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Abstract: Many of the proteins involved in key cellular regulatory events contain extensive intrinsically
disordered regions that are not readily amenable to conventional structure/function dissection.
The oncoprotein c-MYC plays a key role in controlling cell proliferation and apoptosis and more than
70% of the primary sequence is disordered. Computational approaches that shed light on the range of
secondary and tertiary structural conformations therefore provide the only realistic chance to study
such proteins. Here, we describe the results of several tests of force fields and water models employed
in molecular dynamics simulations for the N-terminal 88 amino acids of c-MYC. Comparisons of
the simulation data with experimental secondary structure assignments obtained by NMR establish
a particular implicit solvation approach as highly congruent. The results provide insights into the
structural dynamics of c-MYC1-88, which will be useful for guiding future experimental approaches.
The protocols for trajectory analysis described here will be applicable for the analysis of a variety of
computational simulations of intrinsically disordered proteins.
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1. Introduction

Intrinsically disordered proteins (IDPs) exhibit vastly different structural dynamics as compared
to folded proteins. Instead of folding predictably, according to their amino acid sequence, IDPs exist as
a rapidly changing ensemble of conformations. This structural diversity allows them to bind multiple
interaction partners, and places them at the center of key cellular pathways [1]. Their structural features,
and ever-changing conformational dynamics, are based on their unusual amino acid composition.
IDPs are enriched in polar and charged residues and depleted in hydrophobic amino acids required
for the formation of stable cores. This destabilizes the protein fold and allows IDPs to change rapidly
between a wide range of alternate conformations [2]. The greatest challenge encountered when studying
IDPs is to identify methods that describe their rich dynamic complexity. Conventionally applied
structural methods, such as X-ray crystallography and cryo-electron microscopy, are unsuitable
to study IDPs—these proteins do not form crystals and inhabit a vast number of conformations
which cannot be represented adequately by a small number of high-resolution structural models.
Nuclear magnetic resonance (NMR) techniques capture ensemble-averaged data but fail to deliver the
detailed structural models that are required, for example, to identify the formation of transient pockets
for drug-binding studies. Recently, in silico methods such as molecular dynamics (MD) simulations
have emerged as promising alternatives for exploring the conformations and dynamical aspects of
IDPs. Nowadays, MD simulations can be run efficiently on workstations using graphics processing
units (GPUs), which permits low-cost simulation parallelization [3,4]. The understanding of the
physicochemical basis underpinning the biological system simulation estimates has also improved
notably [5]. The accuracy of MD simulations depends greatly on precise parameterization. Specifically,
the widely used AMBER and CHARMM force field refinements, in conjunction with a variety of water
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models, have produced accurate descriptions of small globular proteins [6]. Force field and water
models display, however, certain shortcomings when it comes to the MD simulations of IDPs. The older
AMBER ff99 and CHARMM22/CMAP force fields tend to overestimate α-helical content, whilst the
more recent AMBER ff99SB version underestimates it. GROMOS96 displays a consistent bias towards
the artefactual creation of β-sheet structures [7,8]. Recent attempts at improving the accuracy of
standard force fields, such as AMBER ff99SB-ILDN, AMBER ff99SBNMR1-ILDN, GROMOS 53A6 and
GROMOS 54A7, still produce excessively collapsed proteins that fail to emulate the structural diversity
associated with IDPs and/or exhibit a considerable bias towards folded secondary structure motifs [9].
The recent CHARMM36 force field displayed a marked bias towards left-handed α-helix oversampling,
which was addressed by their latest iteration for IDP simulation—CHARMM36m [10]. However,
for AMBER, the simulation package used in this paper, even one of its latest force field releases, ff14SB,
touted to have improved sampling accuracy of backbone and sidechain geometry, was found to create
overly compacted structures displaying excessive α-helical and/or β-sheet formations [11,12].

Broadly, two main strategies have been proposed to correct the biases and limitations of
conventional MD simulation parameters: to re-design the simulation models by optimizing the
force fields or improve the accuracy of the simulation by enhancing the solvation conditions [13].

1.1. Optimized Force Fields for IDP Simulations

In 2017, two novel AMBER force field modifications for IDP simulation were published:
ff14IDPs [14] and ff14IDPSFF [15]. These re-parameterize AMBER ff14SB but retain most of its
main features. The ff14IDPs force field iteration improves IDP sampling by taking advantage of
the unusual amino acid composition of IDPs through modification of the ϕ/ψ distributions of eight
disorder-promoting amino acids (G, A, S, P, R, Q, E and K). The backbone dihedral terms for all
20 naturally occurring amino acids are upgraded with ff14IDPSFF. A recent study demonstrated that
the ff14IDPSFF force field improves the accuracy of MD simulations for at least a subset of IDPs [16].

1.2. Optimizing Explicit and Implicit Water Models

IDPs are very susceptible to the type of solvation model used to generate the simulation
environment. Due to the large solvent-exposed surfaces of IDPs, they are highly responsive to
protein–water interaction forces. Incorrect solvation potentials have been recognized as a major source
of inaccurate, overly stabilized, or fragmentary IDP conformational description [1]. In conventional
simulations of globular proteins, AMBER and CHARMM force fields (and their variants) are frequently
used in conjunction with the TIP3P water model as the explicit solvation standard, whilst GROMOS
applies the SPC model [17]. To address the conventional solvation methods bias, CHARMM36m
proposed key Lennard-Jones modifications to the TIP3P water hydrogens, suggesting that the
optimization of the water hydrogen atom dispersion terms, instead of the oxygen atoms, leads to
more balanced protein–water interactions [10]. Other solvation models, such as TIP4P-D, have been
developed to counteract specifically the compaction effects of TIP3P and SPC [13]. Even modest
increases in London dispersion interactions between the protein and solute were found to improve
the sampling of the unfolded states of IDPs [12]. In TIP4P-D, the overall tendency for intramolecular
interactions within proteins is reduced in favor of increased protein–water interactions. The application
of the TIP4P-D water model expands the conformational diversity of the disordered states of IDPs
and was found to be in excellent agreement with experimental small-angle X-ray scattering (SAXS)
data [18].

In contrast to the explicit solvation methods discussed above, implicit solvent models represent
solvation-free energy as a continuum of electrostatic approximation. At each simulation point,
the solvation potential of the system is re-computed based only on the degrees of freedom of
the coordinates of the solute [19]. Implicit models naturally lead to enhanced macromolecular
conformational sampling due to the lack of viscosity associated with the explicit water environment [19].
Despite some of these advantages, continuum-implicit solvation methods have largely been neglected
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for MD simulations. This is mostly due to concerns that implicit solvation strategies compromise
accuracy [6].

1.3. Assessing Simulation Convergence

The concept of convergence in MD simulations is elusive but critical. It is important to ensure that
meaningful transitions are being observed in simulations, and that the conformational space is sampled
in a statistically meaningful manner. In MD simulations, convergence is seen as the plateauing of
observables for an adequately long time [20]. Several methods have established themselves as useful
for analyzing an ensemble of conformations to represent equilibrium [21]. These include assessing
the evolution of observables in terms of intra-molecular interaction energy, hydrogen bonding, root
mean square fluctuations (RMSFs) and torsion angle evolution [22]. Additionally, cluster analysis and
principal component analysis (PCA) have played a major role in assessing the structural diversity
generated in MD simulations [23–25]. Despite several metrics being used, the most ubiquitous and
standard technique for convergence determination is the calculation of the root mean square deviation
(RMSD) over the course of the trajectory [26]. Such methods, however, perform poorly for predicting
conformational convergence if the conformational ensemble differs largely and constantly from the
reference structure (as in the case of IDP simulations).

Here, we assess the MD simulations of two types of model IDPs by comparing conformations
created by them with an extensively sampled probability distribution of protein conformations created
by Monte Carlo (MC) simulations using a Markov chain to systematically generate random system
conformations dependent on the prior state [27]. Such a Markov chain Monte Carlo (MCMC) approach
for protein inference creates stochastic samples from the Boltzmann distribution to approximate
the converged target distribution [28]. Thus, comparing the well-sampled probability distribution
approximated by the MCMC simulations to the conformational landscape derived from the MD
simulations provides another method to infer convergence that is better suited for IDP simulations.

2. Materials and Methods

2.1. MD Set-up

All MD simulations were created using the AMBER16 MD simulation package [29]. For testing
the various force fields (ff14SB [30]; ff14IDPs [14]; ff14IDPSFF [15]), simulations were parameterized
and solvated with TIP3P water using tLEaP (AmberTools 16; [30]). A periodic water box was created
with a 15 Å distance between the molecules and the limits of the box. The solvation environment
was enriched with Na+ and Cl− ions to a final concentration of 150 mM NaCl. The explicitly
solvated simulations started with a conventional molecular dynamics (cMD) simulation that included
two successive minimizations: Min1 consisted of a solvent minimization run with the protein fixed,
10,000 maximum cycles and 5000 ncycles of steepest descent; Min2 aimed for a total system minimization
with 2500 maximum cycles and 1000 ncycles of steepest descent. Both had a 10 Å nonbonded cutoff.
This was followed by two production runs: Md1 entailed 100 ps of MD with weak restraints on the
protein, with SHAKE to perform hydrogen bond length constraints, no force evaluation for bonds with
hydrogen and the system was kept at a constant volume, to reach a temperature of 310 K using Langevin
dynamics for temperature control; Md2 created a 1000 ns simulation of the whole unrestrained system,
with SHAKE to perform hydrogen bond length constraints and no force evaluation for bonds with
hydrogen, at constant pressure with isotropic pressure scaling and the with an average pressure of
1 atm, at a temperature of 310 K and Langevin dynamics for temperature control with a random seed.
A leapfrog integrator was used, and a collision frequency of 1 ps−1. A total 500,000,000 MD steps were
performed per simulation, with a time step of two femtoseconds. The total potential(EPTOT) and
dihedral DIHED energy values obtained from the cMD simulation were used to calculate thresholds
and to set up accelerated MD (aMD) runs [3]. Each aMD created a 1000 ns simulation of the system
with a total of 500,000,000 MD steps with a time step of two femtoseconds, SHAKE for hydrogen bonds,
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and no force evaluation for bonds with hydrogen, a nonbonded cutoff of 8 Å, constant pressure and
isotropic pressure scaling, simulated at 310 K using Langevin dynamics as a thermostat, with a leapfrog
integrator, and a collision frequency set at 1 ps−1.

Simulations including the TIP4-D water model [13] were set up using the same protocol as described
above for the different force field simulations. For the implicit solvent simulations, the starting structure
was prepared with tLEaP to use the modified ff14SBonlysc as a force field without water box parameters.
Several generalized Born (GB) implementations were tested, but only the GB8 solvation model was
found to be potentially useful. After an initial minimization of 5000 maximum cycles and 2500 ncycles
of steepest descent, the simulations were executed for a total of 1000 ns per run at a temperature of
310 K, using Langevin dynamics as a thermostat and a time step of two femtoseconds. The starting
structure for the Histatin 5 simulations was created using PyMOL v1.8.6.0 [31] in an unstructured
format to avoid conformational bias. The starting structure for c-MYC1-88 was created using the
QUARK ab initio protein structure prediction software [32,33].

2.2. Trajectory Analysis

Trajectory clustering analysis was carried out with CPPTRAJ (AmberTools16 [34]), employing the
k-means algorithm, a total of four clusters and a random initial set of point distribution. The Scatter
Biosis software [35] was used to calculate the theoretical SAXS intensities of the simulation representative
structures, for comparison with the experimental data. The experimental SAXS data were analyzed
using GNOM and PRIMUS, part of a suite of applications developed for small angle scattering
data analysis (ATSAS data analysis software) [36–38]. The theoretical Cα proton chemical shifts
were calculated for each trajectory, sampled every 10 ns, using SPARTA+ [39]. For the MD data,
secondary structure propensity calculations were carried out with VMD-Timeline [40]. The VMD
calculation provides the total random coil, turn, α-helix and β-sheet values of each residue sampled
during the MD trajectory. Of these, the values for the α-helical and β-sheet contents per residue
were extracted and calculated as a percentage of the total secondary structure propensity for the
trajectory. The α-helix similarity (Sα) assessment was conducted using the open-source PLUMED
library version 2 [41], implementing Pietrucci and Laio’s (2009) protocol [42]. Principal component
analysis (PCA) calculations were carried out with Bio3D [43]. Time-lagged independent component
analysis (TICA) and associated plots were produced using the PyEMMA 2.5.7 package [44]. TICA was
performed using the backbone torsion angles, which refers to all the backbone phi/psi angles,
for featurization at a lag of 20 nanoseconds projected over two independent components. The radii
of gyration of 45 structures per TICA state were considered to calculate the average. The trajectory
analysis and plots were created with custom Python scripts. The elbow cluster validation method was
implemented using the Yellowbrick package. The k-means clustering applied the k-means algorithm
that is part of the sklearn.cluster package. K-means clustering was parameterized using the k-means++

initialization method, with a maximum iteration of 100,000 cycles and 100 cycles of k-means run with
different centroid seeds. The peak minimum and maximum analysis of the radius of gyration over
time plot was done using the argrelextrema package imported from the scipy.signal module. The local
peaks were found using a window of 500 to avoid the noise of neighboring peaks. The monitoring of
contact activity in the MD simulation trajectories was achieved using the Python module tagging.py
from the Timescapes 1.5 suite of programs [45,46]. This application maps functionally important
residues based on pairwise residue interaction during the trajectory. The cutoff contact distance was
set at 6.0 angstroms. The turning.py module from Timescapes 1.5 was used to map residues based on
their correlations of backbone pivot angles, which display hinge bending. The pivot angle coefficient
calculations are based on the “pseudodihedral” angles created by four consecutive α-carbons [45].

2.3. Experimental Data

The Histatin 5 SAXS data were generated by Cragnell et al. (2016) [47], and the Histatin 5 NMR
data were derived from Raj, Marcus and Sukumaran (1998) [48].
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The c-MYC1-88 NMR-derived secondary structure propensities were obtained from Andresen et al.
(2012) [49].

2.4. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) simulations were run with the PHAISTOS program package
for protein structure inference [28]. Two sets of MCMC independent simulations were set up with
25 threads each. Each thread simulated a total of 2000 structures. Therefore, a total of 100,000 structures
were obtained for analysis. To avoid any structural bias, the simulations were parameterized using
the amino acid sequence as the sole input. The backbone and sidechains were sampled using both
pivot-uniform and sidechain-uniform moves. These moves produce a random, uniformly distributed
rotation of the dihedral (ϕ,ψ angles) and sidechain torsion angles (χ angles) in single residues.
The energy terms integrated the Profasi force field, parameterized to simulate interactions in the
presence of a solvent. MCMC produces a collection of samples from a dense stationary (π) target
distribution. The Markov chain builds an equation in which new states are accepted or rejected based
on the following probability:

π(x)P(x → x′) = π(x′)P(x′ → x) (1)

The probability of inhabiting state x multiplied by the probability of going from state x to state x’ is
reversibly equal to the probability of moving from state x’ to state x. The next phase is to define two
transition probability steps—the proposal probability and the acceptance–rejection probability:

P(x → x′) = Pp(x → x′)Pa(x → x′) (2)

The proposal probability Pp(x → x′) corresponds to the calculated probability of proposing a given
state and the acceptance probability Pa(x → x′) corresponds to the calculated probability of accepting
the new state or rejecting it.

The Metropolis–Hastings algorithm was used as the acceptance criterion for the simulation method:

P(x → x′) = min
(
1,
π(x′)Pp(x′ → x)
π(x)Pp(x→ x′)

)
(3)

Assuming unbiased transitions, the algorithm fully accepts the new state if its probability is
increased according to the target distribution ((x’) > π (x)). If the probability is lower, the acceptance
will depend on how unfavorable the new conformation is. This ensures harmonious sampling
and a congruent probability distribution, in which the structures are sampled according to their
conformation favorability.

3. Results

MD simulation and convergence analyses were applied to the experimental data available for two
human IDP protein models, Histatin 5 and the N-terminal domain of the human oncoprotein c-MYC
(c-MYC1-88). Both proteins are known to be extensively intrinsically disordered, and the availability
of published experimental data makes them excellent model systems for judging the quality of MD
simulations based on various force field variants and water models.

3.1. Histatin 5

Histatin 5 is a human salivary protein, 24 amino acids in length, that is known for its antimicrobial
and antifungal role. It has a completely unstructured conformation, which was experimentally
characterized by small-angle X-ray scattering (SAXS) [47]. To compare the Histatin 5 SAXS data to the
results obtained from the various MD simulations, a noise reduction method was first performed to
address the complexity of the simulation trajectory using k-means clustering to identify the average
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structures for the most abundant states sampled during the simulation. Table 1 lists the radii of
gyration (Rg), a measure of protein compactness, for each representative structure calculated for the
two most abundant k-means clusters for each force field variant tested.

Table 1. Comparison of the radius of gyration (Rg)values for each representative structure (cluster and
simulated force field condition) with the experimentally determined Rg of Histatin 5.

Force Fields Cluster 1 Cluster 2 Experimental

ff14SB 9.15 Å 7.71 Å
ff14IDPs 7.38 Å 8.15 Å 13.8 Å

ff14IDPSFF 7.48 Å 9.87 Å

A comparison of the experimentally determined Rg with the values derived from the simulations
shows that the values do not agree. A similarly poor correlation is also evident from Kratky plots
comparing the experimental data with curves calculated from representative structures modeled in the
MD simulations (Figure 1).
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Figure 1. Kratky plots comparing the experimental small-angle X-ray scattering (SAXS) data (in gray)
to representative structures obtained from each of the (a) simulated force field conditions: ff14SB and
the modified ff14IDPs and ff14IDPSFF force fields and (b) solvation conditions: TIP3P, TIP4P-D and the
implicit solvent GB8.

The ff14SB force field—or either of the variants (ff14IDPs, ff14IDPSFF)—thus produced overly
folded protein ensembles that are not consistent with the experimental data. Although ff14IDPSFF
performs very slightly better than ff14SB in terms of reduced protein compaction, ff14IDPs performed
significantly worse. With these force field variants failing to adequately describe Histatin 5, we next
turn our attention towards different water models. Table 2 lists the Rg values for each cluster centroid
structure for the different MD trajectories as compared to the SAXS-derived Rg.

Table 2. Comparison of the Rg values for each representative structure (cluster and simulated force
field condition) with the experimentally determined Rg of Histatin 5.

Water Model Cluster 1 Cluster 2 Experimental

TIP3P 9.15 Å 7.71 Å
TIP4P-D 13.47 Å 12.12 Å 13.8 Å

Implicit GB8 10.68 Å 14.14 Å
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These results reveal that the TIP4P-D and GB8 solvation modes create ensembles close to the
experimental data. This is especially obvious when compared to the Rg values obtained with TIP3P
solvation. For simulations employing TIP4P-D, the two most abundant clusters consist of extended
conformations, whereas the implicitly solvated GB8 simulations create conformations with a wider
range of structure compactness, oscillating between averages of 10.68 Å and 14.14 Å (Table 2).

The conclusions from the comparison with the SAXS results are reiterated by NMR data based on
a comparison between the calculated chemical shifts obtained from the MD trajectories and Histatin
5 NMR Cα proton chemical shifts. A comparison of the chemical shifts predicted from the various
MD simulation trajectories makes it evident that the TIP3P water model is not a suitable choice for
solvation, whilst both TIP4P-D and GB8 replicate the experimental findings accurately (Figure S1).

This confirms that water models play a substantially more influential role than any of the force
field modifications tested earlier. Moreover, both TIP4P and GB8 implicit solvations appear to be
capable of recreating the extended conformational nature of the Histatin 5 protein in conjunction with
the standard force field AMBER ff14SB.

3.2. c-MYC1-88

While creating non-compacted ensemble structures for an IDP is a key requirement for any serious
attempt to simulate such proteins computationally, it remains unclear from the Histatin 5 example
shown above whether these conditions are capable of accurately recreating the transient secondary
structure elements that are known to form spontaneously in larger IDPs. In order to test this, we turned
to experimental data available for the N-terminal portion of the oncoprotein c-MYC.

The gene-specific transcription factor c-MYC regulates key aspects of cell proliferation and
metabolic activity through controlling the expression of its target genes [50]. Apart from a structured
“helix–loop–helix” DNA-binding domain located at the C-terminal end, the remainder of the protein
(constituting ~70% of the overall primary amino acid sequence) is intrinsically disordered. Similar to
the situation found in other intrinsically disordered proteins, a comparison of c-MYC orthologs among
vertebrate species reveals only a moderate degree of sequence conservation, with the exception of
five more highly conserved regions termed MYC boxes (MB-0 to MB-4). These MBs are thought to
facilitate interactions between c-MYC and its numerous molecular partners, including transcriptional
mediators, elongators and chromatin re-modeling complexes. Spanning the first 88 amino acids,
c-MYC1-88 contains MYC boxes MB-0 and MB-1. Secondary structure propensities (SSPs) have been
measured for this region by NMR [49] (Figure 2a).

Based on combined SSP and nuclear Overhauser effect (NOE) assessments, four main regions
displaying transient ordered structure formation were identified: a β-turn at residues 21 to 24, helical
regions comprising residues 26 to 34 and 47 to 54 and an extended region from residue 55 to 65.
These assignments, specifying both the location of distinct secondary structure elements and the
expected frequency of their appearance, provide us with a valuable guidepost to assess the accuracy of
IDP simulation conditions.

In order to allow robust comparisons, the averaged secondary structure for each residue over
the course of the entire simulation was calculated for each trajectory. We initiated our studies of
c-MYC1-88 modeling with a combination of ff14SB with TIP3P, a standard set-up commonly used by
many investigators to simulate folded proteins. As expected, this combination overestimates the
frequency and boundaries of helical formations (Figure 2b). The experimental data indicate that
there are no protein regions displaying more than 50% helical formation, highlighting the discrepancy
between the simulation and the experimental results. The extended regions determined by NMR are
also absent from the TIP3P simulation. The result essentially reiterates the conclusions previously
drawn from the Histatin 5 simulations, namely that the TIP3P solvation method produces overly
ordered and compact structures with an increased bias towards α-helical motifs.
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Figure 2. Comparison of (a) NMR-determined transient secondary structure propensities of c-MYC1-88

with (b) those obtained from the molecular dynamics simulations using the TIP3P solvation method,
(c) those obtained from simulations using the TIP4P-D water model and (d) those obtained from the
simulations using the implicit generalized Born (GB8) solvation method. The positive values on the
Y-axis correspond to regions with a tendency to form α-helices, whilst the negative Y-axis values
reflect regions with propensities towards extended structure formation. (e) Sequence of c-MYC1-88

with MYC-boxes MB-0 colored in red and MB-1 in blue.

We next employed the combination of ff14SB with TIP4P-D, which already looked promising
earlier with Histatin 5. The TIP4P-D simulations bring the helical formation values more in line with
the experimentally determined values. However, TIP4P-D samples the extended motifs insufficiently
(Figure 2c). In contrast, the implicitly solvated simulations replicates the extended formations between
residue 21 and 25 congruently, as well as the α-helical regions formed by residues 26 to 34 and 47 to 54
(Figure 2d). Although the implicitly solvated simulation creates overly ordered loci at the two terminal
regions, it otherwise displays a noteworthy degree of consistency with the experimentally determined
secondary structure propensities. It should also be considered that the c-MYC1-88 used in the NMR
study still contained an N-terminal oligo-histidine tag, which may have had a (minor) influence on the
dynamics of the immediately adjacent N-terminal helices [49]. The overall conclusion is affirmed by
the total values for helical and extended β-sheet contents, which demonstrates that both explicit water
models replicate the helical content well, but only GB8 recreates the extended portions predicted by
experiment (Figure S2).
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3.3. Assessing Convergence

From this point onwards, the analyses will focus on results obtained with the GB8 implicit
solvation simulations. To compare the conformational landscapes derived from MCMC and MD
simulations, both were defined in terms of the RMSD and Rg of the structural ensembles generated.
Although a correlation between experimental and modeled structures in terms of their secondary
structure elements was already shown above, we wanted to develop additional metrics for assessing
the compactness, flexibility and conformational divergence of the c-MYC1-88 data. The RMSD was
calculated against a completely extended structure as a reference. Therefore, the highest RMSD and
low Rg values correspond to structures in folded states and, conversely, the lower RMSD and high
Rg values correspond to the most extended structures. The MCMC landscape and RMSD frequency
distribution plot indicate that the most probable states, and most well-sampled conformations, occupy
the highest RMSD. This correlates with the lowest Rg values, between 13 and 18 Å, hinting at c-MYC1-88

preferentially inhabiting a series of relatively compact states, whereas the MCMC probability landscape
also identifies a wealth of extended c-MYC1-88 states (Figure 3).
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The rationale for creating such a landscape is not to directly assess the protein dynamics of
c-MYC1-88 from it (MCMC simulations do not reflect a temporal progression of a system, but rather give
an overview of the range of possible conformational spaces available to the protein (Figures S3 and S4).
A comparison of the MCMC and MD conformational landscapes results calculated in the same manner
shows that the two methods create structures that inhabit an extensively overlapping landscape,
especially when referring to the most compact conformations. Furthermore, using Sα—a metric of
α-helical content similarity—as a conformational descriptor against the Rg, allows for investigation
into the helical sampling of the MD landscape; the MD simulation explores a wide range of helical
content, similar to the range explored by the MCMC landscape (Figure 4).Life 2020, 10, x FOR PEER REVIEW 11 of 21 

 

 

Figure 4. (a) MCMC conformational landscape of c-MYC1‐88 defined in terms of its α-helix similarity  

(Sα) and Rg. (b) The same for MD GB8 simulations. 

From these data, it is evident that the MD simulations do not become trapped in overly helical 

states, but sample within a wide basin of Sα values. Nevertheless, the MD simulations preferentially 

explore the lowest Rg states, which could be due to a variety of reasons. It is possible that the most 

extended states, as predicted by the MCMC simulation, are not very favorable energetically. 

Alternatively, the MD simulations may require more extensive sampling on a longer time scale. To 

assess the validity of these two hypotheses, MD simulations were repeated, starting with the 

coordinates from an extended, compacted structure or MCMC k-means clustering centroids as 

starting points (Figure S4). The results demonstrate that the choice of initial structures has no 

significant impact on the MD simulation conformational sampling range; all simulations converge 

on the same common space (Figure 5). 
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From these data, it is evident that the MD simulations do not become trapped in overly helical
states, but sample within a wide basin of Sα values. Nevertheless, the MD simulations preferentially
explore the lowest Rg states, which could be due to a variety of reasons. It is possible that the
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most extended states, as predicted by the MCMC simulation, are not very favorable energetically.
Alternatively, the MD simulations may require more extensive sampling on a longer time scale.
To assess the validity of these two hypotheses, MD simulations were repeated, starting with the
coordinates from an extended, compacted structure or MCMC k-means clustering centroids as starting
points (Figure S4). The results demonstrate that the choice of initial structures has no significant impact
on the MD simulation conformational sampling range; all simulations converge on the same common
space (Figure 5).
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Figure 5. (a) Boxplots comparing the MCMC RMSD values of the MD simulations parameterized with
different starting structures: “Extended” corresponds to fully unstructured initial coordinates; “Folded”
to a structure created with an ab initio software; the “Cluster” structures correspond to the different
k-means centroids. (b) MCMC conformational landscape compared to MD of c-MYC1-88 simulations
starting from fully extended initial coordinates (in red), or from a folded conformation (in blue).
The arrows highlight the shortest path from the starting point to the equilibrated conformational pool.
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Given that our finally selected simulation parameterization (ff14SB/GB8) is in agreement with
experimentally determined secondary structure propensity—and the starting coordinates do not
bias the simulations towards more compact structures—any differences between the MCMC and
MD simulations are therefore more likely to be caused by the energy functions used to calculate the
structural properties, rather than any bias introduced by the starting point of the simulation.

3.4. c-MYC1-88 Trajectory Analysis and Structural Insights

Plotting different trajectory analysis metrics of c-MYC1-88 suggests that the resulting landscapes do
not contain any differentiated clusters (Figure S5). Such a lack of discernible clusters makes it difficult
to deploy clustering algorithms to gain insight into the different molecular macrostates. K-means
clustering and principal component analysis (PCA) reveal little or no distinct divisions between the
different structural states (Figures S6 and S7; Table S1). Even the description of conformational space
based on Sα shows that the helicity of the protein is noisy and rapidly changing (Figure S8).

Time-lagged independent component analysis (TICA) is a linear transformation method oriented
towards finding coordinates of maximal correlation given a time lag. Similar to PCA, the slowest
motions, rather than maximal amplitude motions, are tracked [44]. The main advantage of TICA over
PCA is its lower dependence on the distance metrics since TICA is not concerned with the variance
of atomic displacement, but rather with the speed of temporal change embedded into the process of
structural change. However, the featurization of data remains important and must be considered to
minimize statistical error [51]. The data were projected over two dimensions (the first two independent
components [ICs]) with a lag of 20 nanoseconds. The two ICs correspond to the two slowest transitions
in the data set. Plotting the two ICs as a free energy plot shows that TICA creates a landscape with
well-defined and separated minima basins that are less prone to clustering errors (Figure 6).

The three conformational basins identified by TICA correspond to three metastable states. K-means
clustering can now be used to discretize the IC landscape to allocate trajectory structures to their
respective k-means clusters, which allows the clustered microstates to be assigned to the three
metastable macrostates. The Perron-cluster cluster analysis (PCCA++) method was used to extract the
representative structures for each macrostate.
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Figure 6. (a) Free energy plot showing the conformational basins with the k-means overlapped cluster
centers (orange). (b) Free energy surface plot of the energy basins identifying the protein metastable
states. (c) The representative structures for each basin, highlighting the location of MB-0 (red) and
MB-1 (blue).
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The main long-lived basin, corresponding to the most abundantly visited pool of conformations,
is State 3 (Figure 6b,c). This is a key finding, as this pool of conformations affords a window of
opportunity for drug discovery—it is a frequently visited protein state and at the heart of the two slowest
transition processes. Exploring along the IC1, it can be easily determined that the slowest process
corresponds to the transition between State 3 and State 2. It is interesting to note that the structural
dynamics from State 3 to State 2 entail the extension of the extreme N-terminus, which includes MB-0,
from the main compacted body of c-MYC1-88. The second slowest process along the IC2 axis identifies
the transition between State 3 and State 1, which moves c-MYC1-88 to a more compact conformation.
Overall, the TICA landscape identifies three c-MYC1-88 metastable states: a very abundant pool
of conformations (State 3), averaging 12.96 Å in Rg, followed by the slowest transition to State 2,
which mainly consists of the N-terminal extension—with an average Rg of 13.3 Å. The transition from
State 3 to State 1 is the second slowest process, in which the molecule acquires a slightly more compact
structure, with an average Rg of 12.7 Å.

For IDPs such as c-MYC1-88, it is still crucial to assess the highest amplitude motions because they
usually correspond to rarer but still important protein conformations. As previously established, PCA
is not a useful conformational space descriptor method, and a new strategy must be implemented.
The strategy presented here goes back to basic geometric measures, in this case Rg, to track minima
and maxima over time (Figure 7a).

The maxima correspond to the most extended and the minima to the most compact structures
(Figure 7b). The results emphasize that all of the most extended structures of c-MYC1-88 involve
the extension of its N-terminus. A sequence of structural snapshots summarizes the range of
protein conformations available to c-MYC1-88 (Figure 7c). The three TICA states correspond to
a well-sampled pool of conformations, with especially State 3 being most abundant. State 3 represents
an intermediate conformation that can become more compact—and therefore less likely to interact with
molecular partners—or project the N-terminus containing MB-0 outwards in an extended conformation
(the “fly-casting” extension), which may help to promote binding with molecular partners.

The structural dynamics of MB-0 are especially intriguing because MB-0 corresponds to a separate
and independent transactivation domain [52]. The results reported here are further supported by
contact data identifying residues 1 to 24 as displaying the highest contact formation and breaking
activity (Figure 8).

In contrast, the remainder of the protein is structurally comparatively stable. Additionally,
calculations of the pivot angle formation coefficients identify residues 20 to 24 as the main hinge of
c-MYC1-88 (Figure 9). The hinge is formed by the same residues predicted by NMR data (Figure 2a) to
form a β-turn. Other notable pivot angles that contribute to the N-terminal flexible nature include
residues 8 to 12, which allow the extreme N-terminus to extend further away from the rest of the
protein. A stable helix spanning residues 27 to 38, consistent with NMR observations, creates a divider
that separates MB-0 and MB-1 from each other, and allows them to act autonomously in terms of their
structural dynamics. The ordered region, acting as a divider, allows MB-0 to perform its alternating
extension and compaction motions, fly-catching its molecular partners, without disrupting the local
conformation of MB-1. As seen from the network of contacts (Figure 8; Figure S9), MB-1 and the
phosphodegron residues are crucial hubs in the system, making it essential for that protein region to
remain more structurally stable than MB-0.
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Figure 7. (a) The Rg values over the course of the trajectory with the identified minima and maxima
(identified by red and green dots, respectively). (b) Examples of some of the minima and maxima
conformations over time. MB-0 is highlighted in red and MB-1 in blue. (c) Representative structures
of c-MYC1-88. The “minimum” and “maximum” structures were derived from the Rg peak detection
and were combined with the three states that correspond to the three time-structure independent
components analysis (TICA) metastable states.
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Figure 8. (a) Contact activity data superimposed on a representative structure. (b) Linear graph
containing the contact residue coefficient for root mean square fluctuation per residue. (c) Heat map
identifying active versus inactive protein regions according to their contact activity coefficient—blue
identifies areas of stability and red identifies areas of increased activity.
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by NMR [49].
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4. Discussion

IDPs are challenging to characterize on a structural and a functional level. Many experimental
methods (especially structural techniques), that have been used successfully for decades to study
globular proteins, fall short when it comes to applying them to IDPs. The problems with acquiring
structural information about IDPs significantly impede other types of functional investigations (such
as site-directed mutagenesis approaches) because biochemists lack models suitable for formulating
testable hypotheses.

Especially during the last decade, MD simulations have established themselves firmly as an
essential method to gain a deeper understanding of structural—and especially dynamical—aspects of
macromolecular systems. Standard MD parameterization methods (force fields and water models) are
predominantly based on the structures of folded protein available in databases and therefore are of
limited value for simulating IDPs. Such biases include increased helical content and tendencies to fold
proteins into structures that are too compact. Due to this, novel MD methods have been developed to
improve the accuracy of simulations of IDPs. Here, different approaches were tested and benchmarked
against SAXS- and NMR-derived data. These approaches included force field re-parameterizations and
the implementation of novel solvation methods. Using Histatin 5 and c-MYC1-88 as IDP model systems
revealed that the modified force fields tested did not perform as accurately as expected when compared
to the available experimental data. None of the force field variants specifically developed for IDP
simulation managed to generate the random coil extended Histatin 5 conformers detected by the SAXS
data. In contrast, modified water models showed more promise. The explicit solvation TIP4P-D and
the implicit GB8 outperformed TIP3P. With TIP3P solvation, certain regions of c-MYC1-88 displayed
nearly 100% helical content—a completely stable secondary structure element—which deviates from
the NMR estimations [49]. Despite some discrepancies between c-MYC1-88 N-terminal NMR SSP and
the simulated equivalents, the modified solvation methods, TIP4P-D and GB8, brought the helical
motifs into a much more realistic agreement with the NMR SSP data in terms of propensity and location
along the primary sequence. Although the TIP4P-D model was excellent in terms of reproducing
the transient α-helical structures, it failed to reproduce the β-sheet extended regions that were also
detected experimentally [49]. Of all the tested methods, GB8 implicit solvation turned out to be the
most balanced method in terms of reproducing the α-helical and β-sheet propensities at the anticipated
loci (Figure 2, Figure S2).

Another contentious topic, especially when it comes to simulations of IDPs, is the convergence
criteria of simulation data. An objective demonstration—showing that an MD simulation samples
a varied conformational space adequately without getting trapped in local minima—is as crucial
as it is challenging. Here, we present a new approach that compares the conformational ensemble
produced by MDs to a structural landscape (defined by RMSD and Rg, or Sα and Rg) derived from
an MCMC probability distribution. Our results show that, irrespective of the starting structure
(compact/extended), the MCMC and MD simulations converge on an overlapping conformational
space. When comparing the MCMC data to the MD results, it becomes apparent that both preferentially
sample the compact states. However, MCMC predicts the existence of highly extended states that
are not sampled expediently by MD. This suggests that the most extended conformations, although
possible from a probabilistic point of view, represent rare and energetically unfavorable states. Thus,
MD simulations systematically sample the collections of structures from the predicted landscape that
are structurally and dynamically most relevant.

Histatin 5 is an interesting model system in its own right, but is especially suited for assessing the
performance of force field variants and modified solvation systems in simulating a highly unfolded
structure lacking discernible secondary structure elements. The major goal of the work described
here, however, was to gain new insights into the structural properties of c-MYC1-88. The fact that the
combination of ff14SB with the GB8 implicit solvation method reproduces the secondary structure
elements identified by NMR studies most faithfully suggests that at least certain structural aspects of this
IDP are also reflected in the MD trajectories. Despite the overall high mobility of c-MYC1-88, a detailed
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analysis suggests the presence of three distinct clusters of states. We identified a compact state engaged
in a variety of internal interactions, which appears less likely to establish any intermolecular interactions
with other proteins. We also detected a state where the N-terminus (encompassing residues 1 to 24),
including MB-0, extended away from the remainder of the protein, which is compatible with the concept
that MB-0 may be involved in a “fly-catching” motion of molecular partners. This ability to extend is
facilitated by hinges spanning residues 20 to 24 (also corresponding to a β-turn detected by NMR).
The MD results also show that a region identified as having significant α-helical propensities (residues
27 to 38) may act as a stabilizing anchor, allowing MB-0 to extend without affecting local structures
formed around MB-1. Our observations thus support the role of MB-0 acting as a structurally distinct
and independent transcriptional transactivation domain (TAD). In contrast to the identified MB-0
motion, the simulations predict that MB-1 remains more stable throughout the simulation. This finding,
taken together with the elucidation of the protein’s most abundant and long-lived TICA metastable
state, afford a window of opportunity for drug discovery and for reaching a better understanding of
the important phosphodegron region contained within MB-1. The three representative structures can
be used for further enquiry into ligand docking and in silico compound screening.

5. Conclusions

For a protein such as c-MYC1-88, where the location, dynamics and structural aspects of the functional
domain(s) are still poorly characterized, such insights provide a basis for more detailed site-directed
mutagenesis approaches to establish structure/function links and to assess the “druggability” of these
key functional domains. Furthermore, the methods presented here provide a clear strategy for the
simulation optimization, convergence assessment and trajectory analysis that are equally applicable
to simulating other IDP systems that are currently often left unstudied due to a lack of suitable
analytical methods.
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MCMC simulation; Figure S4: MCMC landscape of c-MYC1-88 colored by K-means cluster; Figure S5: Normalized
MYC88 landscapes obtained by plotting RMSD values against different simple MD simulation metrics; Figure
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