarker for stratification in
clinical trials.

Alterations in WMmicrostructural tissues are relatively common
across psychiatric disorders, and are therefore implicated in the
source pathophysiology of a range of disorders including – but not
limited to – BD, attention deficit/hyperactivity disorder (ADHD),
schizophrenia and impulse control disorders (Chamberlain et al.,
2010; Ellison-Wright and Bullmore, 2009; Sexton et al., 2009; van
Ewijk et al., 2012; Yip et al., 2011). Thus, alterations in FA, MD and
other indices of WM microstructure may be a very general marker
of developmental abnormality with the potential for behavioral
pathology, rather than a specificmarker of BD, per se. Higher resolution
studies may clarify any specificity that does exist by diagnosis.
5. Conclusion

We found widespread impairments in white matter microstruc-
tures prior to antipsychotic or mood stabilizer treatment among in-
dividuals with BD II/NOS. Together with limited data from previous
studies of unmedicated individuals with BD I (Lu et al., 2011) and
good studies in unipolar disorder, there is now evidence of patho-
physiological involvement of WM microstructures across the mood
disorder spectrum. White matter development is a key candidate
process for understanding the biological basis of mood disorder
and its relationship with related anxiety disorders.
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