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Abstract: Herpes simplex viruses (HSV) are significant global health problems associated with mucosal
and neurologic disease. Prior experimental vaccines primarily elicited neutralizing antibodies targeting
glycoprotein D (gD), but those that advanced to clinical efficacy trials have failed. Preclinical studies
with an HSV-2 strain deleted in gD (∆gD-2) administered subcutaneously demonstrated that it elicited a
high titer, weakly neutralizing antibodies that activated Fcγ receptors to mediate antibody-dependent
cellular cytotoxicity (ADCC), and completely protected mice against lethal disease and latency following
vaginal or skin challenge with HSV-1 or HSV-2. Vaccine efficacy, however, may be impacted by dose
and route of immunization. Thus, the current studies were designed to compare immunogenicity
and efficacy following different routes of vaccination with escalating doses of ∆gD-2. We compared
∆gD-2 with two other candidates: recombinant gD protein combined with aluminum hydroxide and
monophosphoryl lipid A adjuvants and a replication-defective virus deleted in two proteins involved
in viral replication, dl5-29. Compared to the subcutaneous route, intramuscular and/or intradermal
immunization resulted in increased total HSV antibody responses for all three vaccines and boosted the
ADCC, but not the neutralizing response to ∆gD and dl5-29. The adjuvanted gD protein vaccine provided
only partial protection and failed to elicit ADCC independent of route of administration. In contrast,
the increased ADCC following intramuscular or intradermal administration of ∆gD-2 or dl5-29 translated
into significantly increased protection. The ∆gD-2 vaccine provided 100% protection at doses as low as
5 × 104 pfu when administered intramuscularly or intradermally, but not subcutaneously. However,
administration of a combination of low dose subcutaneous ∆gD-2 and adjuvanted gD protein resulted in
greater protection than low dose ∆gD-2 alone indicating that gD neutralizing antibodies may contribute to
protection. Taken together, these results demonstrate that ADCC provides a more predictive correlate of
protection against HSV challenge in mice and support intramuscular or intradermal routes of vaccination.
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1. Introduction

Herpes simplex virus 1 and 2 (HSV-1 and HSV-2) are prevalent human pathogens. HSV-1 infects
approximately 67% of the population by 49 years of age and is the primary cause of oral and ocular disease,
a leading cause of infectious corneal blindness and fatal infectious encephalitis and has emerged as the
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more common cause of genital disease in the developed world [1–4]. HSV-2 is estimated to affect over
400 million people worldwide, is the primary cause of genital disease in the developing world and a major
risk factor for HIV acquisition and transmission [1].

The enormous global health burden of these two related viruses has resulted in extensive vaccine
development efforts, which have primarily focused on the generation of neutralizing antibodies (nAbs)
targeting the viral envelope glycoprotein D (gD) as the correlate of immune protection. One such vaccine
was a recombinant gD-2 protein vaccine formulated with a proprietary aluminum hydroxide (alum) and
monophosphoryl lipid A adjuvant, gD2−AS04 (GlaxoSmithKline, Brentford, UK). Despite promising
preclinical studies and a Phase 3 clinical trial of serodiscordant couples demonstrating protection in
HSV-1 and HSV-2 doubly seronegative women (but not men), a subsequent field trial found no protection
against HSV-2 infection or disease in doubly-seronegative women [5,6]. The vaccine was administered
intramuscularly at 0, 1 and 6 months. Another vaccine that has recently completed Phase I clinical trials is
a replication-defective HSV-2 strain deleted in two genes involved in viral replication (UL5 and UL29),
designated dl5-29 (HSV529, Sanofi Pasteur, Lyon, France) [7]. In preclinical studies, the vaccine was safe,
induced robust nAb and T cell responses and reduced the establishment of latency in the peripheral
nerves [8–13]. The Phase I study also found that the vaccine was safe and elicited >4-fold increase in nAb
responses in HSV seronegative participants, but no sustained increase in nAb responses in seropositive
participants. Moreover, only a subset of participants elicited significant CD4 and even fewer CD8 T cell
responses [7].

We have adopted a different strategy and evaluated a single-cycle virus deleted in gD; the primary target
of the other vaccine candidates. In preclinical murine studies, this vaccine strain, ∆gD-2, elicited high-titer
non-neutralizing Abs that activate Fc gamma receptors (FcγRs) to induce antibody-dependent cell-mediated
cytotoxicity (ADCC). Two doses administered subcutaneously completely protected female and/or male
mice against a lethal vaginal or skin challenge with clinical isolates of HSV-1 and HSV-2 and prevented the
establishment of latency [14–17]. This protection was mediated by antibody effector function, as passive
transfer protected wild type but not FcγR or Fc neonatal receptor (FcRn) knockout mice and T cell
transfer failed to provide protection [14]. Moreover, vaccination of female mice protected their pups from
subsequent HSV challenge in the first week of life [17]. In contrast to adjuvanted recombinant gD, ∆gD-2
boosted the total and the ADCC Ab responses in HSV-1 seropositive mice and prevented subsequent lethal
HSV-2 superinfection [18].

Vaccine immunogenicity is impacted by how the viral antigens are presented (attenuated,
replication-defective, single-cycle, inactivated virus or adjuvanted subunit protein), as well as the dose and
route of administration. The immunization route is often based on pragmatic rather than immunologic
considerations. Inactivated vaccines may be more immunogenic when delivered intradermally, for example,
because of the abundance of immunostimulatory cells such as dendritic cells in the dermis [19].
Live viral vaccines are thought to be less influenced by the delivery route, although this has not been
extensively tested. A prior study with dl5-29 found that two doses (106 pfu/dose) delivered intramuscularly
(im) provided greater immunogenicity and protection compared to subcutaneous (sc) or intradermal
(id) vaccination [20,21]. Building on these observations, we extended our studies with ∆gD-2 and
compared immunogenicity and efficacy using different routes and vaccine doses. We compared ∆gD-2,
dl5-29 and recombinant gD protein combined with alum and MPL (gD-2-Alum/MPL), which is similar
in composition to the gD2−AS04 vaccine, although in the clinical studies three rather than two doses
were administered. We hypothesized that id administration would prove more immunogenic compared to
sc for all three vaccines.
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2. Materials and Methods

2.1. Mice and Ethics Statement

Age-matched (4–6 weeks old) female C57BL/6 (BL/6) mice were purchased from the Jackson Laboratory
(JAX, Bar Harbor, ME, USA). The use of animals was approved by the Institutional Animal Care and Use
Committee at the Albert Einstein College of Medicine, protocols 20180−504.

2.2. Cell Lines, Viruses and Vaccines

Vero (Green Monkey Kidney cells line, ATCC, Manassas, VA, USA), VD60 [22] and V5-29 [23] cells
were grown in DMEM (Invitrogen, Carlsbad, CA, USA) supplemented with 10% FBS (Hyclone, Logan, UT,
USA) and 1% penicillin-streptomycin (Invitrogen, Carlsbad, CA, USA). The clinical isolates used for viral
challenges included HSV-2 (SD90) [24] and HSV-2 (4674). HSV-2 (4674) was obtained from the Montefiore
Clinical Virology Lab [15,16]. The viral isolates were propagated and titered on Vero cells [15].

∆gD-2 [14–16] was propagated in complementing VD60 cells, and titered both on VD60 and Vero cells.
Dl5-29 [8] was propagated on complementing V5-29 cells [8]; and was also titered on complementing
and non-complementing Vero cells. Recombinant gD-2 protein (5 µg) was provided by the Einstein
Macromolecular Therapeutics Development Facility and adjuvanted with 150 µg alum (Imject Alum,
Pierce Biotechnology, Rockland, IL, USA) and 12.5 µg MPL (Invivogen, San Diego, CA, USA) [16].

2.3. Vaccination and Challenge Protocol

Female C57BL/6 mice were vaccinated subcutaneously, intramuscularly or intradermally on the right
hind limb (two doses administered at three-week intervals) with 5 × 104, 5 × 105 or 5 × 106 pfu ∆gD-2
or dl5-29 (based on viral titer on complementing cell line); 5 ug of rgD-2/Alum-MPL or a combination of
5 × 104 pfu ∆gD2 and 5 µg of rgD-2/Alum-MPL. For intradermal vaccinations, a specialized intradermal
microneedle designed for use in mice was used (Nanopass, Nes Ziona, ISR, Nes Ziona, Israel). Three weeks
after the second vaccine dose, mice were challenged on the skin of the right flank with a 10 × lethal dose
for 90% of animals (LD90) of HSV-2 SD90 [14]. Mice were monitored daily for epithelial and neurological
disease and scored for skin and neurologic disease: (1) erythema at inoculation site; (2) spread to distant
site, zosteriform lesions, edema; (3) ulceration, epidermal spread, limb paresis; (4) hind limb paralysis and
(5) death. Mice were euthanized at a score of 4 and assigned a score of 5 the following day.

2.4. ELISA for HSV-Specific Antibodies

Total or isotype-specific HSV-binding IgG was measured by ELISA using serum collected one week
following the second dose of vaccine. ELISA plates were coated with lysates of Vero cells infected with
HSV-2 (G) at a multiplicity of infection (MOI) of 0.1 for 24 h or uninfected Vero cell lysates as control.
Serial dilutions of serum in duplicate were incubated with coated plates overnight at 4 ◦C, and bound
IgG was quantified using biotin-labeled secondary Abs (BD Pharmingen, CA, USA). Background binding
to uninfected Vero cell lysates was subtracted from binding to HSV-infected Vero cell lysates to quantify
HSV-specific binding.

2.5. FcγR Activation Assay

FcγRIV activation was determined using the murine FcγRIV ADCC Reporter Bioassay (Promega,
Madison, WI, USA) [15,16]. Target Vero cells were infected with HSV-2 (SD90) at an MOI of 0.1 for 12 h.
Infected or uninfected control cells were transferred to white, flat-bottomed 96-well plates and incubated
with heat-inactivated serum from vaccinated or control immunized mice (1:5 dilution in DMEM) for 15
min at room temperature. Murine FcγRIV-expressing effector cells were added for 6 h at 37 ◦C 5% CO2 and
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FcγRIV activation was detected by the addition of luciferin substrate. Plates were read in a SpectraMax
M5e (Molecular Devices, San Jose, CA, USA). Fold induction was calculated relative to luciferase activity
in the absence of serum.

2.6. Neutralization Assay

Neutralizing titers were determined by plaque reduction assay [14–16]. Serial 2-fold dilutions of
heat-inactivated serum (in duplicate) were incubated with the virus (50 pfu/well) for 1 h at 37 ◦C and
then applied to Vero cell monolayers for 1 h at 37 ◦C. Cells were fixed with methanol and stained with
Giemsa after a 48h incubation. Plaques were counted and the neutralization titer was defined as the
highest dilution to result in a 50% reduction in plaque numbers.

2.7. Quantification of Viral DNA in Neuronal Tissue by Quantitative PCR

At the time of euthanasia (when mice succumbed to disease or day 14 post-HSV-2 challenge); sacral nerve
tissue was extracted and DNA was isolated using the Qiagen Blood and Tissue DNA isolation kit (Qiagen, Hilden,
Germany). 10 ng of DNA per sample was loaded, and primers and probes specific for HSV-2 gB were used to
quantify HSV DNA (HSV-2 forward primer sequence 5′-TGCAGTTTACGTATAACCACATACAGC-3′;
HSV-2 reverse primer sequence 5′-AGCTTGCGGGCCTCGTT-3′ and HSV-2 probe sequence
5′-CGCCCCAGCATGTCGTTCACGT-3′) [25]. Mouse β actin was used as a loading control (Applied
Biosystems, Foster City, CA, USA), and qPCR was run in an Applied Biosystems QuantStudio 7 Flex
(Thermo Fisher, Foster City, CA, USA). Based on a standard curve, this assay consistently detected
copy numbers greater than or equal to 4. Samples with fewer than 4 copies detected were considered
negative [14–16].

2.8. Cell Isolation and Flow Cytometry

Peripheral blood was collected by retro-orbital bleed, pipetted into 5 mL prewarmed ACK lysing buffer
(Lonza BioWhittaker, Walkersville, MD, USA) and incubated for 7 min at 37 ◦C. Following lysis, cells were
washed 2× in PBS without calcium and magnesium. For splenocyte isolation, spleens were isolated from
vaccinated animals and mechanically digested by pressing through a 70 µm cell strainer. Cells were
pelleted by centrifugation and resuspended in 2 mL ACK lysing buffer. After 7 min at 37 ◦C, RPMI was
added and cells were pelleted by centrifugation. Cells were subsequently washed and resuspended in
RPMI for further processing.

For ex-vivo stimulation, 2 × 106 splenocytes per 200 µL of RPMI + 10% FBS were plated in a U-bottom
96-well plate. Cells were treated with PHA (5 µg/mL) or 1 × 106 PFU UV-inactivated HSV-2 SD90 and
incubated at 37 ◦C for 18 h. Brefeldin A (BioLegend, San Diego, CA, USA) was added for the final 5 h
of stimulation. For UV inactivation of virus, HSV-2 SD90 was diluted in RPMI in a 24-well dish and
exposed to a hand-held UV light positioned 4 inches above the plate for 30 min. Cells were then processed
for extracellular and intracellular staining for flow cytometry.

For flow cytometry analysis, 1–2 × 106 cells per 100 µL were incubated with Zombie Near-IR
fixable viability dye and TruStain FcX (anti-mouse CD16/CD32) antibody for 10 min at room temperature.
For surface staining, cells were stained with anti-CD90.2-BV510, CD4-BV785, CD8-BV711, CD11a-APC,
CD49d-APC/Fire750, KLRG1-BV605 and CD62L-BV570 (all BioLegend, San Diego, CA, USA) in a mixture
of FACS buffer and brilliant stain buffer (BD Biosciences, Franklin Lakes, NJ, USA) for 30 min at room
temperature (RT) per the manufacturer’s instructions. Cells were then washed and fixed by incubating in
200 µL 2% PFA for 20 min at room temperature, and subsequently permeabilized by incubating for 7 min in
0.3% Triton X-100. For intracellular staining, cells were incubated in 100 µL of a cocktail of anti-IFN-γ-PE,
TNF-BV570 and IL2−-PerCP/Cy5.5 (BioLegend, San Diego, CA, USA) for 30 min at 4 ◦C. Following staining,
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cells were washed and passed through a 40 µm cell strainer, prior to analysis on a 5-laser Cytek Aurora
flow cytometer. Per sample, 50,000 live CD90.2+ cells were collected, and data analysis was carried out
using FlowJo (BD Biosciences, Franklin Lakes, NJ, USA). Proportions of cytokine producing cells were
determined by Boolean gating.

2.9. Statistical Analysis

Analyses were performed using GraphPad Prism version 8.2.1 software (GraphPad Software Inc.,
San Diego, CA, USA). A p value of 0.05 was considered statistically significant. Survival curves were
compared using the Gehan–Breslow–Wilcoxon test; other results were compared using ANOVA or mixed
effects analyses as indicated.

3. Results

3.1. Dose and Delivery Route Influence HSV Vaccine Immunogenicity

To determine whether the dose and/or route of delivery impacted immunogenicity, mice were prime-boost
immunized with increasing doses of ∆gD-2 or dl5-29 (5 × 104, 5 × 105 or 5 × 106 pfu/dose based on titer on
complementing cell lines) or with 5 µg of gD protein adjuvanted with alum and MPL via the sc, im or id route.
The total HSV-specific (ELISA), neutralizing and ADCC response (measured using murine FcγRIV activation as
a surrogate) were quantified in serum obtained one-week post-boost. The adjuvanted gD protein vaccine elicited
a significantly higher total HSV ELISA antibody response when delivered id compared to im or sc (p < 0.001).
The total HSV-specific Ab response to dl5-29 and ∆gD-2 increased with escalation of the dose, but there were
few differences comparing the route of administration at each dose; the im route induced a significantly higher
response compared to sc for dl5-29 at a dose of 5 × 104 pfu/mouse (p < 0.05) and the id route induced a higher
Ab response compared to im for ∆gD-2 at a dose of 5 × 106 pfu/mouse (p < 0.01, ANOVA; Figure 1A).
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3.2. Differences in Immunogenicity Translate to Differences in Protection Following Lethal Skin Challenge 

Figure 1. Immunogenicity of viral and adjuvanted subunit herpes simplex virus (HSV) vaccines is modulated
by the vaccination route. C57BL/6 mice were vaccinated twice, three weeks apart with 5 × 104, 5 × 105 or
5 × 106 pfu/mouse of dl5-29 or ∆gD-2, or 5 µg gD-2-Alum/MPL subcutaneously (sc), intramuscularly (im)
or intradermally (id). One week following the second immunization, mice were retro-orbitally bled and
serum was tested for (A) total HSV-specific IgG by ELISA, (B) neutralization titer and (C) FcγRIV activation
by the NFAT-luciferase reporter assay. Note the difference in the y-axis scale in (C). n = 5 mice per group for
gD-2-Alum/MPL and dl5-29 in a single experiment; n = 5 mice per group, two independent experiments for
∆gD-2. Asterisks denote significance, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 by ANOVA.
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Consistent with the increase in total HSV-specific Abs, there was a nonsignificant increase in the
neutralizing titer following id administration of rgD-/Alum-MPL (Figure 1B). The neutralizing response to
dl5-29 increased with dose, but not when comparing the route of administration. ∆gD-2, as anticipated from
prior studies, induced little or no neutralizing Ab response regardless of dose or route of administration.
In contrast, ∆gD-2 elicited the most potent ADCC response compared to the other vaccines, which increased
with dose and was significantly greater at the 5 × 106 dose when comparing id or im to sc administration.
The adjuvanted gD protein vaccine induced no ADCC response relative to control serum regardless of
route of administration. The dl5-29 vaccine induced an intermediate ADCC response, which was the
highest following id administration of 5 × 106 pfu (median 15-fold) compared to the 30-fold FcγRIV
activation elicited by 5 × 106 pfu of ∆gD2− administered im or id (Figure 1C).

3.2. Differences in Immunogenicity Translate to Differences in Protection Following Lethal Skin Challenge

The prime-boost vaccinated mice were challenged on the skin with a 10 × LD90 dose of the clinical
isolate of HSV-2, SD90, which has been previously shown to be consistently lethal in murine models [24].
Mice were monitored for two weeks for signs of disease and were euthanized if signs of severe skin or
neurologic disease were observed as previously described (Figure 2) [14–16]. There was a modest but
not significant increase in protection afforded by the adjuvanted protein vaccine when administered id
compared to im or sc (Figure 2A), which parallels the increased ELISA and nAb responses (Figure 1).
The route of administration had no significant impact on survival following 5 × 104 dose of dl5-29,
which was not protective, but both the im and id routes provided greater protection than the sc route
following a 5 × 105 dose of dl5-29 (80% versus 20%), which paralleled the significant increase in ADCC.
All three routes were fully protective at the highest vaccine dose (Figure 2B). The only breakthrough
in survival with ∆gD-2 was observed with a dose of 5 × 104 administered sc. Complete protection
against lethality was observed at all other doses and routes (Figure 2C). When examining the association
between ADCC and survival across the total population independent of dose, route or vaccine (n = 145),
93/96 mice with a 4.5-fold increase in mFcγRIV activation survived compared to 14/49 with <4.5-fold
increase (p < 0.0001, chi-square).
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Figure 2. Differences in immunogenicity based on vaccine dose and route translate to differences in
protection. Female C57BL/6 mice were vaccinated twice, three weeks apart with 5 × 104, 5 × 105 or
5 × 106 pfu/mouse of dl5-29 or ∆gD-2 or 5 µg gD-2-Alum/MPL subcutaneously (sc), intramuscularly (im)
or intradermally (id). Three weeks following the second vaccination, mice were challenged on the skin
with 10 × LD90 HSV-2 (SD90). Disease scores over time (left panels) are shown for gD-2-Alum/MPL
(A), dl5-29 (B) and ∆gD-2 (C). Percentage survival is shown in right panels. n = 5 mice per group for
gD2−Alum/MPL and dl5-29 in a single experiment; n = 5 mice per group, two independent experiments for
∆gD2−. For survival curves, ** p < 0.01 by the Gehan–Breslow–Wilcoxon test.
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To assess whether the route of vaccination impacted the ability of vaccines to prevent the establishment
of latency, HSV viral DNA was quantified in ganglia at the time of death or on day 14 post-challenge.
Despite the increase in the Ab response following id vaccination with adjuvanted gD protein, there was
no reduction in viral DNA recovered from ganglia following any route of immunization. The results
with dl5-29 and ∆gD-2 at the 5 × 105 dose paralleled the disease scores and survival data. Only 1/5 of
mice immunized im or id compared to 4/5 of mice immunized sc with dl5-29 had HSV DNA detected in
the ganglia. No viral DNA was recovered in mice vaccinated by any route with the same dose of ∆gD-2
(Figure 3).
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challenge, or at D14 post challenge for surviving animals. HSV DNA in the sacral ganglia was assessed by
qPCR and the number of copies of HSV-2 DNA per 10 ng of DNA is shown in (A) for rgD-2-Alum/MPL,
(B) dl5-29 and (C) ∆gD-2. Mice that succumbed to challenge are indicated by a crossed through symbol.
There were no significant differences based on the vaccine route (ANOVA).

3.3. ∆gD-2 Vaccination Induces Robust CD4 and CD8 T Cell Memory Responses

To further phenotype the difference in immune response to ∆gD-2 and rgD-2-Alum/MPL, which
trigger functionally distinct Abs, mice were prime-boost vaccinated im with 5 × 105 pfu/mouse of ∆gD-2
or 5 µg gD-2−Alum/MPL at three week intervals. T cell responses were assessed in the peripheral
blood prior to vaccination (day 1) and at the indicated times post prime and boost. ∆gD-2 induced
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activated CD4 and CD8 T cells following both prime and boost vaccination as measured by quantifying
CD11a+CD49+ CD4 and CD8 T cells. In contrast, there was little detectable T cell response to the
adjuvanted protein vaccine (Figure 4A–C). The splenocytes from these mice were harvested on day 42
and stimulated with UV-inactivated SD90 or phytohemagglutinin (PHA) as a viability control to assess
the cytokine responses (Figure 5A). Significantly more IFN-γ, TNF and IL-2 producing CD4+ T cells
were observed when splenocytes isolated from ∆gD-2, but not rgD-2-Alum/MPL vaccinated mice were
stimulated with inactivated virus compared to unstimulated cells (Figure 5B). The response was greater
than observed with PHA. There was also a non-significant increase in cytokine-producing CD8 T cell
responses to the ∆gD2− vaccine compared to unstimulated cells (Figure 5B).
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Figure 4. Kinetics of the T cell response following HSV vaccination. Female C57BL/6 mice were vaccinated
im twice, three weeks apart, with 5 × 105 pfu/mouse of ∆gD-2 or 5 µg gD-2−Alum/MPL. Before vaccination
(day 1) and at week 1 and 2 following prime and boost, mice were retro-orbitally bled and assessed for
CD11a+ CD49d+ activatedCD4 and CD8 T cells. (A) The gating strategy is shown for the assessment of
(B) CD4 and (C) CD8 T cell activation. Data was analyzed by mixed effects analysis, * p < 0.5, ** p < 0.01,
*** p < 0.001, **** p < 0.0001; n = 5 mice per group.

3.4. Combination of Low Dose ∆gD-2 with rgD-2 Provides Additive Protection

To determine whether the combination of ∆gD-2 and rgD-2-Alum/MPL is beneficial or antagonistic,
mice were vaccinated sc with a dose of ∆gD-2 that is not fully protective (5 × 104 pfu/mouse), 5 µg of
gD-2-Alum/MPL or a combination of both vaccines delivered on opposite or the same flank. We used
the less efficient route of vaccination to accentuate any potential beneficial effects. Both combinations
significantly increased the total HSV-specific antibody response compared to either vaccine alone (Figure 6A).
The combinations had no additive or antagonistic effect on the nAb response to rgD2−/Alum-MPL
(Figure 6B) or the ADCC response to ∆gD-2 (Figure 6C) and resulted in 100% protection against a 10 × LD90
skin challenge with HSV-2 (SD90), compared to the 20% and 60% protection observed with administration
of rgD-2-Alum/MPL or ∆gD-2, respectively (Figure 6D). There was no difference when the combination
was administered on the opposite or the same flank.
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in response to HSV-2 stimulation. Female C57BL/6 mice were vaccinated im twice, three weeks apart, with
5 × 105 pfu/mouse of ∆gD-2 and 5 µg gD-2-Alum/MPL. Splenocytes from vaccinated mice were collected
two weeks following boost vaccination and stimulated with PHA or UV-inactivated HSV-2 (SD90) for 18
h with Brefeldin A treatment before staining and flow cytometric analysis for the production of IFN-γ,
TNF and IL-2. The gating strategy is shown in (A), and cytokine responses for CD4 and CD8 T cells in (B).
Pie charts represent the population producing at least one cytokine. Total cytokine-producing cells as a
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Figure 6. The generation of neutralizing antibody enhances protection by low-dose ∆gD-2. Female C57BL/6
mice were subcutaneously vaccinated twice, three weeks apart with 5 × 104 pfu/mouse of ∆gD-2, 5 µg
gD-2-Alum/MPL or a combination of both vaccines delivered on opposite flanks (opposite) or at the same
site (same). One week after the second vaccination, mice were retro-orbitally bled and serum was assessed
for (A) total HSV-specific IgG by ELISA, (B) neutralizing titer and (C) FcγRIV activation. (D) Three weeks
after the second vaccination, mice were challenged on the skin with a 10 × LD90 dose of HSV-2 (SD90).
Percentage survival is shown. n = 5 mice per group, two independent experiments. (A–C) * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001 by ANOVA. For survival curves, * p < 0.05, *** p < 0.001 by the
Gehan–Breslow–Wilcoxon test.
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4. Discussion

Clinical studies with HSV vaccine candidates have proven disappointing, despite promising preclinical
data with vaccines designed to elicit neutralizing antibody responses primarily targeting gD. Preclinical
studies with ∆gD-2 have challenged the reliance on neutralizing Abs and have demonstrated that
subcutaneous vaccination with 105 (or higher) pfu of ∆gD-2 reproducibly provides complete protection
against lethal skin, vaginal or ocular challenge with clinical isolates of HSV-1 or HSV-2 [14–16,26].
Protection is mediated by ADCC rather than neutralizing Abs, as evidenced by passive transfer studies.
Immune serum from ∆gD-2, but not rgD-2-Alum/MPL vaccinated mice completely protects naïve wild-type,
but not FcγR (common, FcγRIV or neonatal receptor) knockout mice from lethal challenge [14–18].

The current studies, which were conducted in female mice challenged on the skin rather than
intravaginally because a skin challenge does not require pretreatment with medroxyprogesterone and is
reflective of the clinical presentation on genital skin [27,28], provide further evidence that ADCC provides
a more predictive correlate of immune protection compared to neutralizing responses in mice. The increase
in protection observed by increasing the dose and route of delivery of dl5-29 was associated with a
significant increase in the ADCC, but not the neutralizing response. Moreover, the only dose and route of
vaccination with ∆gD-2 that did not provide 100% protection against a 10 × LD90 challenge with SD90, sc
immunization with 104 pfu, elicited a mean ADCC response of 2.8-fold (FcγRIV) activation. Only 3 out
of 96 mice with an FcγRIV fold increase >4.5 succumbed to the high dose lethal challenge regardless of
vaccine dose or delivery route.

Both the im and id routes of vaccination induced significantly higher total and/or ADCC responses
compared to the sc route. The observation that im and id are more immunogenic than sc is consistent
with studies with other vaccines, but a link between route of administration and Ab function (ADCC
versus neutralizing) has not been previously described. Improved immunogenicity via the im or id routes
could reflect longer antigen retention, differential exposure to antigen presenting cells resident in the
dermis and/or greater access to lymphatic drainage [29–33]. For example, intramuscular administration
of trivalent inactivated influenza vaccine resulted in higher antibody responses than subcutaneous
vaccination in elderly subjects [34]. However, similar Ab. and T cell responses were reported with live
attenuated measles, mumps and rubella vaccination delivered sc or im [35]. Despite technical difficulties
delivering consistent doses via the intradermal route, intradermal rabies vaccination has been a standard
following a World Health Organization recommendation in 1992 because a lower dose achieves comparable
immunogenicity [36]. Intradermal vaccination is presumed to activate a stronger dendritic cell-mediated
response thus requiring a lower antigenic dose [37]. However, we observed no significant difference in
ADCC responses or vaccine protection comparing id or im immunization routes at any of the doses for
dl5-29 or ∆gD-2, suggesting that the id route does not provide a dose advantage for these vaccines. We did,
however, observe a statistically significant increase in total HSV-specific Ab responses to the subunit
vaccine with the id route of administration, which resulted in a nonsignificant increase in neutralizing titer
and in vaccine protection.

In addition to dose and delivery route, the vaccine composition also influences immunogenicity,
as evidenced by the exclusive neutralizing response to the gD subunit vaccine, non-neutralizing,
FcγR-mediated response to ∆gD-2, and a combination of both neutralizing and non-neutralizing responses
elicited by dl5-29. The absence of any neutralizing Ab following ∆gD-2 immunization likely reflects
the absence of the dominant target of nAbs in mice. In other studies, we found that depletion of the
gD-specific Ab from dl5-29 immune serum resulted in a significant reduction in neutralizing, but not
ADCC titers, indicating that gD is not a target of the ADCC response (Burn Aschner and Herold,
manuscript under review). IgG subclass switching to IgG2, which has the strongest affinity for mFcγRIV
and is associated with ADCC in mice, requires interactions within the germinal center between antigen
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presenting cells, T cells and B cells [38]. Consistent with the requirement for T cells in the generation of
potent ADCC responses, we documented robust activation of CD4 and CD8 T cells after prime and boost
vaccination, while gD-2-alum/MPL elicited little T cell activation. CD8 responses to prime and boost with
either vaccine contracted more rapidly than CD4 T cells. The precise mechanisms for these differences
requires further study, but they are consistent with kinetics of CD4 and CD8 responses to other unrelated
viral vaccines [39–41]. Further studies are required to allow for a more detailed analysis of CD4 and CD8 T
cell activation, including stimulation with HSV-infected antigen presenting cells. Stimulation of the memory
T cells harvested from the ∆gD-2, but not rgD-2-Alum/MPL vaccinated mice, with inactivated virus result
in IFN-γ, TNF and IL-2 production, which was particularly robust for CD4+ T cells. These differences
support the notion that vigorous T cell responses contribute to the generation of ADCC responses.

A combination of adjuvanted rgD-2 and a low dose of ∆gD-2 delivered simultaneously at the same
or opposite flank did not interfere with the immunogenicity of either vaccine and was more protective
than rgD2−Alum/MPL alone. This is consistent with our superinfection murine studies, which showed
that pre-existing gD neutralizing Abs did not interfere with the immunogenicity of ∆gD-2. Vaccination
of HSV-1 seropositive mice with ∆gD-2 boosted the ADCC (but not the neutralizing) Ab response and
resulted in complete protection if the mice were subsequently challenge with a lethal dose of HSV-2 [18].
Thus, while nAbs to gD alone are not sufficient to protect mice (or to date, humans), a combination of
both types of responses could be beneficial. One reason for the incomplete protection mediated by nAbs
may be the ability of HSV to evade neutralization by spreading directly from cell-to-cell [42]. However,
it is important to note that delivering the recombinant gD protein at the same time as ∆gD-2 is different
from having gD present in the viral envelope. In other studies, we found that envelope gD interferes
with the generation of IgG2 subclass switched Abs through interactions with herpesvirus entry mediator
(HVEM), also known as tumor necrosis factor receptor superfamily member 14 (Burn Aschner and Herold,
manuscript under review). This likely contributes to the lower levels of ADCC generated by dl5-29 as
shown in the current study as well as the low levels generated in response to sublethal infection [17,18].

5. Conclusions

Taken together, the current studies provide further evidence that ADCC is an important correlate
of immune protection. Although we initially hypothesized that the intradermal route of delivery would
prove more immunogenic for all three vaccines, this was only observed with the gD protein subunit vaccine.
Both im and id routes provided similar antibody responses and protection with ∆gD-2 and dl5-29. Overall,
∆gD-2 induced the highest ADCC responses and the most potent protection against a lethal challenge and
latency. It remains to be determined how well these findings in the murine models translate to the clinic.
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