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Utilizing sensory prediction errors for movement
intention decoding: A new methodology
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We propose a newmethodology for decoding movement intentions of humans. This methodology is motivated by
the well-documented ability of the brain to predict sensory outcomes of self-generated and imagined actions using
so-called forward models. We propose to subliminally stimulate the sensory modality corresponding to a user’s
intendedmovement, and decode a user’smovement intention fromhis electroencephalography (EEG), by decoding
for prediction errors—whether the sensory prediction corresponding to a user’s intended movement matches the
subliminal sensory stimulation we induce.We tested our proposal in a binary wheelchair turning task inwhich users
thought of turning their wheelchair either left or right. We stimulated their vestibular system subliminally, toward
either the left or the right direction, using a galvanic vestibular stimulator and show that the decoding for prediction
errors from the EEG can radically improve movement intention decoding performance. We observed an 87.2%
median single-trial decoding accuracy across tested participants, with zero user training, within 96 ms of the stim-
ulation, and with no additional cognitive load on the users because the stimulation was subliminal.
INTRODUCTION
The big challenge for brain computer interfaces (BCIs) that aim to help
humans in motor tasks is the deciphering of a human user’s movement
intention fromhis brain activity whileminimizing user effort. Although
a plethora of methods have been suggested for this in the past two
decades (1–3), they are all limited by the effort demanded from the
human user—the so-called reactive BCIs decode movement intention
by analyzing the observed response in electroencephalography (EEG)
to an explicit external stimulus (4, 5). This involves an additional at-
tentional and cognitive load for users who need to attend to a very con-
spicuous stimulus, in addition to the task they want to control using the
BCI (6). Active BCIs on the other hand, which decodemovements using
the inherent EEG activity beforemovements (2, 3, 7–10), require exten-
sive user training, either to enable the user to control his or her brain
activity (11, 12) or to imagine movements (2, 3). Furthermore, the
imagined movements, which are popularly the movements of lateral
limbs, are often different from the task they want to control using the
BCI, putting again an additional cognitive load on the users. Here, we
propose a new (subliminal) stimulus-based reactive BCI methodology
that is fundamentally different fromall the previousmethods andprom-
ises to drastically attenuate many of these user-related constraints. We
show that the decoding based on this new method can provide high
single-trial decoding accuracies across participants, with zero user
training, and with no additional cognitive load on the users.

The key difference between all the previous methods and what we
propose is in what is decoded. All the previous methods decode what
movement a user intends/imagines, either directly (as in the active BCI
systems) or indirectly by decoding the stimulus he or she is attending
to (like the reactive BCI systems). Here, we propose to not decode
what movement a user intends/imagines but to decode whether the
movement he or she wants matches the sensory feedback we induce
using a subliminal stimulator. This idea is motivated by the multitude
of studies on forward models (the neural circuitry implicated in pre-
dicting sensory outcomes of self-generatedmovements) (13). The sen-
sory prediction errors, between the forwardmodel predictions and the
actual sensory signals, are fundamental to our socio-motor abilities.
They are known to play crucial roles in the control of self-generated
actions (13–15), haptic perception (16), motor learning (17), and
probably even interpersonal interactions (18–21) and cognition of self
(22). Sensory predictions are known to be present not only during
movement but also during the imagination ofmovement (23, 24), that
is, our brain expects sensory signals corresponding to imaginedmove-
ments. Because of these extensive functionalities, we hypothesized the
sensory prediction errors to have a significant signature in the EEG
and, consequently, that the decoding for the presence of a prediction
error (that is, whether a participant’smovement intentionmatches the
sensory feedback he or she feels) to be a good proxy for decoding what
movement a participant intends.

We tested this hypothesis in a simulated wheelchair turning task,
where participants (sitting on a chair) were asked to imagine the
wheelchair turning either right or left. Vestibular feedback is the most
dominant sensorymodality during turning.Hence, in each trial, we stim-
ulated the participants’ vestibular system so as to induce a sensation of
either turning left or right, albeit subliminally, using galvanic vestibular
stimulation (GVS) (25–27).We show that even a subliminal stimulation
induces prediction errors, which we are then able to decode, and, know-
ing the stimulation direction, consequently decode the direction the par-
ticipant intends to turn. Figure 1A shows the concept of the proposed
technique with regard to the wheelchair experiment.
RESULTS
Twelve participants participated in our experiments. The participants
sat on a chair in a noise-insulated roomwith their eyes closed and were
cuedwith an audio signal by either of two speakers, placed on either side
of the participant. They were instructed to “think about wanting to turn
toward the speaker and imagine the feeling that their body turning ac-
cordingly.” Two seconds after the end of every audio cue, a GVS (that
corresponded to either right or left rotatory vestibular sensation) was
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provided behind the participant’s ears (Fig. 1B, and see experiment time-
line in Fig. 1C). The vestibular stimulationwas subliminal, such that none
of the participants perceived any vestibular sensation (please see Vali-
dation that GVS was subliminal section). EEG was recorded from the
participants through the experiment. The detailed experimental procedure
is provided in the detailed methods.

Intention decoding
First, we collected the EEG data from each trial and aligned it to the
intention start (auditory) cue presentation time. The cue aligned data
were divided into two classes labeled according to whether the cue
was from the right (RHT-CUE) or left (LFT-CUE) speaker, that is,
whether the participants thought of turning right or left. We then
considered different time periods of EEG data (either 500, 1000,
1500, 2000, or 2500 ms of data from the cue presentation) and tried
to decode the participant intention using the absolute magnitude of
the EEG signals across these time periods (collected at 512 Hz) as
features (we will discuss results of a frequency-based decoding later).
Because of its robustness to overfitting, a sparse logistic regression
(SLR) (28) decoder was chosen, and trained on part of the data (80%
of randomly selected trials) to classify the turning direction the partic-
ipant thinks of, and tested on a test set (remaining 20% trials). This
procedure was repeated 20 times for each participant to achieve amean
decoding performance with each participant.

The red trace in Fig. 2 plots the across-participant decoding
performance as box plots. The decoding data were normal across par-
ticipants in all the timeperiods (P>0.05, Shapiro-Wilk test), allowing us
to perform an analysis of variance (ANOVA). The intention decoding
did not change with the time period (F4,24 = 0.85, P > 0.50, one-way
repeated-measures ANOVA) and did not improve above chance (t34 =
0.133, P = 0.89, one sample t test on the difference of the data from all
participants and time periods, from the chance level of 50%).
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Prediction error decoding
Next, we aligned the EEG data to the start of the GVS. Crucially, this
time, we collected the data into two classes that were labeled as ei-
ther MATCHED, if the cue and GVS directions corresponded, or
MISMATCHED, if the cue and GVS directions did not correspond.
Note that both theMATCHEDandMISMATCHED classes contained
Fig. 1. Proposal and experiment paradigm. (A) Wepropose tousea sensory stimulator inparallelwith EEGanddecodewhether the stimulationmatches the sensory feedback
corresponding to the user’smotor intention. The presented experiment simulated awheelchair turning scenario and used a galvanic vestibular stimulator. (B) The participants were
affixed with GVS electrodes during the EEG recording. The subliminal GVS induced a sensation of turning either right or left. (C) Experiment timeline: In each trial, using stereo
speakers and a “high”-frequency beep, the participants were instructed to imagine turning either left or right while sitting on a rotating chair. A subliminal GVS was applied 2 s after
the end of each cue, randomly corresponding to turning either right or left. This was followed by a rest period of 3 s cued by a “low”-frequency beep (stop cue).
Fig. 2. Decoding performance summary. The across-participant median decod-
ing performance when decoding for the direction in which a participant wants to
turn (that is, the cue direction) is shown in red and pink, whereas decoding for a
MATCHED/MISMATCHED participant intention and applied GVS is shown in black.
The data at each time point represent the decoding performance using data from
the time period between a reference point (“cue” for red data and “GVS start” for
pink and black data) and that time point. Box plot boundaries represent the 25th
and 75th percentile, whereas the whiskers represent the data range across par-
ticipants. The inset histograms show the participant ensemble decoding
performance in the 140 (20 test trials × 7 participants) test trials, with each par-
ticipant data shown in a different color.
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(equal number of) trials of both the left and rightGVS.With these data,
we checked the prediction error decoding performance; we trained a
decoder to classify whether a trial was MATCHED orMISMATCHED
considering different time periods of EEG from before {−200, −96} ms
and after {32, 64, 96, 150, 200, 300, 500} ms of GVS start. Again, in each
case, the absolute EEG signalmagnitudes across these time periodswere
used as features for the decoder.

The black trace in Fig. 2 shows the across-participant results of the
MATCHED/MISMATCHED decoding. The decoding results from all
the time periods were again normal across participants (P > 0.05,
Shapiro-Wilk test). The decoding shows chance performance before
start of GVS (t6 = 0.44, P > 0.67), but rises sharply after start of GVS.
The performance peaks when using 96 ms of EEG data after GVS, to
a median of 87.6% (ranging between 72 and 97.9%) across partici-
pants, and remains similar thereafter (F4,24 = 2.22, P > 0.09, one-way
repeated-measures ANOVA on the decoding results after 96 ms).
We will therefore concentrate on the 96-ms time period for the
detailed analysis hereafter.

Comparing intention decoding and prediction
error decoding
The decoding values during prediction error (MATCHED/
MISMATCHED) decoding were significantly higher than chance
using 96 ms of data after GVS start (t6 = 10.43, P < 4.6 × 10−5,
one-sample t test; see black data in Fig. 2) and significantly higher than
direct intention decoding (red trace) performance at the same time
(t6 = 12.87, P < 1.35 × 10−5). Because the intention decoding (red
data in Fig. 2) was performed relative to the cue (that was presented
between 3 and 2 s before the GVS), it used data across longer time
periods (and hence a larger number of features) for training. Although
we use a sparse classification algorithm for our decoding, it is possible
that the large feature volume led to overfitting and, consequently, lower
performance. Therefore, we also attempted to decode the intention (that
is, cue) within the same time periods (relative to the GVS start) as used
for the prediction error decoding. These data are shown in pink. Again,
we observed that the direct intention decoding remained close to
chance. A two-way repeated-measures ANOVA across the two decod-
ing strategies (intention decoding and prediction error decoding) and
time periods exhibited a significant main effect of decoding strategy
(F8,48 = 39.3, P < 10−5), although there was also an effect of time periods
(F8,48 = 49.86,P<10

−5) and an interaction (F4,6 = 152.14,P<1.76×10
−5),

which are obvious because of the jump in decoding accuracy during
prediction error decoding. Post hoc t tests revealed that the prediction
error decoding accuracy was greater than intention decoding in every
time period after 96 ms of GVS start (t6 = 7.85, P < 2.2 × 10−4; 96-ms
period data are plotted in Fig. 3).

Finally, we noted that the intention decoding we have performed
until now uses time domain EEG features, whereas recent studies have
shown that frequency features can help provide very high event-related
desynchronization (ERD)–based decoding of motor imagery (29, 30).
Therefore, we also tried to decode the participant intention in our task
using frequency features. Considering the periods between the cue start
and the GVS, we used a 1-s window (shifted by 100 ms) to evaluate the
power spectrum in the range of 0.01 and 30 Hz and used these as
features to decode for the participant intention. We observed an
across-participant median decoding accuracy of 48.85% (ranging be-
tween 46.77 and 52.82%; see orange plot in Fig. 3), which was not dif-
ferent from chance (t6 = 0.52, P = 0.62). This result suggests that ERDs
were not excited in our task.
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Overall, these results support our proposal of using subliminal sen-
sory stimulator with EEG and decoding for the prediction errors. Note
that once the prediction errors (MATCHED /MISMATCHED classes)
are decoded, inferring the actual participant intention is trivial because
the stimulation direction is known precisely. Furthermore, our results
show that prediction error decoding can work even in cases where
active decoding methods (like ERD) do not provide good results.

Thinking of turning or not
A common question in BCI setups for movement decoding is to know
when to perform the decoding, that is, to know when a participant is
thinking of a movement. Our preliminary investigation shows that the
sensory stimulation can help in this regard. Our experiment included
so-called no-intention trials (see Materials and Methods), in which the
GVS was applied during rest, when the participants were not asked to
think of turning in either direction. We observed that using 96 ms of
EEG signals (after GVS start), we could decode with appreciable accuracy
(median 74.21% across participants; see cyan plot on Fig. 3) whether a
participant was thinking of turning (either right or left) or not (that is, it
was a no-intention trial).

Spatiotemporal characteristics of features
We also analyzed which spatiotemporal features were selected by the
decoder for the MATCHED/MISMATCHED decoding in the 96-ms
time period after GVS start. The decoder we used is designed to min-
imize the selected features. Therefore, the selected features may not
represent the entirety of brain activity related to prediction errors.
On the other hand, the decoder-selected features (especially ones com-
mon between participants) are robust to false positives, and hence, we
Fig. 3. Summary of decoding performance from various analyses in the 96-ms
time period. The MATCHED/MISMATCHED decoding with GVS is shown in black.
On applying the GVS in the front-back configuration (green data), the decoding
performance decreased. Decoding for cue direction, using either all the data since
the cue (red data) or data since the GVS start (pink), did not show performance
above chance. Decoding performance was similarly low using frequency features
between 0.01 and 30 Hz, typical of ERD-based decoders (orange), indicating that
our task (imaging turning right or left) did not initiate significant ERD differences
in participants. Finally, the decoding of whether the participant was thinking of
turning or not (cyan) was also observed to be significant after GVS.
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can probably say with some certainty that the selected channels repre-
sent brain activity related to prediction errors.

The mean decoder weight assigned to each channel across the time
period and participants is shown in Fig. 4A. A darker color represents a
higher weight (normalized by the maximum weight). Nine EEG chan-
nels, specifically F7, FPz, AFz, Fz, AF8, F8, CPz, P4, and O2 were
selected as features in at least six of the seven participants (see channels
highlighted by blue disks in Fig. 4A). Figure 4B shows the temporal pe-
riod across the participants when these nine channels were selected.

Control to check GVS artifacts in the decoding
Note that we do not remove the GVS artifacts in the channels and are
able to perform the MATCHED/MISMATCHED decoding in the
presence of the GVS artifacts. However, each of the MATCHED and
MISMATCHED classes includes equal trials of both the right and left
GVS. Artifacts from the GVS therefore cannot theoretically help the
decoding. However, to further check that this is indeed the case, we per-
formed a second experiment with five participants in which the GVS
was applied, not across the ears (which is optimal to excite the left or
right vestibular stimulations) but across the forehead and the back of the
neck of the participants (in the forward and backward directions). We
aimed to check two issues with this experiment. First, whether we indeed
decode prediction error: In a front-back GVS configuration, neither di-
rection of GVS would properly correspond to the participant’s intended
turning direction (left or right). This in effect should decrease the
difference between theMATCH andMISMATCH classes and, hence, re-
duce our decoder performance. Second, if the GVS artifacts are crucial to
the decoding, then the decoder-selected features are expected to change
with the change in the GVS location. On the other hand, if the decoder is
GVS-irrelevant (like we claim), then the selected features should still
match the features selected in Fig. 4.

We found that this was indeed the case. The second experiment was
similar to the main experiment in every aspect of the procedure and
data analysis, except for the GVS location. The participants in the ex-
periment still imagined either turning to the left or the right, and for our
decoding, we labeled the trials with right cues and forwardGVS, and left
cues and backward GVS as MATCHED trials. The other trials were
labeled as MISMATCHED. Even with the front-back GVS, the
MATCHED/MISMATCHED decoding accuracy was still significant
(median, 71.7%; ranging between 48.13 and 85.83%) across participants
(green data in Fig. 3). This was expected because although we applied
theGVS across the forehead and neck, we can expect that it activates the
rightward or leftward vestibular sensation as well to some extent. How-
ever, crucially, the prediction error decoding was significantly less than
the case when the GVS corresponded to the participant intention (t10 =
Ganesh et al., Sci. Adv. 2018;4 : eaaq0183 9 May 2018
2.38, P = 0.038, two-sample t test between the decoding accuracy be-
tween the two experiments).

Furthermore, although the decoder performance was lower, the
features selected by the decoder in the participants were very similar
to those selected in the main experiment—a very strong correlation
was observed between the EEG channel weights chosen by the decoder
in the front-back GVS configuration and those chosen (Fig. 4A) in the
main experiment (Pearson’s R = 0.56, t62 = 5.322, P < 10−5). This result
is critical because it not only ratifies the role of these features in predic-
tion error decoding but also, as previously mentioned, shows the inde-
pendence of the features to the GVS location, suggesting that GVS does
not influence the decoding.

Validation that GVS was subliminal
Finally, we performed an additional experiment with 10 participants
(7 previous and 3 new participants) to quantify any perceivable sensa-
tion due to the GVS (Fig. 5; see Materials and methods for details). The
experiment required participants to report the level of any felt “vestib-
ular perturbation,” “muscle twitch,” or “tactile sensation” with a score
of 0 to 6 on the Likert scale (0 represents no report) while we applied
increasing magnitudes of GVS. The plot in Fig. 5 combines the par-
ticipant reports during the leftward and rightward GVS such that the
solid trace represents themedian across 20 data points (10 participants
× 2 GVS directions). The box plot shows the 75% percentile and range
(whiskers) of the participant reports. All the participants answered zero
for all the three sensations for the level of 0.8 mA (that we use in the
experiment). However, some participants did report a “slight” tingling
during GVS. This is a previously reported phenomenon that occurs in
the presence of dry skin or hair under the electrodes. The tingling was,
however, nondirectional (did not change with direction of GVS) and
could be attenuated by shaving the hair under the electrodes andwetting
the skin with a swab.

Figure 5 reports the scores from when the GVS was applied for 1 s.
However, we show that, in fact, less than 100 ms of stimulation is re-
quired for themotor intention decoding. Corresponding to this, we also
conducted a second validation session in which the 1-Hz GVS was
cut off after 100 ms. In this session, none of the participants felt any
sensation; the score remained zero for vestibular perturbation, muscle
twitch, and tactile sensation; and no tingling was reported even up until
Fig. 4. Spatiotemporal features selected in the 96-ms time period. (A) The
weights selected by the decoder, averaged across the channels and time, are
plotted in shades of gray. Nine channels (indicated by the blue disks) were
selected in six or more participants. (B) The across-participant median (data point)
and time range (whiskers) in which these nine channels were selected.
Fig. 5. GVS perception questionnaire. The report of vestibular sensation,
muscle twitch, and tactile stimulation in our experiment to validate the GVS
was subliminal. An experimenter applied GVS at 1 Hz, of amplitudes increasing
from 0.2 to 3 mA (in both the rightward and leftward directions). Participants
scored any sensation they experienced, between 0 and 6 (0 representing no re-
port). The box plots show the across-participant median, the 75% percentile, and
range (whiskers) of the participant reports. Participant reports were zero for all the
sensations at the amplitude of GVS (0.8 mA) used in our experiment.
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3 mA (which is almost four times the stimulation applied in our exper-
iment). These results show that theGVS applied in our experimentwere
subliminal, and the participants did not perceive any significant sensa-
tion due to it.
DISCUSSION
Studies over the past two decades have repeatedly shown that sensory
predictions by the so-called forwardmodelsmodulate various aspects of
the human behavior (13–22). On the basis of these findings, here, we
proposed a new decodingmethodology to decode themovement inten-
tion of a participant by decoding for prediction errors—the match or
mismatch between the sensory prediction corresponding to a user’s
intended movement and a corresponding sensory stimulation. We hy-
pothesized that the decoding of prediction errors is a good proxy for the
decoding of the intention. The significantly better decoding of the pre-
diction error (MATCHED/MISMATCHED data) compared to decod-
ing of cue direction (Figs. 2 and 3) supports our hypothesis. Crucially,
the high decoding accuracy was observed over individual trials, without
any participant training, within tens ofmilliseconds of the sensory stim-
ulation, and using subliminal sensory stimulations that the user could
not cognitively perceive. This exhibits the promising potential of our
proposed method of using sensory stimulation in parallel to brain im-
aging for movement intention decoding.

There exist several fundamental differences between the prediction
error (MATCH/MISMATCH) signals we detect here and the well-
established signatures of mismatch negativity (MMN), error-related
negativity (ERN), and ERD in EEG. MMN, which was first reported
for auditory signals (31) and has also been investigated in visual signals
(32), is considered to be a consequence of perceivable sensory expecta-
tions induced by previous (often repetitive) sensory experiences. How-
ever, the participants in our task were not exposed to any perceivable or
repetitive sensory signal, as is typical of MMN studies (33, 34). Conse-
quently, the decoding we performed here is explained better as a mis-
match of predicted sensory signals relative to one’s motor intention,
rather than previous sensory experiences.

ERN, on the other hand, represents a neural response to the com-
mission of an error. Crucially, ERN is activated after an erroneous
action by a participant that leads to perceivable sensory stimulations
(35, 36). In stark contrast, we decode intended actions before they are
performed and using subliminal sensory stimulations. Furthermore,
ERN is considered to be generated in the anterior cingulate cortex
and usually detected in the mid brain EEG channels Cz and FCz
(35). These channels do not correspond to the features selected fre-
quently by our decoder.

Finally, participant intention is popularly detected using ERD
(29, 30, 37). ERDs are known to be induced by the imagery of motor
actions. ERD-based decoding is, however, not effective for all partici-
pants and tasks. In our task as well, ERD-based decoding was not ef-
fective (see orange data in Fig. 3), indicating that our task (imagining
one’s body turning right or left) did not initiate significant ERDdiffer-
ences in participants. On the other hand, the fact that MATCHED/
MISMATCHED decoding worked well suggests that the prediction
errors are complementary to ERD and may be integrated with ERD-
based decoding to improve intention decoding.

Because the features selected by a decoder are prone to false nega-
tives, we cannot deduce much about the spatial characteristics of the
underlying brain activations from the electrode features selected by
our MATCHED/MISMATCHED decoder (Fig. 4). However, it is still
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interesting to note that the frequent selection of the parietal electrodes
agrees with the reported involvement of the parietal cortex in sensory
estimation during actions (38, 39) and the vestibular processing formo-
tor control in the right interparietal sulcus (40). Any prediction error
related to vestibular signals is thus expected to also be represented in
these areas. The frontal cortex features are consistent with a recent study
that found that the activity in the frontal midbrain channels elicits activa-
tions (within 100 ms) representing the absence of associated sensory
stimuli after a motor action (41).

Notably, whereas prediction error decoding gives very good de-
coding performance, what we present here is a prototype system that
can still be improved in several aspects. First, the GVS that we provide
is not what is optimal for our task. We ask our participants to imagine
their body turning about the longitudinal axis, but because of techno-
logical limitations, the GVS that we are able to provide predominantly
(but not exclusively) induces a vestibular sensation of rotation about the
sagittal axis. Because of the centrifugal forces on the head, turning one’s
body about does lead to a sagittal vestibular sensation as well, and there-
fore, the GVS we provide is not unrealistic (as also suggested by our
results). However, it also shows that there is scope for improvement.
Second, for the current proof-of-concept experiment, we chose a very
simple sinus temporal GVS profile and used a very low GVS amplitude
(see Materials and methods for details) to ensure it is subliminal for all
participants. The shape and amplitude can be optimized and custo-
mized to individual participants to improve the decoding. Third, here,
we used the SLR (28) algorithm because it is parameter-free and robust
to overfitting. SLR, however, is known to over-prune features (42), and
hence, performancemay be improved using other decoding algorithms.
We did try the decoding using support vector machines [Matlab
Support Vector Machine (SVM) toolbox] and iterative SLR (iSLR)
(42), both ofwhich though gave similar decoding performances. Finally,
because our proposed method requires a sensory stimulation when the
participant is thinking about a motor action (turning his or her body in
our current experiment), an obvious question in this scenario is how to
know when a participant is thinking about an action. This in fact is a
common question in all BCI setups. Our preliminary investigation
shows that our proposed methodology can help both detect whether
a participant wants to make amovement (blue plot in Fig. 3) and detect
which direction he or she wants to turn (black plot in Fig. 3).

In conclusion, we proposed a newmethodology formotor intention
decoding, that of using a subliminal sensory stimulator with EEG, using
a random stimulation and decoding the prediction error between an
intended action and the subliminal sensory stimulation.Wepresent this
procedure in a two-class wheelchair turning scenario. In this scenario,
we used galvanic vestibular stimulation, because vestibular feedback is
the dominant feedback during body turning. Other possible applica-
tions of this methodology may be for the control of a prosthetic limb
by an amputee, the control of an additional robotics limb after stroke or
paralysis, or the control of exoskeletons and functional augmentation
suites by the elderly. For each of these applications, one would need
to stimulate the proprioceptive or tactile sense that corresponds to
the action, such as by using a peripheral nerve stimulator (43) or
emerging technologies of direct brain stimulation (44). An important
application of EEG-based BCI is for communication with locked-in pa-
tients (1). Forward models are known to operate during verbal com-
munications. Therefore, in the future, when a suitable technology to
stimulate the auditory cortex for specific words or sounds is developed,
we would like to imagine that our methodology can be used for speech
production, that is, enable locked-in patients to speak.However, for now,
5 of 8



SC I ENCE ADVANCES | R E S EARCH ART I C L E
our proposal promises to improvemotor imagery–based techniques [for
example, Höhne et al. (45)] used to communicate with locked-in pa-
tients. Overall, the key contribution of our proposedmethod is the high
decoding accuracies within 96 ms of stimulation, without any partici-
pant training and without any cognitive load on the participant. These
features show its promise for online decoding and for improving cur-
rent BCI motor augmentation systems by integrating the proposed
method with available decoding methods.
MATERIALS AND METHODS
Experiment
Participants
Twelve participants (2 females) aged between 20 and 51 participated in
our experiments. Seven participants participated in the main experi-
ment,whereas five participated in a control experimentwith suboptimal
sensory stimulation. Participants gave written informed consent before
participating, and the study was conducted with ethical approval of the
ethics committee at the Tokyo Institute of Technology in Tokyo, Japan.
Materials
The experiments were conducted in a noise-insulated room.We used
a commercial EEG recording system (ActiveTwo amplifier system;
64 active sensors, Biosemi) for recoding the brain activity at 512 Hz.
A custom-madewireless galvanic vestibular stimulator (25–27)was used
in parallel to the EEG recording. Participants were presented with audio
cues using stereo speakers to instruct what they should think/imagine
(please see Data collection section). The experiment cue presentation
and synchronization between the cue presentation, the GVS system,
and the EEG recordingswere achieved using aMatlab-based program.
Protocol
Our experiment lasted around 2 hours in total, including time for GVS
electrode placement, EEG electrode setup, participant instruction and
familiarization, data collection, and subsequent cleanup.
Electrode fixation and familiarization. The experiment started with
the fixation of the GVS electrode pads behind the participant’s ears
and above the temporomandibular joint. With each participant, the
GVS was applied a few times to confirm that the stimulation was
not perceived by the participant and he or she did not feel any
itching/tingling (present sometimes if the hair below the electrode
pad is long). In cases where the participant felt itchy, the hair below
the pads was shaved, and the electrode pads were refixed. None of our
participants reported any perceived vestibular stimulation. The EEG
cap and electrodes were fixed next. The participants were then asked
to sit on a revolving office chair inside a noise-insulated room. They
were instructed on the experiment cues (explained in the next section).
Data collection
EEG data were recorded from each participant over six sessions, each
lasting about 6 min. Each session consisted of 50 trials, each with a
timeline, as shown in Fig. 1C. After an initial rest of 10 s, each trial
started with a high-pitched (around 1000 Hz) audio cue (which lasted
1 s) that was presented on either of the two speakers placed on the left or
right side of the participant. The participants were instructed to “think
about wanting to turn toward the speaker and imagine the feeling
corresponding to your body turning accordingly.” This instruction
was repeated before every session. To help the participants understand
this instruction, a short demonstrationwas performed inwhich the par-
ticipants were asked to close their eyes and feel their body revolving as
the experimenter turned the revolving chair (with the participant in it)
left and right alternatively. This procedure was performed for about 20 s
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before starting the first session, and again in between sessions if the par-
ticipants requested it when given the option.

After 3 s of the high-pitched cue, a low-pitched (around 200 Hz)
beep, presented on both speakers, instructed the participant to “stop
thinking and relax.” The rest lasted for 3 s. GVS was applied after 2 s
of the high-beep cue. We applied a sinus GVS signal with anode either
below the right ear (rightGVS) or below the left ear (leftGVS). TheGVS
sinus amplitude and frequency were set to low values of 0.8 mA and
1 Hz, respectively, to avoid any possible perception. The direction of
the cue (instructed direction of thinking) and GVS direction through
the session were presented in a fixed pseudorandom order (unknown
to participant) such that, in each session, the participants experienced
the following: (i) 10 randomly presented CRGR trials, in which they
were presented with an audio cue to their right and thought about
turning right, and we applied a subliminal GVS corresponding to a
rightward turning vestibular sensation; (ii) 10 randomly presented
CLGL trials, in which they were presented with an audio cue to their
left and thought about turning left, and we applied a subliminal GVS
corresponding to a leftward turning vestibular sensation; (iii) 10 ran-
domly presented CRGL trials, in which they were presented with an
audio cue to their right and thought about turning right, but we applied
a subliminal GVS corresponding to a leftward turning vestibular sensa-
tion; (iv) 10 randomly presented CLGR trials, in which they were
presented with an audio cue to their left and thought about turning left,
but we applied a subliminal GVS corresponding to a rightward turning
vestibular sensation; and (v) 10 randomly presented no-intention trials,
in which they were not presented with an audio cue and, hence, did not
think about turning either direction while we applied a subliminal GVS
corresponding to either a rightward or leftward turning vestibular sen-
sation (five trials in each direction). These trials were used to evaluate if
the GVS could help us decode whether the participant is thinking about
turning (either left or right). We labeled the CRGR and CLGL trials as
“MATCHED” trials, and the CRGL and CLGR trials as “MIS-
MATCHED” trials.

The cue and GVS timings were optimized with preliminary
experiments to minimize experiment time while allowing sufficient
time for the participant to start thinking after each cue. The time be-
tween the cue and GVS was purposely kept long (>2 s) to enable us
to compare the performance of decoding the cue to the decoding of
the prediction error. The GVS profile was also tuned with preliminary
experiments. Note that the 1-s GVS profile is still not optimal and, as
will be shown in the data later, 100 ms of GVS is enough to get appre-
ciable decoding accuracies.

Following the experiment, the participants were asked again if they
perceived any vestibular stimulation during the experiment. The EEG
electrodes were then removed from the cap, the EEG cap andGVS elec-
trodes were removed, and the participants were allowed to clean up.

Additional experiment to validate GVS was subliminal
To validate that the GVS applied to the participant were indeed sub-
liminal, we conducted an additional perception experiment [similar
to that of Oppenlander et al. (46)] with 10 participants (7 of our previ-
ous participants and 3 additional new participants; we could not man-
age to recall five of our previous participants). The GVS electrodes were
fixed behind the participant’s ears, similar to ourmain experiment. The
participants were then asked to close their eyes while an experimenter
applied GVS at 1 Hz and for 1 s (same as our experiment). The ampli-
tude of GVS was increased from 0.2 to 3mA as {0.2, −0.2; 0.4, −0.4; 0.6,
−0.6; 0.8, −0.8; 1.0, −1.0; 1.2, −1.2; 1.4, −1.4; 1.6, −1.6; 3.0, −3.0}. The
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order of the positive (rightward) or negative (leftward) GVS of the same
amplitudewas chosen randomly, and the time gap between the two stim-
ulations was randomized so that the participants could not predict
when a stimulationwas applied. The participants were asked to interject
the experimenter whenever they felt any sensation of vestibular pertur-
bation, muscle twitch, or/and “direction tactile sensation,” and report
the level of the sensation on a Likert scale of 1 to 6 (0 defining no report).
The box plot of the reported scores for the three sensations is shown in
Fig. 5. In the second session of the experiment, the same protocol was
followed, except that the 1-Hz GVS was cut off after 100 ms.

EEG data processing
After the preliminary analysis, we chose temporal features from raw
EEG data from each of the 64 channels as features. We checked the de-
coding performances with three decoding algorithms: a recent popular
SLR algorithm (28), SVM (Matlab toolbox), and the iSLR algorithm
(42). The results were found to be equally good with the three algo-
rithms. We will discuss the SLR results in detail here.

The EEG data from the 64 channels of each participant trial were
aligned to either of the two alignment points: the cue timing or GVS
start. The EEG data were collected in different time periods relative
to the alignment point. After removal of the baseline, the time course
of the absolute EEG signal from each of the EEG channels (collected at
512Hz) was used for the decoding. For example, in each trial for decod-
ing data in a 96-ms time period relative to GVS (plotted in black at x =
96 ms in Fig. 2), the decoder was provided with 64 channels × 48 EEG
data points after start of GVS (~96 ms at 512 Hz) = 3072 features. We
observed that taking the absolute of the signal was critical for good
decoding performance, whereas inclusion of frequency band powers
and temporal smoothing of the EEG signals were not.

For each participant, 80% of the trials from each class were selected
randomly as training data for the decoder. Testing was performed on
the remaining 20% trial data (from each class) to get a performance
value. This 80–20 training–test check was repeated 20 times to get the
performance statistics with each participant. The average and standard
deviation across the 20 decodings for each participant are shown in
Table 1.

Data plots
Decoding was performed for every time period for every participant.
The across-participant decoder performance was plotted as box plots
in Fig. 2. The red box plot at any abscissa point shows the decoding
Ganesh et al., Sci. Adv. 2018;4 : eaaq0183 9 May 2018
performance (with the cue direction as label) with EEG features from
the time period between the cue and the abscissa point. The black and
pink box plots at any abscissa point are decoding performances, with
MATCH/MISMATCH and cue direction labels, respectively, but using
data from time periods between theGVS start time (which is labeled as
zero in Fig. 2) and the abscissa point. The inset histograms show the
participant ensemble decoding performance in the 20 × 7 participants =
140 tests, with data from each time period. The data from each partic-
ipant are shown in a different color.

Figure 3 plots the decoding performancewith the 96-ms timeperiod.
It replots cue (red and pink) andMATCH/MISMATCH (black) decod-
ing data from Fig. 2. It also plots the decoding performance from our
control experiment (green data), which was exactly the same as the
main experiment, except for the fact that the GVS was applied across
the forehead and back of neck of the participants.

Figure 4A plots the weights to each EEG channel assigned by the
MATCHED/MISMATCHED decoder in the 96-ms time period, aver-
aged across the 48 time points (corresponding to ~96ms) and across all
the participants. Note that the sparse logistic algorithm ensured that the
weights of irrelevant (to the decoding) features are set to zero. The chan-
nels that contained nonzero weights in six or more of the seven partic-
ipants weremarkedwith a blue disk in Fig. 4A.We recorded themedian
of the time at which each channel was selected for each participant.
Figure 4B plots the range (minimum and maximum) of the medians
across the participants.

Finally, Fig. 5 plots the across-participant median, the 75%
percentile, and the range (whiskers) of the participant reports of
any vestibular sensation, muscle twitch, and tactile stimulation in
our experiment to validate the GVS was subliminal. Participants
scored any sensation they experienced, between 1 and 6 (0 represent-
ing no report).
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