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Abstract

Background: Emerging evidence implicates altered gene expression within skeletal muscle in the pathogenesis of Kennedy
disease/spinal bulbar muscular atrophy (KD/SBMA). We therefore broadly characterized gene expression in skeletal muscle
of three independently generated mouse models of this disease. The mouse models included a polyglutamine expanded
(polyQ) AR knock-in model (AR113Q), a polyQ AR transgenic model (AR97Q), and a transgenic mouse that overexpresses
wild type AR solely in skeletal muscle (HSA-AR). HSA-AR mice were included because they substantially reproduce the KD/
SBMA phenotype despite the absence of polyQ AR.

Methodology/Principal Findings: We performed microarray analysis of lower hindlimb muscles taken from these three
models relative to wild type controls using high density oligonucleotide arrays. All microarray comparisons were made with
at least 3 animals in each condition, and only those genes having at least 2-fold difference and whose coefficient of variance
was less than 100% were considered to be differentially expressed. When considered globally, there was a similar overlap in
gene changes between the 3 models: 19% between HSA-AR and AR97Q, 21% between AR97Q and AR113Q, and 17%
between HSA-AR and AR113Q, with 8% shared by all models. Several patterns of gene expression relevant to the disease
process were observed. Notably, patterns of gene expression typical of loss of AR function were observed in all three
models, as were alterations in genes involved in cell adhesion, energy balance, muscle atrophy and myogenesis. We
additionally measured changes similar to those observed in skeletal muscle of a mouse model of Huntington’s Disease, and
to those common to muscle atrophy from diverse causes.

Conclusions/Significance: By comparing patterns of gene expression in three independent models of KD/SBMA, we have
been able to identify candidate genes that might mediate the core myogenic features of KD/SBMA.
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Introduction

Kennedy disease/spinal bulbar muscular atrophy (KD/SBMA),

is a progressive neuromuscular disease [1,2], which is caused by an

expanded trinucleotide repeat length encoding the polyglutamine

(polyQ) tract of the androgen receptor (AR) gene [3]. Polygluta-

mine expansion of other genes similarly results in neurodegener-

ative conditions, such as Huntington’s disease and several

autosomal dominant spinocerebellar ataxias [4]. The mechanisms

that mediate neurodegeneration in the polyQ diseases remain

poorly understood. The orthodox view of KD/SBMA is that the

polyQ expanded AR has a toxic gain of function and also a loss of

trophic function within motoneurons, resulting in neuron loss and

consequently denervation-induced muscular atrophy. However,

recent insight from mouse models of KD/SBMA have suggested

that primary myogenic pathology, and more specifically patho-

logical alterations in gene expression within skeletal muscle, might

also contribute to this disease (reviewed in [5]). This evidence

consists mainly of 2 major findings: that myopathy precedes

neuropathy in mice with genetic polyQ expansion mutations in the

AR [6], and also that overexpression of AR in muscle fibers is

sufficient to reproduce several hallmark features of KD/SBMA

[7]. Additional circumstantial evidence includes the presence of

myopathy and transcriptional alterations in polyQ expanded AR

mutant mice [6,7,8,9], and studies of human pathology [6,10,11].

Transcriptional disturbance caused by polyQ expansion is

thought to contribute to the etiology of KD/SBMA. Loss of the

normal transcriptional functions of AR [12,13], is paired with gain
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of toxic function, in which novel interactions of AR with cofactors

results in aberrant transcriptional activation and/or repression

[14]. An additional possibility is that transcriptional disturbance

might occur indirectly, due to pathology at the cellular, tissue,

organ or system level [5]. For example, muscle from polyQ AR

mutant mice exhibit alterations in gene expression typical of

denervation [6,7,15], which seems likely to originate as a cell non-

autonomous response to neuropathy. Other candidate genes

which might mediate pathology in KD/SBMA have been

identified, including vascular endothelial growth factor (Vegfa)

[7,9], P300/CREB binding protein (P300/CBP) [9,16], heat shock

proteins [17,18,19,20,21,22,23,24], and genes related to mito-

chondrial function [25]. More systematic studies of gene

expression have been performed on cell lines [14], but to date,

there have been no published reports of transcriptional profiling of

mouse models of KD/SBMA.

Research into the etiology of KD/SBMA has been hampered

somewhat by mouse models being analyzed individually, with little

or no direct comparison between models. We therefore included

several mouse models that differ significantly in the type of

induced mutation and in some features of their phenotype

(reviewed in [5]), but share common pathological features,

including: myopathy, neuropathy, sex biased neuromuscular

atrophy, ligand-dependant pathology, and transcriptional distur-

bance. HSA-AR mice, which lack polyQ AR despite having these

features of KD/SBMA pathology, were included in the compar-

ison to allow us to evaluate those alterations which are unique to

polyQ AR. Additionally, we compared these results with published

microarray analysis of gene expression in skeletal muscle of mice

with related conditions, such as AR knock out (ARKO, [26]),

DHT treatment of mice [27,28], Huntington’s disease [29],

denervation induced and chronic muscle wasting [15,30] to gain

insight into the underlying systemic, cellular and molecular

pathological mechanisms.

Results

Complete lists of differentially regulated genes resulting from

microarray analysis of HSA-AR, AR97Q and AR113Q are

presented in the supporting material (Tables S1, S2, S3). The

degree to which genes are regulated similarly between these

models is represented by Venn diagram (Figure 1). This analysis

indicated a similar degree of overlap between the 3 models, and

suggested that a core pattern of altered gene expression is

associated with the symptoms of KD/SBMA common to the three

models. The list of genes in the intersection between the 3 models

is reported in Table S4.

The list of candidate genes presented in Table S4 notably

includes several whose functions relate to differentiation and/or

atrophy of muscle. These include: DNA-damage-inducible

transcript 4-like (Ddit4l), Enabled homolog (Enah), F box protein

32 (Fbxo32), and Integrin beta 1 binding protein 3 (Itgb1bp3). Other

differentially regulated genes are implicated in regulating oxidative

metabolism within skeletal muscle including: Ddit4l, Phospholipase

A2, group VII (Pla2g7), and Phosphorylase kinase alpha 1 (Phka1).

Ddit4l, also known as REDD2 and SMHS1, inhibits muscle

growth via the Igf1/mTOR pathway and is regulated during

atrophy of rat soleus muscle and the associated fiber type transition

from oxidative to glycolytic [31,32]. Enah, also known as MENA,

modulates the actin cytoskeleton and cell signaling along with

VASP. Dominant negative inhibition of both Enah and VASP

results in cardiomyopathy [33]. Itgb1bp3, also known as MIBP, is

developmentally regulated during myogenic differentiation and is

thought to inhibits myocyte adhesion to laminin and myocyte

production of laminin [34,35]. Allelic variants of Pla2g7 can

promote reductions in adiposity following exercise in human

populations [36], and reduction of adipose tissue is a known

function of myocyte AR [37]. Allelic variants in Phka1 in human

populations are associated with metabolic myopathy [38,39].

When considered in the context of the putative protective or toxic

functions of these genes, the general pattern of regulation observed

in our samples for Ddit4l, Enah and Itgb1bp3 are consistent with

adaptive tissue response to toxicity and that observed for Phka1

and Pla2g7 is consistent with a causal role in myopathy.

Figure 1. Venn diagrams of microarray results by mouse
model. Diagram representing the number of genes whose expression
differed from WT controls for each mutant strain (HSA-AR, AR97Q,
AR113Q), and the number of such genes shared by each model.
Notably, the overlap between HSA-AR and either of the polyQ models
was similar to the overlap between the polyQ AR samples. Gene
numbers were obtained by examining gene lists generated by a 2-fold,
p#0.05 criterion.
doi:10.1371/journal.pone.0012922.g001

Muscle Genes in KD/SBMA Mice
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Fbxo32 deserves special attention, as it is thought to activate a

pattern of gene expression which is associated with diverse forms

of muscle wasting [15,30,40]. Because muscle wasting is a cardinal

feature of KD/SBMA and wasting is present in all 3 models, we

were not surprised to find Fbxo32 in all of the gene lists (Table S4

and Table 1) However, Fbxo32 was unexpectedly decreased in all 3

models, whereas increases in Fbxo32 were observed in other cases

of muscle wasting, including diabetes, renal failure, cancer and

denervation [15,30]. Nonetheless, genes thought to be down-

stream from Fbxo32 were also found to be affected in a manner

consistent with studies of muscle atrophy (Table S4 and S5),

suggesting a non-canonical activation of this pathway. In other

words, these results suggest that muscle atrophy in KD/SBMA

may not be not triggered by increases in Fbxo32, but rather that

genes downstream of this ubiquitin ligase may mediate atrophy.

Our analysis also indicates patterns of gene expression

associated exclusively with polyQ AR, and maybe associated with

symptoms that are found in those models but not HSA-AR (e.g.

AR-immunoreactive nuclear inclusions, which are not observed in

HSA-AR [41]). The list of genes in the intersection between the

polyQ models (AR97Q and AR113Q) is reported in Table 2. With

this comparison, we observed several previously identified

candidate polyQ genes in our lists, including DnaJ (Hsp40)

homolog, subfamily B, member 6 (Dnajb6) and P300/CBP-

associated factor (Pcaf, Table S5). Dnajb6, also known as MRJ

and its drosophila ortholog, can suppress polyglutamine toxicity and

aggregate formation in vitro and in flies [42,43]. The histoacetyl-

transferase Pcaf associates with polyQ AR and is found in

aggregates in polyQ AR-expressing cells in vitro [44]. For both

Dnajb6 and Pcaf, the observed pattern is consistent with a

protective function of altered mRNA expression within the skeletal

muscle of the polyQ AR mice. We also observed similarity

between our models and gene expression in skeletal muscle of a

mouse model of Huntington’s disease [29], although these

similarities were not entirely limited to polyQ AR mice (Tables

S4 and S5). This is significant, as Huntington’s disease shares

several similarities with KD/SBMA: it is also caused by

polyglutamine expansion mutations [4], and neuromuscular

pathology, including alterations in skeletal muscle gene expression

are observed in mouse models of this disease [29,45].

Loss of AR function is thought to contribute to atrophy in KD/

SBMA, as is illustrated by the advanced atrophy of polyQ AR

mutant mice on a loss of AR function testicular feminization

mutation (Tfm) genetic background [12]. The mechanism of the

protective actions of AR in this regard are not currently

understood, but might involve stimulation of trophic factor

production [9], or activation of the Insulin-like growth factor1

(Igf1) pathway [40], for example. Some support for this idea was

Table 1. Validation of the results of microarray experiments by qRT-PCR analysis.

Microarray Fold Change Relative to WT qRT-PCR Fold Change Relative to WT (P-value)

Unigene
Symbol HSA-AR AR97Q AR113Q HSA-AR AR97Q AR113Q

Vegfa 21.86 25.11 22.22 21.74 (0.01) 22.35 (0.03) 21.92 (0.02)

Fbxo32 23.46 26.69 26.67 22.56 (0.03) 22.78 (0.05) 23.03 (0.02)

Itgb1bp3 24.99 280.73 218.48 25.26 (0.05) 233.33 (,0.01) 27.69 (0.04)

Zmnd17 29.47 28.79 232.22 24.76 (0.01) 225.00 (0.04) 233.33 (,0.01)

Gbe1 4.84 2.68 4.05 2.38 (0.05) 5.41 (,0.01) 2.81 (0.04)

Ankrd1 15.69 16.68 6.11 45.51 (0.04) 28.55 (,0.01) 6.81 (0.01)

All samples were compared with their WT controls to evaluate fold change. The expression of each test gene was normalized to the level of GAPDH within each sample
prior to comparisons between samples. Each group represents samples from 3 mice.
doi:10.1371/journal.pone.0012922.t001

Table 2. Functional distributions of regulated genes in some clusters by Database for Annotation Visualization and Integrated
Discovery (DAVID) analysis.

Pattern of Regulation Functional Groupings P-value

Down in all models Protein modification, Phosphate metabolism, Endoplasmic reticulum, Regulation of neurogenesis, Glycerol metabolism,
Amino acid metabolism, Calmodulin binding, Magnesium ion binding, Regulation of protein kinase activity

0.0466

Up in all models Intracellular organelle, Transcription cofactor activity, Focal adhesion, I band 0.0481

Down in PolyQ models Metal ion binding, Steroid metabolism, Sarcomere, Muscle contraction, Filamentous actin, Endocytosis, Chemical
homeostasis, Macrophage activation, Membrane fraction

0.0408

Up in PolyQ models Hydrolase activity, Protein binding, Peptidase activity 0.0356

Down in HSA-AR Protein modification, Metal ion binding, Muscle contraction, Kinase activity, Neuron projection,
Actin cytoskeleton, Mitochondrion, Phosphotransferase activity, Glucose metabolism

0.0563

Up in HSA-AR Protein metabolism, I band, Response to stress, Kallikrein activity, Induction of apoptosis, Zinc ion binding,
Calcium ion binding, Transcription factor binding, Actin cytoskeleton

0.0639

Functional analysis of regulated genes was performed using Functional Annotation Tool (DAVID Bioinformatics Resources) according to GO term (biological process,
molecular function and cellular component) on several clusters: cluster 8 which was down in all models, cluster 15 which was up in all models, clusters 2 and 7 which
were down in polyQ models only, cluster 14 which was up in polyQ models only, cluster 4 which was up only in HSA-AR and clusters 10 and 11 which were up only in
HSA-AR.
doi:10.1371/journal.pone.0012922.t002

Muscle Genes in KD/SBMA Mice
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obtained in our microarray results, as we find Vegfa is reduced in

muscle all 3 lines using qPCR (Table 1) and in the polyQ lines

using microarray (Table S5). We did not find that Igf1 was

reduced, nor was the Igf1 signaling pathway obviously dysregu-

lated, with the exception of Insulin-like growth factor binding

protein 5 (Igfbp5), which was decreased in AR97Q and AR113Q

(Table S5). It remains possible that Igf1 is decreased at the protein

level.

We extended this comparison of our three models by

performing a hierarchical cluster analysis in an effort to further

reduce the list of candidate genes (Figure 2). We found that 2

clusters of coregulated genes (cluster 8 and 15) are shared among

all three models. Functional analysis of these coregulated clusters

can be found in Tables 2 and 3. Analysis of gene ontogeny (GO)

terms in coregulated clusters indicated diverse classes of biological

functions of regulated genes, including several effects on protein

metabolism, ion binding and cellular differentiation (Table 2).

Interestingly, decreases in genes mediating metal ion binding were

observed in both clusters unique to PolyQ models and HSA-AR,

suggesting a convergence of gene function, despite different

clustered genes. Kyoto encyclopedia of genes and genomes

(KEGG) analysis of coregulated clusters indicated effects on the

insulin signaling pathway as well as several cell adhesion and cell

signaling pathways (Table 3). Insulin signaling has not previously

been examined in KD/SBMA, but disturbance in mitochondria

[25] could certainly result from alterations in insulin signaling

[46,47]. Similarly, alterations in cellular differentiation or tissue

remodeling associated with muscle pathology could presumably

account for the preponderance of these pathways.

Microarray results were validated using quantitative reverse

transcription polymerase chain reaction (qRT-PCR) for 6 genes

that were changed in all three models. Genes were chosen from

microarray results to represent both increased and decreased

expression and also representing a range of expression level

changes. Results of qRT-PCR agreed very well with microarray

results (Table 1). In each of the 18 tests performed, consistent

changes in gene expression were observed. These results lead us to

conclude that our microarray experiments accurately reflect the

gene expression changes occurring in the different disease models.

Discussion

This report characterizes the transcriptome of skeletal muscle in

three independently generated mouse models of KD/SBMA. This

study was undertaken to shed light on emerging evidence of

myogenic contributions to KD/SBMA (reviewed in [5]). We were

specifically interested in identifying patterns of gene expression

that are shared between the 3 models, and might therefore

account for the muscle wasting, motor axon loss and histopathol-

ogy typical of KD/SBMA. By comparing results obtained in three

models, we were able to greatly reduce the number of candidate

genes.

It was surprising to find that Fbxo32 expression was reduced in

all models, as this is a prime candidate gene for muscle atrophy.

However, several putative downstream effectors of Fbxo32 were

regulated similarly to other cases of muscular atrophy. Certainly

there is precedent for uncoupling within the Fbxo32 signaling

pathway within myocytes [48]. One potential explanation of this

observation is that preserved androgen functions in muscle repress

Fbxo32, but that other cellular pathology initiates the pathway via

alternate mechanisms. Consistent with this idea, testosterone

decreases Fbxo32 in rat levator ani muscle [49], and further loss of

AR function in mouse models of KD/SBMA accelerates

pathology [12]. A final possibility is that Fbxo32 is indeed involved,

but is activated by post-translational modification rather than

transcriptional induction.

As we have discussed elsewhere [5,7], it is surprising that

overexpression of WT AR can reproduce some of the effects of

polyQ expansion of AR. Aside from the implication that a polyQ

expansion is not necessary for pathology, this observation is

Figure 2. Hierarchical cluster analysis of gene expression in the 3 mouse models. Cluster output represents colorimetrically indicated log2
ratio change. Mutant strains are represented by columns and rows represent a single gene. Clusters of co-regulated genes are labeled. Most clusters
are unique to one of the mutant strains. Only cluster 8 and 15 show similar patterns across the 3 models, and clusters 7 and 14 are similar in the polyQ
models but not HSA-AR.
doi:10.1371/journal.pone.0012922.g002

Muscle Genes in KD/SBMA Mice
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puzzling because polyQ AR is associated with loss of AR function,

whereas overexpression of WT AR would be expected to increase

AR signaling. We were therefore interested in comparing polyQ

AR and HSA-AR models. We find that the overlap between HSA-

AR and both AR97Q and AR113Q is comparable to the overlap

between the polyQ AR models in terms of the number of genes

differentially regulated in any pair-wise comparison (Figures 1 and

2). Moreover, a total of 43 genes (or 20–25% of the genes for a

give model) were differentially regulated in all three models. We

also examined our results for evidence of loss of AR function by

comparing our gene lists with those reported for ARKO muscle

[26]. As expected, several polyQ AR genes are also altered in

ARKO muscle (Table S5). Surprisingly, HSA-AR samples also

exhibit alterations in gene expression similar to those observed in

ARKO muscle (Table S4), with gene regulation in the same

direction, suggesting that a paradoxical loss of AR function may

result from AR overexpression. This loss of function might result

from disturbance in other components of the AR signaling

pathway (e.g. titration of cofactors), or might reflect indirect effects

on gene expression resulting from muscle growth, for example.

Nonetheless, some of the differentially regulated genes were

shared by AR97Q and ARQ113 models but not HSA-AR (Table

S5). It is tempting to speculate that this intersection includes genes

that mediate aspects of KD/SBMA that are unique to polyQ

expansion of AR. Notably, protein misfolding [50], aberrant

proteolysis of polyQ AR [51,52,53] and aberrant interactions with

Heat shock proteins [19,20,21,23,54,55,56], have all been

implicated in polyQ-specific features of this disease, whereas we

find no evidence of AR aggregates in HSA-AR mice [41].

One notable limitation of the current study is uncertainty

concerning the androgen-dependence of the observed alterations

in gene expression. Because all subjects were unmanipulated adult

males, we cannot be certain that observed effects result from

testosterone action, or if so, whether ongoing stimulation with

testosterone is required for the alterations gene expression. We are

therefore conducting experiments to evaluate this possibility by

performing microarray analysis of skeletal muscle from female

HSA-AR mice which are treated acutely with testosterone to

induce KD/SBMA symptoms [7,57].

Materials and Methods

Animals
Ten WT C57BL/6J mice (5 males and 5 females, 70 days old)

from Jackson Laboratories were used to make the RNA reference

samples.

Three mouse models of KD/SBMA were used in the current

study: HSA-AR [7], AR113Q [6,58], and AR97Q [59]. Two of

the three models,, AR97Q and AR113Q, have a polyQ expansion

in the AR. HSA-AR are transgenic (Tg) mice that overexpress

selectively in skeletal muscle a rat AR with a WT number (24) of

glutamine repeats [7]. AR97Q are Tg mice that express human

AR under the control of a bactin/CMV promoter [59]. AR-113Q

are knock-in mice in which the first exon of the endogenous mouse

AR has been replaced with a similar sequence from the human

AR containing 113 glutamine repeats [6].

HSA-AR: The production, genotyping and phenotyping of

HSA-AR transgenic mice has been described elsewhere [7]. Two

founding lines (L78 and L141) of HSA-AR mice, that differ in the

copy number of the transgene and have corresponding differences

in the severity of the neuromuscular atrophy (L178,L141) have

been previously characterized. In this study, Tg male mice from

L141 (n = 5) and their WT brothers (n = 8, all mice were 110–130

days of age) were used. Behavioral, histological and candidate gene

expression data have been previously reported for a subset of these

animals [7].

AR113Q: The production and genotyping of AR113Q Knock In

mice has been described elsewhere [58], as has their neuromuscular

phenotype [6]. Mutant males (n = 3, 3–4 months of age), fully

backcrossed onto the C57BL/6J strain, were used in this study.

AR97Q: The production, genotyping and phenotyping of

AR97Q Tg mice has been described elsewhere [59]. Tg AR97Q

males and WT brothers (n = 6 of each, 112–118 days old) were

used in this study.

All animal experiments conformed to NIH guidelines and were

approved by the University Animal Care Committee of the

University of Toronto Mississauga (Approved protocol #
20007262).

Tissue Harvesting and Extraction of RNA
Under surgical anesthesia, limb muscles were dissected,

harvested, and immediately frozen in liquid nitrogen before

storage at 280uC. Frozen limb muscles were placed in TRizol

Reagent (Life Technologies, NY) and homogenized before RNA

extraction. The total RNA extraction was performed according to

the manufacturer’s guidelines. After extraction, an aliquot was

used to confirm sample integrity by electrophoresis of glyoxylated

RNA through 1.2% agarose gel and visualization by staining with

ethidium bromide. RNA was quantified using a Nanodrop (Fisher

Scientific) spectrophotometer.

Sample Labelling, Microarray Hybridization and Data
Analysis

Two-color microarray experiments were performed using

38.5K oligo mouse MEEBO arrays (Mouse Ready Arrays,

Table 3. KEGG analysis of gene pathways for shared clusters.

Pathway HSA-AR gene # P-value AR97Q gene # P-value AR113Q gene # P-value

Insulin signaling pathway 9 0.0017 9 0.0034 4 0.1996

Focal adhesion 8 0.0420 8 0.0686 6 0.0680

Adherens Junction 4 0.1289 5 0.0500 4 0.0526

Regulation of actin cytoskeleton 6 0.2714 9 0.0398 4 0.4295

Calcium signaling pathway 7 0.0723 9 0.0159 3

MAPK signaling pathway 2 10 0.0460 4

Complete gene lists resulting from microarray analysis of each model were separately analyzed with DAVID and the resulting KEGG pathways and associated p-values of
obtaining these pathways by chance are represented. The number of hits was determined from the gene lists manually.
doi:10.1371/journal.pone.0012922.t003

Muscle Genes in KD/SBMA Mice
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Microarrays Inc., Nashville, TN). This array contains 35,302

oligonucleotide (70mer) probes is largely derived from constitu-

tively expressed exons and represents approximately 25,000 mouse

genes.

Cyanine dyes were directly incorporated into cDNA synthesized

from total RNA following the procedure of Neal et al. (2003).

Briefly, 38 ml reactions containing 20 mg of total RNA, 500 mmol/L

of dATP, dGTP and dTTP; 50 mmol/L dCTP (GE Life Sciences),

25 mmol/L Cy3- or Cy5-dCTP (Perkin Elmer), 10 mmol/L DTT

and 150 pmol oligo dT20 primer were heated to 65uC for 5 min,

then 42uC for 5 min. 2 ml SuperScript II reverse transcriptase

(Invitrogen Corporation) was added, and cDNA synthesis was

carried out for 3 h at 42uC. Reactions were stopped by the addition

of 5 mL of 50 mmol/L EDTA. RNA was hydrolyzed with 4 mL of

5 mol/L NaOH for 10 min at 65uC, and the reaction was then

neutralized by titration with acetic acid. The cDNA from one

Cyanine-3 (Perkin Elmer, Boston, MA) reaction (reference sample)

were combined with those from a Cyanine-5 (Perkin Elmer, Boston,

MA) reaction (experiment sample) and were co-hybridized to oligo

array. Images of the hybridized arrays were acquired using a

ScanArray 4000 XL laser scanner (Perkin Elmer, Boston, MA) and

fluorescent intensities from spots were quantified using GenePix 5

software (Axon Instruments, Inc., CA).

Microarray images and quantification data were then imported

into GeneTraffic DUO (Stratagene, La Jolla, CA) for analysis. The

data were normalized using the Lowess algorithm at the subgrid level

while ignoring flagged values. After normalization of the data, lists of

differentially expressed genes were obtained using GeneTraffic.

For the HSA-AR and AR113Q samples, a universal RNA

reference sample made from C57BL/6J mice was utilized on each

array. Triplicate arrays using RNA samples from the different

experimental animals (i.e. HSA-AR Tg males, AR113Q Tg

males,and WT brothers) were performed such that 3 animals in

each mutant genotype were compared to WT controls. Log2 ratios

of experimental (either mutant or their WT brothers) samples

(Cy5) versus reference RNA (Cy3) were obtained. The log2 ratios

from mutant samples were then subtracted from log2 ratios from

WT versus reference RNA controls to find differentially regulated

genes. Gene lists were filtered in GeneTraffic to include only those

genes that displayed at least 2-fold difference and whose coefficient

of variance was less than 100% and had a p-value less than 0.05

using a T-test.

Subsequent to the initial experiments described above, the

AR97Q model became available. However, since there were not

sufficient amounts of the Universal RNA reference remaining,

triplicate arrays using different biological replicates of the AR97Q

males (experimental, Cy5) were directly compared with their WT

brothers (reference, Cy3). Dye swap experiments were not

performed as previous experiments in our lab had demonstrated

that they do not alter the lists of differentially expressed genes very

much (Neal et. al., 2003). Using GeneTraffic, lists of genes that

displayed at least 2-fold difference and whose coefficient of

variance was less than 100% were made.

Hierarchical cluster analysis were performed in GeneTraffic

DUO using the Pearson algorithm and average linkage [60].

Cluster figures were made using the MultiExperiment Viewer

(MeV) in the TM4 suite of software tools (www.tm4.org) (Saeed

et al., 2006).

All microarray data is MIAME compliant and has been

deposited in GEO (accession number GSE10190).

Real Time Quantitative RT-PCR
For the quantitative PCR (qRT-PCR) analysis, the 3 biological

samples of each genotype used for the microarray analysis plus

additional biological samples were used. For the HSA-AR male

mice, 2 additional mice were analyzed (5 mice total). For the

AR97Q and their WT controls, 3 additional mice were analyzed

(6 mice total for each). For the AR113Q males, only the original 3

biological replicates were analyzed. In addition to the biological

replicates, 2 or 3 technical replicates of each biological sample

were performed. A two-step approach was taken in which the

initial reverse transcription was followed by the qRT-PCR

amplification After DNase I (Invitrogen Corporation, CA)

treatment, DNA-free total RNA was reverse transcribed using a

dT20VN primer (Sigma, Oakville, ON) with SuperScript II. Each

RNA reaction had a control reaction without reverse transcriptase

to evaluate any genomic DNA contamination. Two ml of the

diluted reaction was used as template for each 25 mL RT-PCR

amplification. Reactions were assembled using SYBRH Green

JumpStart Taq ReadyMix (Sigma, Oakville, ON). The Mx4000

Multiplex Quantitative PCR System (Stratagene, La Jolla, CA)

was used for data acquisition and analysis according to the

instructions of the manufacturer. Samples were incubated at 95uC
for 10 min prior to thermal cycling (40 cycles of: 95uC for 30 s,

57uC for 30 s, and 72uC for 30 s). In order to confirm the

amplification specificity and identity the PCR products, a melting

curve analysis between 55uC and 95uC was also carried out using

the Mx4000 software. The completed reactions were heated to

95uC for 1 min and cooled to 55uC and reactions were re-heated

in 1uC increments back to 95uC in order to plot a dissociation

curve. After exporting the ROX-normalized fluorescence mea-

surements to Microsoft Excel, the program LinRegPCR [61] was

used to determine the efficiency of each reaction. These

efficiencies were used in the final calculation of fold induction

from the DCt values and the expression of each test gene was

normalized to the level of glyceraldehyse 39 dehydrogenase

(GAPDH) within each sample prior to comparisons between

samples.

Primer Design
The cDNA sequences for the genes, AR, GAPDH, Fbxo32 (F-box

protein 32), Vegfa (Vascular endothelial growth factor), Ankrd1

(Ankyrin repeat domain 1), Itgb1bp3 (integrin beta 1 binding

protein 3), Zmynd17 (Zinc finger, MYND domain containing 17),

Gbe1 (Glucan (1,4-alpha-), branching enzyme 1), Igf1 (Insulin-like

growth factor 1), Akt1 (Thymoma viral proto-oncogene 1) and

MuRF1 (Tripartite motif-containing 63) were obtained from public

databases. PCR primers were designed from the corresponding

cDNA sequences using the Whitehead Institute’s Primer3 software

[62]. All oligonucleotide sequences and primer pairs were checked

with OligoAnalyzer 3.0 (http://scitools.idtdna.com/Analyzer/)

for secondary structure and dimer formation. Each primer and

amplicon sequence was tested using the nucleotide-nucleotide

BLAST alignment tool to ensure minimal similarity with any other

sequence. Oligonucleotide primers were obtained from Invitrogen.

Primer sequences used in this study can be found in Table S6.

Supporting Information

Table S1 Complete gene list for HSA-AR. Genes regulated in

HSA-AR muscle are presented. For inclusion, each gene had to

appear in the gene list generated by a 2 fold change, p#0.05

criteria. Fold change values relative to WT controls are presented,

as are Genbank accession numbers, unigene symbols and names.

Found at: doi:10.1371/journal.pone.0012922.s001 (0.04 MB

XLS)

Table S2 Complete gene list for AR97Q. Genes regulated in

AR97Q Tg muscle are presented. For inclusion, each gene had to
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appear in the gene list generated by a 2 fold change, p#0.05

criteria. Fold change values relative to WT controls are presented,

as are Genbank accession numbers, unigene symbols and names.

Found at: doi:10.1371/journal.pone.0012922.s002 (0.05 MB

XLS)

Table S3 Complete gene list for AR113Q. Genes regulated in

AR113Q muscle are presented. For inclusion, each gene had to

appear in the gene list generated by a 2 fold change, p#0.05

criteria. Fold change values relative to WT controls are presented,

as are Genbank accession numbers, unigene symbols and names.

Found at: doi:10.1371/journal.pone.0012922.s003 (0.04 MB

XLS)

Table S4 Gene list common to all models. Genes regulated in all

3 models are presented. For inclusion, each gene had to appear in

the gene list generated by a 2 fold change, p#0.05 criteria in all

models. Fold change values are presented for each model as are

Genbank accession numbers, unigene symbols and names. In

addition, genes that have been reported to be regulated in skeletal

muscle of related conditions are identified: ARKO = genes also

identified in microarray analysis of skeletal muscle of AR null

mice, Atrophy = genes also identified in microarray analysis of

skeletal muscle of diverse conditions resulting in muscular atrophy,

DHT = genes also identified in serial analysis of gene expression

(SAGE) of skeletal muscle of mice treated with dihydrotestoster-

one, HD = genes also identified in microarray analysis of skeletal

muscle of mouse model of Huntington’s disease.

Found at: doi:10.1371/journal.pone.0012922.s004 (0.02 MB

XLS)

Table S5 The list of up- and down-regulated genes found only in

PolyQ models. Genes regulated in all 3 models are presented. For

inclusion, each gene had to appear in the gene list generated by a 2

fold change, p#0.05 criteria in AR97Q and AR113Q models.

Fold change values are presented for each model as are Genbank

accession numbers, unigene symbols and names. In addition,

genes that have been reported to be regulated in skeletal muscle of

related conditions are identified: ARKO = genes also identified in

microarray analysis of skeletal muscle of AR null mice,

Atrophy = genes also identified in microarray analysis of skeletal

muscle of diverse conditions resulting in muscular atrophy,

HD = genes also identified in microarray analysis of skeletal

muscle of mouse model of Huntington’s disease.

Found at: doi:10.1371/journal.pone.0012922.s005 (0.02 MB

XLS)

Table S6 List of primers used for quantitative RT-PCR

validation of microarray results.

Found at: doi:10.1371/journal.pone.0012922.s006 (0.02 MB

XLS)
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