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ABSTRACT: Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has caused the worst global health crisis in living
memory. The reverse transcription polymerase chain reaction (RT-
qPCR) is considered the gold standard diagnostic method, but it
exhibits limitations in the face of enormous demands. We evaluated
a mid-infrared (MIR) data set of 237 saliva samples obtained from
symptomatic patients (138 COVID-19 infections diagnosed via
RT-qPCR). MIR spectra were evaluated via unsupervised random
forest (URF) and classification models. Linear discriminant
analysis (LDA) was applied following the genetic algorithm (GA-
LDA), successive projection algorithm (SPA-LDA), partial least
squares (PLS-DA), and a combination of dimension reduction and
variable selection methods by particle swarm optimization (PSO-
PLS-DA). Additionally, a consensus class was used. URF models can identify structures even in highly complex data. Individual
models performed well, but the consensus class improved the validation performance to 85% accuracy, 93% sensitivity, 83%
specificity, and a Matthew’s correlation coefficient value of 0.69, with information at different spectral regions. Therefore, through
this unsupervised and supervised framework methodology, it is possible to better highlight the spectral regions associated with
positive samples, including lipid (∼1700 cm−1), protein (∼1400 cm−1), and nucleic acid (∼1200−950 cm−1) regions. This
methodology presents an important tool for a fast, noninvasive diagnostic technique, reducing costs and allowing for risk reduction
strategies.

■ INTRODUCTION

The pandemic caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has affected countries around the
world since its emergence in Wuhan city, China, in December
2019. Globally, according to the World Health Organization
(WHO), as of 1st July 2021, there have been 181 930 736
confirmed cases of coronavirus disease 2019 (COVID-19),
including 3 945 832 deaths.1 One of the critical actions to
control the spread of the virus is to quickly isolate infected
people. For this, we need virus detection methods that are
precise, reliable, and fast, with potential for large-scale
implementation.1−5 The most well-known virus detection
assays are the enzyme-linked immunosorbent assay (ELISA)
and the reverse transcription quantitative polymerase chain
reaction (RT-qPCR). The latter has been used as the gold
standard for SARS-CoV-2 infection diagnosis. These methods
are touted as repeatable, reproducible, and robust.6 However,
they require laboratory resources and chemical reagents.
Besides, the time needed to deliver test results, sample
logistics, and other factors require consideration due to the
pandemic’s enormous demands. Thus, it is urgent to develop

reliable and fast methods to accommodate demand for large-
scale usage.1−4,7

Consequently, vibrational spectroscopy techniques, includ-
ing infrared (IR) spectroscopy, have been proposed as
alternative testing systems since they are reproducible,
noninvasive, need little or no sample preparation, and are
reagent-free. Moreover, information at the molecular level
provides information on functional groups, types of bonds, and
molecular conformations, thus potentially identifying impor-
tant biochemical changes in biological samples in the presence
of viruses.6,8 IR spectroscopy evaluates molecular vibrational
modes based on changes in the dipole moment caused by
chemical bond vibrations. These vibrational movements allow
molecules to absorb radiation energy related to their
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vibrational energy levels. Within the IR regions, mid-IR (MIR),
whose wavenumbers range from 4000 to 200 cm−1,9 seems to
be the most promising in biological analyses since this spectral
range includes important biomolecules. This is mainly in the
1800−900 cm−1 spectral region, known as the biofingerprint
region. In this spectral region, absorptions of different
biomolecular constituents occur; they may be biomarkers
such as lipids (CO symmetric stretching at ∼1750 cm−1),
carbohydrates (CO−O−C symmetric stretching at ∼1155
cm−1), and nucleic acid (asymmetric phosphate stretching at
∼1225 cm−1, and symmetric phosphate stretching at ∼1080
cm−1), in addition to glycogen and protein phosphorylation
(between ∼1030 and 900 cm−1). Proteins exhibit higher signal
contributions around amide I at ∼1650 cm−1 (80% CO
stretching, 10% C−N stretching, and 10% C−N bending) and
amide II at ∼1550 cm−1 (60% N−H bending, and 40% C−N
stretching); and a lower contribution of amide III at ∼1260
cm−1 (C−N stretching).6,8,10−12

Studies have reported the use of MIR spectroscopy to detect
dengue virus in blood samples,13 identification of Staph-
ylococcus aureus bacteria in blood samples,14 and stability
studies of blood composition from healthy people.15 However,
one of the difficulties in the use of MIR spectroscopy in
virology studies is related to the variability of viruses affecting
human organisms. Greater virus variability produces more
overlapping spectral information within a heterogeneous,
complex biological sample derived from human hosts. To
address these challenges, biospectroscopy studies have been
associated with statistical learning methods. The main methods
are principal component analysis (PCA), hierarchical cluster
analysis (HCA), and linear discriminant analysis (LDA) with

dimension reduction or variable selection methods. This is
because spectroscopy data usually present collinear variables.
Thus, alongside LDA are applied: genetic algorithm (GA-
LDA), successive projection algorithm (SPA-LDA), PCA−DA,
and partial least squares (PLS-DA).6,8,10−14,16−18

Since 2020, many research groups have directed their
attention to spectroscopy methods to detect the SARS-CoV-2
virus, such as the development of plasmonic biosensors19 and
virus detection in blood samples,20 oral or pharyngeal cell
smears,21 and saliva.4 Barauna et al.21 analyzed oral and
pharyngeal cell smears in swabs collected from patients with
COVID-19 infection-like symptoms. Samples were separated
in training (50 positives and 50 negatives) and validation (20
positives and 61 negatives) and classified by GA-LDA with a
sensitivity of 95% and a specificity of 89%. However, they
associated only one of the five selected variables with the virus’
RNA, and other selected variables with the organism’s
inflammatory responses. Wood et al.4 studied characteristic
spectroscopic signals of SARS-CoV-2 biomarkers with
synchrotron-Fourier transform infrared (FTIR) and Raman
spectra of purified virus. For COVID-19 infection diagnosis,
they modeled 57 mean spectra, of which 29 are positive for
SARS-CoV-2 infection by RT-qPCR and 28 are negative. With
truncated spectra at 1300−900 cm−1, Monte Carlo double
cross-validation, and PLS-DA with an optimized threshold of
0.6, they obtained a sensitivity of 93% and a specificity of 82%.
However, they concluded that they needed a larger patient
cohort to improve the technique’s sensitivity and specificity.
To the best of our knowledge, there are no studies with a

diagnosis via spectrochemical analysis of saliva from a large
patient cohort. Herein, we aim to evaluate the use of MIR

Figure 1. Diagram outlining methodologies for collection of saliva from patients, spectral acquisition, and multivariate statistical data analyses.
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spectroscopy associated with pattern recognition methods to
classify a higher number of patients via saliva tests into positive
or negative SARS-CoV-2 infections. Our aim is to develop a
rapid and less invasive diagnostic technique as an alternative to
screening patients with COVID-19-like symptoms.

■ METHODS

Participants. In this study, we evaluated MIR spectra from
a total of 265 healthcare services patients from the state of
Espiŕito Santo in Brazil. These patients were assisted according
to State Health Secretaries directives and according to the
World Health Organization (WHO). This study was carried
out in agreement with the Helsinki declaration and authorized
by the Hospitals Directive due to the emergency situation.
Ethical approval for the investigation was granted by the Ethics
Committee at the Universidade Federal do Espiŕito Santo
(#0993920.1.0000.5071 and #31411420.9.0000.8207). Full
ethical approval was given to undertake the studies described
herein. All patients provided the Informed Consent Form.
Next, a nasopharyngeal swab was collected by a healthcare
provider for RT-qPCR analysis. Then, the patient received a
sterile tube for supervised saliva self-collection. All steps from
the point of patient admission for classification models are
described in Figure 1.
RT-qPCR analyses were carried out in the central laboratory

from the State Health Secretary of Espiŕito Santo (LACEN−
SESA, Brazil). These RT-qPCR results were used for a class
assignment for samples, giving a vector of class response.
MIR Spectroscopy. For spectral analysis, 5 μL of saliva

were transferred to an aluminum foil and air-dried at room
temperature overnight. Spectra were obtained from the
aluminum foil containing the dried sample using a trans-
portable benchtop Cary 630 FTIR spectrometer (Agilent
Technologies, Inc.), equipped with a diamond attenuated total
reflectance (ATR) sampling accessory. The spectral range was
from 4000 to 650 cm−1, in the absorbance mode with a 4 cm−1

resolution, with 32 scans for the background and the
sample.22,23 For each analysis, the diamond sampling window
and the sample press tip were cleaned with 70% ethanol v/v.
MIR spectra were acquired in triplicate, with an average time
of 90 s per sample, giving us a data set with 795 rows (samples
in triplicate) and 1798 columns (variables).
Multivariate Analyses. Average triplicate spectra were

obtained and processed for baseline correction using the
iteratively reweighted penalized least squares algorithm
(airPLS).24 This procedure can reduce the impact of scattering
artifacts, undesirable slopes, and offsets in MIR data sets. This
is important for biological studies because the MIR wavelength
(2.5−25 μm) includes dimensions of biological cells, providing
potential conditions for scattering.11

For multivariate analyses, we truncated the spectral data set
in the biofingerprint region (1800−900 cm−1) since this region
contained relevant biological information.6,10,12,17 With mean
and truncated MIR spectra, we obtained a data set with 265
rows (samples) and 484 columns (variables). These spectra
were preprocessed for testing with one or a combination of
methods: mean centering, first and second derivatives,25

standard normal variate (SNV),26 vector normalization, and
multiplicative scatter correction (MSC).27 All processing was
carried out with MATLAB 13A version (The MathWorks,
Inc.), with a few toolboxes28 for modeling and our scripts. This
processing was divided into unsupervised analysis to identify

trends in the data set and supervised analysis to classify
samples as positive or nonpositive for SARS-CoV-2 infections.

Unsupervised Analysis. Due to the complexity of
biological spectroscopic information, we chose the random
forest algorithm for unsupervised pattern recognition. Random
forest (RF) is a machine learning algorithm, developed by
Breiman,29 from the fusion of classification and regression trees
(CART) and bootstrapping aggregation (BAGGING).30 A
comprehensive description is in the Supporting Information,
but more detailed information can be found elsewhere.29,31,32

Herein, we used the unsupervised random forest (URF)
model according to the methodology proposed by Afanador et
al.32 to visualize the similarities and differences in the samples.
For this, the concatenated matrix with the generated synthetic
outliers and the original data set was modeled via the RF
model with 1000 trees.31 The model was evaluated and used to
calculate the proximity and dissimilarity matrices. Finally, data
trends were evaluated through the dissimilarity matrix in
reduced spaces by principal coordinates analysis (PCoA) with
the Euclidean distance of samples.

Supervised Analysis. For supervised analysis, we used the
RT-qPCR results for the sample class assignment. We
calculated the cycle threshold (CT) average of target genes in
the RT-qPCR analysis (Gene N and Gene ORF1ab). Samples
with mean CT < 37 were assigned class one “positive”, and
samples with mean CT > 37 were assigned class two “negative”.
Next, the original data set and the vector of the classes were
divided into a training set (70%) and a test set (30%) by the
Kennard Stone method,33 keeping the original proportion
between the two classes (positive and negative). Then, the
training and test data sets were preprocessed, and outliers were
identified by the control chart of Q residual and Hotelling’s T2.
Variable selection methods (GA,34,35 SPA,14,36−38 and particle
swarm optimization (PSO)39) associated with classification
models (PLS-DA28,40,41 and LDA41−43) were carried out.
These methods are described in the Supporting Information.
The selection of variables by GA was performed with 100

generations, each one containing 200 chromosomes; crossover
and one-point mutation probabilities were set at 60 and 10%,
respectively. A solution was chosen after three cycles were
performed. For variable selection through PSO, we used the CT
mean as a response vector, and PSO was tested five times using
autoscaling, in which the number of particles (popsize)
equaled 10 during 10 iterations. Finally, several models were
acquired by a selected variable set (SPA-LDA; GA-LDA; PLS-
DA; PSO-PLS-DA). The PLS-DA and PSO-PLS-DA were k-
fold cross-validated (k = 10) to optimize latent variable (LV)
via the error rate in the cross-validation. Settings to train the
models are shown in Table S-1.

Consensus Class. Like high-level data fusion,44,45 which is
operated at the decision level, separate models were built, and
their predictions were integrated into a single final response.46

Then, each sample was classified considering the predicted
categories and their calculated probability among all of the
models (eq 1). For this, we evaluated a combination of the
individual decision of three classification models (GA-LDA,
PLS-DA, and PSO-PLS-DA) to a final class decision for the
samples. The class defined for the sample of each built model is
shown in Table S-2, in which each sample was arranged for
two results [positive (1) and negative (2)].

∑ ∑=Prob (Prob )/ (Prob )mult class1 class2 (1)
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where Probclass1 is the class 1 calculated probability in the
model, Probclass2 is the class 2 calculated probability, and
Probmult is the deciding factor obtained between the two
classes. The higher ratio value formulates the final decision
class for the sample.
Classification models were evaluated for accuracy, sensitivity,

specificity, and other metrics as described in Table S-3. To
present the statistical significance, we evaluated these models
by the y-permutation test. For this, class labels of the training
data set were permuted, the permuted model was built, and the
predicted class was provided via the permuted model.
Performance parameters of the original model are expected
out of the distribution of the permuted models. This y-
permutation test was evaluated by the F1 score metric for class
1 (positive) (eq 2). This metric was used to statistically
represent the conjunct of performance parameters via the only
scalar value. The F1 score is a harmonic mean of the precision
and sensitivity, where the F1 score reaches its best value at 1
and worst value at 0.

= ·
·
+

F1 2
(precision sensitivity)

(precision sensitivity) (2)

Finally, the evaluated models were used to estimate diagnosis
in a new data set. For this, models were applied to a data set
from 59 randomly selected and newly collected samples (177
spectral triplicates). These new spectra were processed like the
training and validation data sets and were classified by
individual models and the consensus class. The RT-qPCR of
the new data set was obtained, and we calculated metrics for
revision.

■ RESULTS AND DISCUSSION
In this study, we successfully identified a structure in the data
set via the URF model. Then, we built linear classification
models and tested them to diagnose saliva samples as either
positive or negative for COVID-19 infections via MIR spectra.
The procedures to identify and remove outliers (before and
after preprocessing data) resulted in a data set with 237
samples. Table 1 describes sample profiles grouped by gender

and comorbidities, with numbers and percentages in their
respective subset. There are 138 samples of patients with
positive and 99 with negative COVID-19 RT-qPCR diagnoses.
Additionally, out of the positive samples, 67% are women and
33% are men. Similarly, out of the negative samples, 71% are
women and 29% are men. However, the data showed
insufficient statistical evidence (α = 0.05) to reject the null

hypothesis: diagnostic distribution is independent of patients’
genders (biological difference) through the χ2 test (p-value of
0.5095).
Participants in this study were patients assisted through the

health services, between the ages of 20 and 97 years old.
However, most of the cohort comprises people aged between
30 and 60 years old (Figure S-1), with only one patient >90
years. Through the χ2 test, there is no sufficient statistical
evidence (α = 0.05) to reject the null hypothesis, i.e., the
diagnostic distribution is independent of patients’ ages (p-value
of 0.5541). CT values of target genes were distributed between
12.33 to 40.38 of gene N and 10.99 to 41.56 to gene ORF1ab;
those nondetected were assigned values of 42 (Figure S-2).
Spectra profiles in the biofingerprint (Figure 2) and full

spectral regions (Figure S-3) exhibit high intraclass variability,
with few observable differences between positive (Figure 2A)
and negative samples (Figure 2B).

This chosen biofingerprint region is important for biological
studies due to the information on molecular vibrations,
including lipids (∼1750 cm−1), carbohydrates (∼1155 cm−1),
proteins (amide I, ∼1650 cm−1; amide II, ∼1550 cm−1; amide
III, ∼1260 cm−1), in addition to DNA/RNA (∼1225 and
∼1080 cm−1).6,8 Table 2 and Figure S-4 show the principal
MIR band assignment6,8 for this data set in the biofingerprint
region, while Figure S-5 shows raw spectra and baseline
corrected aspects.

Unsupervised Random Forest. A URF model was
applied to identify a possible structure of the spectral data
set. Since data were modeled with bootstrapping of samples
and variables in the presence of synthetic outliers, this
structure allows a distinction between the original and
synthetic data. The RF model distinguished the original and
synthetic data sets with an accuracy of 98.2%, a sensitivity of

Table 1. Health Data for Participants

number (%)

total
(n = 237) positive negative

gender

female 162 (68%) 92 (57%) 70
(43%)

male 75 (32%) 46 (61%) 29
(39%)

hypertension 58 (24%) 33 (57%) 25
(43%)

diabetes 20 (8%) 13 (65%) 7 (35%)
chronic obstructive pulmonary disease
(COPD)

15 (6%) 10(67%) 5 (33%)

obesity 13 (5%) 8 (62%) 5 (38%)

Figure 2. Mid-infrared (MIR) spectral data set from saliva samples of
n = 237 patients with RT-qPCR diagnoses for COVID-19 infection
with an average spectrum (red line). (A) Positive (n = 138 samples)
and (B) negative (n = 99 samples).
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98.9%, and a specificity of 97.5%, indicating that the data were
structured.
From this URF model, the proximity matrix allowed PCoA

(80% variance), and samples were projected in three
dimensions by a PCoA scores graph (Figure 3). It can be

seen that there is a structure allowing visualization of different
groups. However, classes were unsatisfactorily distanced in
PCo1, which we expected to classify these samples.
In this URF model, we identified 82 variables with higher

frequencies (Figure S-6). These variables show the band
characteristic of lipid regions (1785−1729 cm−1; stretching

CC and CO of ester groups) and proteins (1680 and
1718 to 1705 cm−1: stretching CO and C−N; 1600−1250
cm−1: amides I, II, and III). Moreover, they also show the
characteristic acid nucleic bands (1612−1606 cm−1: adenine
vibration in DNA; 1244−1100 cm−1: stretching PO4 of
phosphodiester groups; 1025−1021 cm−1: C−O stretching
(carbohydrates); 961 cm−1: deoxyribose; and 930−909 cm−1:
phosphodiester stretching bands).6,8

Supervised Analyses.We applied linear models to classify
samples with variable selection methods (SPA-LDA and GA-
LDA), dimension reduction (PLS-DA), and a combination of
variable selection and dimension reduction (PSO-PLS-DA).
SPA-LDA, GA-LDA, and PLS-DA are the most applied
classification methods in biological studies.6 The same training
and test sets were used for each model. Several preprocessing
methods were tested, but the 2nd derivative (21 points of the
window, and second-degree polynomial; Figure S-7) produced
better results in the classification models. From the response of
individual models, the consensus class was assigned to samples
via the probability of models (Table S-2). Out of the training
set, 35 samples (21%) were misclassified, characterizing false
positives and false negatives, and in the test set, this number
decreased by 12 (17%) according to the consensus class
confusion matrix (Table 3 and Figure S-8). The confusion
matrix of individual models is shown in Table S-4.

The principal performance metrics of individual models and
parameters from the consensus class are shown in Table 4 for
the training and test sets. Out of the individual models, GA-
LDA and PSO-PLS-DA highlight better parameters. Matthew’s
correlation coefficient (MCC) is used mainly for the
unbalanced number of samples between the classes.47−49

This parameter uses the confusion matrix to calculate a
correlation between actual and estimated classes. An MCC
value near zero suggests that the prediction was not better than
a random prediction.47−49 GA-LDA, PSO-PLS-DA, and SPA-
LDA models had an MCC value >0.5, despite the parameter
obtained from the consensus class for the final decision.
Distinct bands were selected by the models. In SPA, five

variables were selected; in GA, 34 variables were selected; and
in PSO, 45 variables were selected. In PLS-DA models, more
important variables were identified by coefficient values. This
identification was carried out separately for classes 1 and 2.
From the PLS-DA model without variable selection, 63
wavenumbers were highlighted for class 1 and 37 for class 2,
whereas from PLS-DA after the PSO method, 6 variables were
highlighted for class 1 and 5 for class 2. It can be seen (Figure
4) that the lipid regions are highlighted in these selections
(1707−1792 cm−1), mainly GA (Figure 4A), PSO (Figure
4C), and PLS-DA (Figure 4D,E). From PLS-DA (Figure 4D),

Table 2. Principal Mid-Infrared (MIR) Bands of the Data
Set and Chemical Assignmentsa6,8

band tentative assignment

∼3275 cm−1 stretching O−H symmetric
∼3200−3550 cm−1 symmetric and asymmetric vibrations attributed to

water
∼2930 cm−1 stretching C−H
∼2800−3000 cm−1 C−H lipid region
∼2100 cm−1 combination of hindered rotation and O−H bending

(water)

∼1750 cm−1 lipids: ν(CC)

∼1650 cm−1 amide I: ν(CO)
∼1550 cm−1 amide II: δ(N−H) coupled to ν(C−N)
∼1450 cm−1 methyl groups of proteins: δ[(CH3)] asymmetric
∼1400 cm−1 methyl groups of proteins: δ[(CH3)] symmetric
∼1250−1260 cm−1 amide III: ν(C−N)
∼1155 cm−1 carbohydrates: ν(C−O)
∼1225 cm−1 DNA and RNA: νas(PO2

−)
∼1080 cm−1 DNA and RNA: νs(PO2

−)
∼1030 cm−1 glycogen vibration: νs(C−O)
∼971 cm−1 nucleic acids and proteins: n(PO4)
∼960−966 cm−1 C−O, C−C, deoxyribose

aνs = symmetric stretching; νas = asymmetric stretching; and δ =
bending.

Figure 3. Principal coordinates analysis (PCoA) scores plot from the
unsupervised random forest (URF) model from the mid-infrared
(MIR) saliva data set (n = 246).

Table 3. Confusion Matrix of the Consensus Class of
Training and Test Data Setsa

actual class TP TN FP FN

training data set
positive 82 48 20 15
negative 48 82 15 20
test data set
positive 38 22 9 3
negative 22 38 3 9

aTP = true positive; TN = true negative; FP = false positive; and FN
= false negative.
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this region is more important to distinguish class 1, i.e.,
positive class. There are few studies with evidence of a
relationship between triglyceride levels and COVID-19
infections in biofluids and other resources.50,51 The amide I
region (∼1650 cm−1) was selected for the GA (Figure 4A) and
PSO (Figure 4C) methods. Also, this region is highlighted in
PLS-DA and PSO-PLS-DA (Figure 4E) for class 2, i.e.,
negative. Regions showing higher PLS-DA (Figure 4D)
coefficient values for class 1 are bands closer to 1400 cm−1,
that is the protein region, and closer to 1200 cm−1, 1155 cm−1,
and 950 cm−1 that comprise carbohydrates, DNA/RNA, and
nucleic acid regions, respectively. Moreover, PSO-PLS-DA
(Figure 4E) reduced 90% of the variables most important for
class 1 and 86.5% for class 2 when compared to PLS-DA
without variable selection (Figure 4D).
A few of the selected variables match those described in

Barauna et al.21 (∼1429, ∼1220, ∼1069 cm−1), despite the

higher number of selected regions in this study. However,
Barauna et al.21 used spectra from swabs with saliva collected
and dried, containing a few better-defined bands at 1100−900
cm−1 regions. Because the cell smear can present a higher
component concentration, this may explain the spectral
difference and increased variance in this region. Moreover,
Wyllie et al.7 reported higher SARS-CoV-2 RNA copies in
saliva (5.58 mean log copies mL−1) compared to nasophar-
yngeal swabs (4.93 mean log copies mL−1). This virus has a
preferential tropism to human airway epithelial cells, and
salivary glands could be a potential target for SARS-CoV-
2.2,3,5,7,52

In another paper with a classification of biological samples
for the diagnosis of COVID-19 through MIR spectroscopy,
Zhang et al.20 achieved a distinction between the MIR spectra
of blood serum samples through the PLS-DA model (a
sensitivity of 83.1% and a specificity of 98%) with data
processed by the second derivative among control group
patients (healthy people) and patients with the confirmed
diagnosis of COVID and respiratory infection diseases. The
most important regions for the models were 1450−1650 and
1050−1100 cm−1. However, besides the invasive samples and
increased time for analyses, the authors emphasized, in that
study, that either the spectra of asymptomatic patients or those
diagnosed, but with a few days that showed symptoms, the
model may not correctly identify. This challenge is
corroborated by our results since even with acceptable
accuracy, models can show a high false-positive rate (FPR).
Herein, considering the participants presented with respira-

tory infection symptoms (Table S-5), the potential to
distinguish the relevant biochemical changes related to
SARS-CoV-2 presence in their biological system is expected
with the proposed method. In addition, the prevalence
negative value (PNV) or precision of the consensus class for
the negative class (class 2) was 88%. This suggests that
although the symptoms are similar, the model distinguished
the negative samples for SARS-CoV-2 with good precision. In
this case, the false-negative rate (FNR) may be a problem with
more preoccupation levels. One infected person classified as
healthy can potentially contribute to spreading the virus. For
this reason, the sensitivity (93%) and the prevalence negative
value (88%) are potential indicators that the modeled
biomarkers in MIR spectra are related to SARS-CoV-2 virus
presence in saliva samples. The participant cohorts present
variability of symptoms from mild to moderate and days of

Table 4. Quality Parameters of Classification Modelsa

samples/class quality parameters

model preprocessing set POS NEG outlier
SENS
(%)

SPEC
(%)

PREC CL.1
(%)

PREC CL.2
(%)

ACC
(%) MCC

SPA-LDA second derivative train 97 68 7 69.1 63.2 72.8 58.9 66.7 0.32
test 41 31 2 87.8 67.7 78.3 80.8 79.8 0.57

GA-LDA second derivative train 97 68 7 86.6 67.6 79.2 77.9 78.8 0.56
test 41 31 2 95.1 70.9 81.2 91.7 84.7 0.69

PLS-DA (7 LV) second derivative train 97 68 7 70.0 76.5 80.9 64.2 72.7 0.46
test 41 31 2 75.6 74.2 79.5 69.7 75.0 0.49

PSO-PLS-DA (9 LV) second derivative /mean-
centered

train 97 68 7 79.4 76.5 82.8 72.2 78.2 0.55
test 41 31 2 82.9 74.2 80.9 76.7 79.2 0.57

consensus class train 97 68 7 82.5 75.0 82.0 75.0 79.0 0.57
test 41 31 2 93.0 74.0 83.0 88.0 85.0 0.69

aSENS = sensitivity; SPEC = specificity; PREC CL.1 = precision of class 1, or prevalence positive value (PPV); PREC CL.2 = precision of class 2,
or prevalence negative value (PNV); ACC = accuracy; and MCC = Mathew’s correlation coefficient.

Figure 4. Most important and selected variables through selection
methods and classification models. (A) Genetic algorithm linear
discriminant analysis (GA-LDA) selected variables; (B) successive
projection algorithm LDA (SPA-LDA) selected variables; (C) particle
swarm optimization (PSO) selected variables; (D) most important
variables for class 1 (red +) and class 2 (blue +) through partial least
squares discriminant analysis (PLS-DA) coefficient values; and (E)
most important variables for class 1 (red +) and class 2 (blue +)
through PSO-PLS-DA coefficient values.
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symptoms range from 1 to 10. However, it is more
concentrated between days 3 and 6, with a few outliers >10
days (Figure S-9). In samples with 3 days of symptoms, there is
a higher false-negative number. Between 4 and 5 days, there is
a higher false-positive level, and from 6 days of symptoms
onward, the trend is toward an increase in false-negative levels
(Figure S-10). However, the χ2 test (α = 0.05) shows no
sufficient statistical evidence to reject the null hypothesis that
the distribution of misclassified samples through the consensus
class is independent of the days a patient showed symptoms
(p-value of 0.4224).
To evaluate their clinical application, the models were tested

on a new data set (n = 59, from symptomatic patients at the
same region and health services) to classify with individual
classification models and final decision by the consensus class.
A few outliers in this new data set were identified and excluded
from this application (n = 8, ∼13%). After clinical diagnoses of
these samples, we calculated the quality parameters of this new
prediction (Table S-6). The accuracy was decreased by 59%
from the final decision and 63% from the PSO-PLS-DA model.
This suggests that models need to improve robustness. GA-
LDA gave a higher FPR in this new application (68%), while
other models gave FPRs of ∼50%. PSO-PLS-DA gave better
quality parameters in this new prediction when compared to
other models. Recently, Wood et al.4 modeled 29 positive
saliva samples for SARS-CoV-2 infection and 28 negatives.
Moreover, they developed a modified reflection accessory for
transflection IR to optimize the point-of-care diagnosis and to
maximize signal absorbance. They obtained a sensitivity of 93%
and a specificity of 82% using the spectral region at 1300−900
cm−1. However, given their small data set, they concluded that
they need a larger patient cohort to improve sensitivity and
specificity. In this study, we evaluated a high number of
samples (n = 237), and we tested a new data set (n = 59). In
addition, we identified important spectral regions through
variable selection methods and the consensus class that may
clarify a relationship between spectral information and the
biological COVID-19 infection response. Furthermore, from
the y-permutation test (Figure S-11), we see the consensus
class contributes to turn the classification response statistically
significant compared to an individual model.

■ CONCLUSIONS
The variable selection methods and linear classification models
can identify positive saliva samples with 83% accuracy, and
precision values of 80 and 88% for positive and negative for
COVID-19 infections, respectively. Although the individual
GA-LDA model performs well in the validation set with 95%
sensitivity and 85% accuracy, the consensus class adds
robustness to the prediction of new samples since GA-LDA
incurs a higher false-positive rate (68%). The models’
estimated classes for a new random set of samples (n = 59)
were not equivalent to those obtained in the validation set.
However, PSO-PLS-DA estimated classes better (77%
sensitivity, 48% specificity, and 63% accuracy). This suggests
that PSO-PLS-DA may be an alternative classification method
for screening suspected samples. Their performance at the
validation set also suggests this (83% sensitivity, 74%
specificity, 79% accuracy, and an MCC value of 0.57).
MIR spectroscopy sensitivity for this analysis has been

confirmed in recent studies with biological fluids. The
unsupervised analysis of the URF method shows a specific
structure in the MIR spectroscopic data. Besides, supervised

analyses highlight relevant spectral regions related to virus
biomarkers and infection responses.
The wider implementation of this methodology will require

the identification of confounding factors, like COVID-19
biological response, other types of infections, or other viruses,
besides asymptomatic people. Our results show that this
methodology is a potential tool to isolate possible spreaders of
the disease, due to the possibility of rapid diagnosis (minutes)
and reduced demand for supplies. In addition, collection of
saliva samples by patients themselves avoids the direct
interaction between healthcare providers and patients and
may be an alternative for screening infected people.
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Krausz, F. Nature 2020, 577, 52−59.
(18) Bel’skaya, Lv. J. Appl. Spectrosc. 2019, 86, 187−205.
(19) Peng, X.; Zhou, Y.; Nie, K.; Zhou, F.; Yuan, Y.; Song, J.; Qu, J.
New J. Phys. 2020, 22, No. 103046.
(20) Zhang, L.; Xiao, M.; Wang, Y.; Peng, S.; Chen, Y.; Zhang, D.;
Zhang, D.; Guo, Y.; Wang, X.; Luo, H.; Zhou, Q.; Xu, Y. Anal. Chem.
2021, 93, 2191−2199.
(21) Barauna, V. G.; Singh, M. N.; Barbosa, L. L.; Marcarini, W. D.;
Vassallo, P. F.; Mill, J. G.; Ribeiro-Rodrigues, R.; Campos, L. C. G.;
Warnke, P. H.; Martin, F. L. Anal. Chem. 2021, 93, 2950−2958.
(22) Baker, M. J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H. J.;
Dorling, K. M.; Fielden, P. R.; Fogarty, S. W.; Fullwood, N. J.; Heys,
K. A.; Hughes, C.; Lasch, P.; Martin-Hirsch, P. L.; Obinaju, B.;
Sockalingum, G. D.; Sulé-Suso, J.; Strong, R. J.; Walsh, M. J.; Wood,
B. R.; Gardner, P.; Martin, F. L. Nat. Protoc. 2014, 9, 1771−1791.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.1c04162
Anal. Chem. 2022, 94, 2425−2433

2432

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jose%CC%81+G.+Mill"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vale%CC%81rio+G.+Barauna"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Francis+L.+Martin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8562-4944
https://orcid.org/0000-0001-8562-4944
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eusta%CC%81quio+V.+R.+de+Castro"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wanderson+Roma%CC%83o"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.1c04162?ref=pdf
https://worldhealthorg.shinyapps.io/covid/
https://doi.org/10.1016/j.ajic.2021.03.008
https://doi.org/10.1016/j.ajic.2021.03.008
https://doi.org/10.1016/j.oooo.2021.01.028
https://doi.org/10.1016/j.oooo.2021.01.028
https://doi.org/10.1002/anie.202104453
https://doi.org/10.1016/j.medj.2020.12.010
https://doi.org/10.1016/j.medj.2020.12.010
https://doi.org/10.1016/j.trac.2017.09.015
https://doi.org/10.1056/NEJMc2016359
https://doi.org/10.1056/NEJMc2016359
https://doi.org/10.1080/05704920701829043
https://doi.org/10.1080/05704920701829043
https://doi.org/10.1038/s41596-020-0322-8
https://doi.org/10.1038/s41596-020-0322-8
https://doi.org/10.1039/c8an01384e
https://doi.org/10.1002/jbio.201400018
https://doi.org/10.1039/c7ra03361c
https://doi.org/10.1016/j.mimet.2013.12.015
https://doi.org/10.1038/s41467-021-21668-5
https://doi.org/10.1038/s41467-021-21668-5
https://doi.org/10.1016/j.bbrc.2005.12.153
https://doi.org/10.1038/s41586-019-1850-7
https://doi.org/10.1007/s10812-019-00800-w
https://doi.org/10.1088/1367-2630/abbe53
https://doi.org/10.1021/acs.analchem.0c04049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c04049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c04608?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nprot.2014.110
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.1c04162?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(23) Martin, F. L.; Kelly, J. G.; Llabjani, V.; Martin-Hirsch, P. L.;
Patel, I. I.; Trevisan, J.; Fullwood, N. J.; Walsh, M. J. Nat. Protoc.
2010, 5, 1748−1760.
(24) Zhang, Z. M.; Chen, S.; Liang, Y. Z. Analyst 2010, 135, 1138−
1146.
(25) Savitzky, A.; Golay, M. J. E. Anal. Chem. 1964, 36, 1627−1639.
(26) Barnes, R. J.; Dhanoa, M. S.; Lister, S. J. Appl. Spectrosc. 1989,
43, 772−777.
(27) Isaksson, T.; Naes, T. Appl. Spectrosc. 1988, 42, 1273−1284.
(28) Ballabio, D.; Consonni, V. Anal. Methods 2013, 5, 3790−3798.
(29) Breiman, L. Mach. Learn. 2001, 45, 5−32.
(30) Breiman, L. Mach. Learn. 1996, 24, 123−140.
(31) Lovatti, B. P. O.; Nascimento, M. H. C.; Neto, ÁC.; Castro, E.
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