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High-dimensional inference is one of fundamental problems in modern biomed-
ical studies. However, the existing methods do not perform satisfactorily. Based
on the Markov property of graphical models and the likelihood ratio test, this
article provides a simple justification for the Markov neighborhood regression
method such that it can be applied to statistical inference for high-dimensional
generalized linear models with mixed features. The Markov neighborhood
regression method is highly attractive in that it breaks the high-dimensional
inference problems into a series of low-dimensional inference problems. The
proposed method is applied to the cancer cell line encyclopedia data for identifi-
cation of the genes and mutations that are sensitive to the response of anti-cancer
drugs. The numerical results favor the Markov neighborhood regression method
to the existing ones.
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1 INTRODUCTION

During the past two decades, dramatic improvements in data collection and acquisition technologies have enabled scien-
tists to collect a great amount of high-dimensional data, for which the dimension p can be much larger than the sample
size n (a.k.a. small-n-large-p). The current research on high-dimensional data mainly focuses on variable selection and
graphical modeling. The former aims to provide a consistent estimate for the regression model under sparsity constraints.
The existing methods include Lasso,1 SCAD,2 MCP,3 elastic net,4 and rLasso,5 among others. The latter aims to learn con-
ditional independence relationships for a large set of variables. The existing methods include graphical Lasso,6,7 nodewise
regression,8 and 𝜓-learning,9,10 among others developed. Quite recently, more and more researchers turn their attention
to statistical inference, which is to seek for statistical procedures that are able to quantify uncertainty of high-dimensional
regression, for example, constructing confidence intervals and assessing P-values for a single or subset of regression
coefficients. A non-exhaustive list of the existing methods include desparsified Lasso,11-13 multi sample-splitting,14 ridge
projection,15 and Markov neighborhood regression (MNR).16 See Section S1 of the supplementary material and Section 2
of this article for a brief review of these methods. Among the existing methods, the MNR method is a promising one. Based
on the Markov property of Gaussian graphical models (GGMs), it successfully breaks the high-dimensional inference
problem into a series of low-dimensional inference problems from which the desired confidence interval and P-value can
be computed as for the conventional low-dimensional regression problems. Compared to the existing methods, the MNR
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method tends to produce confidence intervals with more accurate coverage rates. However, based on the theory devel-
oped in Reference 16, the MNR method is only applicable to the case that the explanatory variables follow a multivariate
Gaussian distribution. This has severely limited the scope of its applications.

This article provides a simple justification, based on the Markov property of graphical models and the likelihood ratio
test, for the MNR method such that it can be extended to general high-dimensional inference problems. In particular, it
can be applied to statistical inference for high-dimensional generalized linear models (GLMs) with mixed features, where
the features can be continuous, discrete or both, and the response variable can be Gaussian, Poisson, multinomial, or
even survival time (for Cox regression). This article also provides an algorithm for implementation of the MNR method
and proves its validity. The numerical results favor the MNR method to the existing ones.

The remaining part of this article is organized as follows. Section 2 provides a brief review for the MNR method with
Gaussian explanatory variables. Section 3 extends the MNR method to general high-dimensional inference problems.
Section 4 illustrates the performance of MNR along with comparisons with the desparsified Lasso and ridge projection
methods. Section 5 presents the application of the MNR method to the cancer cell line encyclopedia (CCLE) data. Section 6
concludes the article with a brief discussion.

2 A BRIEF REVIEW OF THE MNR METHOD

Suppose that a set of n independent samples Dn = {(Y (i)
,X(i))ni=1} have been collected from the linear regression with a

random design:

Y = 𝛽0 + X1𝛽1 + · · · + Xp𝛽p + 𝜖, (1)

where 𝜖 follows the Gaussian distribution N(0, 𝜎2), and the explanatory variables (also known as features) X =
(X1, … ,Xp) follows a multivariate normal distribution Np(0,Σ). Let S∗ denote the support of the true model, which is
sparse. Suppose that X has been represented by a GGM denoted by G = (V,E), where V = {1, 2, … , p} represents the
set of p vertices, E = (eij) represents the adjacency matrix, eij = 1 if the (i, j)th entry of the precision matrix Θ = Σ−1 is
nonzero and 0 otherwise. Let XA = {Xk ∶ k ∈ A} denote a set of features indexed by A ⊂ V. Let 𝜉j = {k ∶ ejk = 1} denote
the neighboring set of Xj in G. It follows from the Markov property of the GGM that Xj⊥Xi|X𝜉j for any i ∈ V ⧵ 𝜉j, 𝜉j is called
the minimum Markov neighborhood of Xj in G. The minimum Markov neighborhood is also termed as Markov blanket
in Bayesian networks or general Markov networks. Any subset Sj is a Markov neighborhood of Xj if 𝜉j ⊆ Sj ⊆ V ⧵ {j}.

Without loss of generality, we let S1 = {2, … , d} denote a Markov neighborhood of X1, let Σd denote the covariance
matrix of {X1} ∪ XS1 , and partition Θ as

Θ =

[
Θd Θd,p−d

Θp−d,d Θp−d

]

. (2)

Following from the well-known property of the GGM,17 for any variables Xi and Xj,

Xi⊥Xj|XV⧵{i,j} ⇔ 𝜃ij = 0, (3)

where 𝜃ij denotes the (i, j)th entry of Θ. Therefore, the first row of Θd,p−d and the first column of Θp−d,d in (2) are
exactly zero, as X1⊥XV⧵({1}∪S1)|XS1 holds. Inverting Θ, we have Σd = (Θd − Θd,p−dΘ−1

p−dΘp−d,d)−1, which is equal to the top
d × d-submatrix of Σ = Θ−1. Therefore,

Σ−1
d = Θd − Θd,p−dΘ−1

p−dΘp−d,d. (4)

Since the first row of Θd,p−d and the first column of Θp−d,d are exactly zero, the (1, 1)th element of Θd,p−dΘ−1
p−dΘp−d,d is

exactly zero. Therefore, the (1, 1)th entry ofΘd (andΘ) equals to the (1, 1)th entry ofΣ−1
d . This suggests that if {X1} ∪ XS1 ⊃

XS∗ holds and n is sufficiently large, then the statistical inference for 𝛽1 can be made based on the subset regression:

Y = 𝛽0 + X1𝛽1 + X2𝛽2 + · · · + Xd𝛽d + 𝜖. (5)
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Since S1 forms a Markov neighborhood of X1 in the GGM formed by all features, the subset regression is called a Markov
neighborhood regression, which breaks the high-dimensional inference problem into a series of low-dimensional inference
problems by solving a subset regression for each feature.

Let 𝜉j denote an estimate of 𝜉j, let Ŝ∗ denote an estimate of S∗, and let Dj = {j} ∪ 𝜉j ∪ Ŝ∗. Reference 16 proved the
validity of the MNR method under the following conditions:

Ŝ∗ ⊇ S∗, (6)

𝜉j ⊇ 𝜉j, ∀j ∈ {1, 2, … , p}, (7)

|Dj| = |{j} ∪ 𝜉j ∪ Ŝ∗| = o
(√

n
)

. (8)

For each j ∈ V, if the conditions (6) to (8) are satisfied, then
√

n(𝛽 j − 𝛽j) ∼ N(0, 𝜎2
𝜃jj), where 𝜃jj is the (j, j)th entry of the

precision matrix Θ. For the case that n is finite, one can use t(n − |Dj| − 1) to approximate the distribution of
√

n 𝛽 j−𝛽j√
�̂�

2
n�̂�jj

;

that is, the estimate, P-value, and confidence interval of 𝛽j can be calculated from a subset regression as in conventional
low-dimensional multiple linear regression.

As implied by the proof of Theorem 1 of Reference 16, the conditions (6) and (8) together ensure the convergence
√

n(𝛽 j − 𝛽j)
d
−−→N(0, 𝜎2

𝜃Dj), where
d
−−→ denotes convergence in distribution and 𝜃Dj denotes the diagonal elements of Σ−1

Dj

corresponding to 𝛽j, and ΣDj denotes the covariance matrix of the features included in Dj; while the condition (7) ensures
𝜃Dj = 𝜃jj as explained above (around Equation 4).

Finally, we note that the inference problem addressed MNR is very different from the post-selection inference problem
considered in the literature.18,19 Let XV denotes the collection of all features of a high-dimensional regression, and let
M ⊂ V denote a subset model. The post-selection inference is to construct a confidence interval CM

j of 𝛽M
j for any feature

j ∈ M, conditioned on the event that the model M is selected (ie, M̂ = M), such that P(𝛽M
j ∈ CM

j |M̂ = M,XV) ≥ 1 − 𝛼

for a prespecified confidence level 1 − 𝛼. Due to the intrinsic correlation between the selected model and the outputs of
statistical tests, the theory for post-selection inference is rather intricate. In contrast, the problem addressed by MNR is
relatively simple, which is to find a confidence interval Cj for any feature j ∈ V such that P(𝛽j ∈ Cj|XV) ≥ 1 − 𝛼. Without
conditioning on the selected model makes the theory, as developed in Reference 16 and the current article, much simpler
than that of post-selection inference. Under appropriate sparsity assumptions, our inference procedure is valid as long
as the consistency or sure screening properties hold for the variable/structure selection procedures employed in steps (a)
and (b) of Algorithm 1 (see Section 3 for the detail).

3 EXTENSION OF THE MNR METHOD TO GENERAL
HIGH-DIMENSIONAL INFERENCE PROBLEMS

From the brief review given in Section 2, we know that the validity of the MNR method depends crucially on the normality
assumption for the features X1,X2, … ,Xp. Otherwise, (3) does not hold and the proof cannot go through any more. The
normality assumption has severely limited the application scope of the method. In what follows, we provide a new proof
for the validity of the MNR method such that it can be used for statistical inference of high-dimensional GLMs with mixed
features.

The density function of the GLM is given by

f (y|x, 𝜷, 𝜎) = c(y, 𝜎) exp {[𝜗y − 𝜑(𝜗)]∕d(𝜎)} , (9)

where 𝜎 is the dispersion parameter, 𝜑(⋅) is continuously differentiable, and 𝜗 is the natural parameter relating y to the
features via a linear function

𝜗 = 𝛽0 + X1𝛽1 + · · · + Xp𝛽p, (10)

where the features can be continuous, discrete or both. This class of GLMs includes normal linear regression, Pois-
son regression, and logistic regression, among others. Further, we assume that the joint distribution of the features
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Algorithm 1. Markov neighborhood regression for high-dimensional GLMs

(a) (Variable selection) Conduct variable selection for the model Y ∼ XV to get a consistent estimate of S∗. Denote the
estimate by Ŝ∗.

(b) (Markov blanket estimation) For each variable Xj, j = 1, 2,… , p, obtain a consistent estimate of its Markov blanket
and denote the estimate by 𝜉j.

(c) (Subset regression) For each variable Xj,j = 1, 2,… , p,let Dj = {j} ∪ 𝜉j ∪ Ŝ∗ and conduct a subset GLM:Y ∼ Xj +
X

𝜉j∪Ŝ∗ .Calculate the P-value and construct the confidence interval for the coefficient of Xj as in a low-dimensional
GLM.

X1,X2, … ,Xp can be represented by a graphical model, and the conditional distribution of each feature Xi can be repre-
sented by a GLM. We refer to Reference 20 for discussions on compatibility of the joint and conditional distributions. For
example, for the case that the features are mixed by Gaussian and Bernoulli random variables, their joint distribution can
be found in Reference 21, where it is shown that the conditional distribution of each Gaussian random variable can be
represented by a linear regression and that of each binomial random variable can be represented by a logistic regression.

Toward the goal of making statistical inference for such a high-dimensional GLM, evaluating P-value, and construct-
ing confidence interval for the coefficient of each feature, we extend the MNR method as follows. First, let’s consider
P(Y ,Xj|XV⧵{j}), the joint distribution of Xj and Y conditioned on all other variables XV⧵{j}. Suppose that a Markov net-
work has been constructed for the features X1,X2, … ,Xp and the Markov blanket 𝜉j has been identified for Xj. Here the
Markov network can be a Bayesian network or its moral graph, based on which a Markov blanket can be identified for
each variable Xj. Recall that the Markov blanket of a node Xj is the minimum subset of {X1,X2, … ,Xj−1,Xj+1, … ,Xp}
such that Xj is independent of all other variables conditional on it. Following from the property of the Markov blanket,
P(Y ,Xj|XV⧵{j}) can be simplified as follows:

P(Y ,Xj|XV⧵{j}) = P(Y |XV)P(Xj|XV⧵{j}) = P(Y |XS∗ )P(Xj|X𝜉j)

= P(Y ,Xj|XS∗∪𝜉j) = P(Y |XS∗∪𝜉j∪{j})P(Xj|XS∗∪𝜉j), (11)

where P(Y |XS∗∪𝜉j∪{j}) can be modeled by a subset GLM with the natural parameter given by

𝜗 = 𝛽0 + Xj𝛽j + XS∗∪𝜉j𝜷S∗∪𝜉j
, (12)

where 𝜷S∗∪𝜉j
denotes the regression coefficients corresponding to the features XS∗∪𝜉j . Suppose that the likelihood ratio

test method is used to test the hypothesis H0 ∶ 𝛽j = 0 vs H1 ∶ 𝛽j ≠ 0 with respect to the GLM (9), which characterizes
the relationship between Y and Xj conditioned on XV⧵{j}. By (11), this test is reduced to the likelihood ratio test for the
hypothesis with respect to a subset GLM with the natural parameter given by (12). In summary, the MNR method can be
described in Algorithm 1, which breaks the high-dimensional inference problem into a series of low-dimensional inference
problems by solving a subset GLM for each feature.

The likelihood ratio test has been well studied for GLMs. For linear regression, the likelihood ratio test and the Wald
test give the same results in the case that n is finite and n > |Dj| holds. For example, the square of the Wald t-test for a
single coefficient is numerically identical to the likelihood ratio F-test for the same coefficient. For other GLMs such as
logistic regression, this equality does not hold. However, the two tests are asymptotically equivalent in the sense that they
will produce the same inference when n is large and |Dj| = o(

√
n) holds, following from the asymptotic theory established

in Reference 22 where the number of parameters is allowed to grow with n. That is, if the conditions (6) to (8) are satisfied,
the inference for each of the subset GLM in Algorithm 1 can be done as for the conventional low-dimensional GLMs.

The conditions (6) to (8) imply that the MNR method can be implemented in many different ways. The condition
(6) is the so-called screening property, which is known to hold for many high-dimensional variable selection algorithms,
such as SCAD,2 MCP,3 elastic net,4 and adaptive Lasso.23 Lasso also satisfies this condition under appropriate conditions
of the design matrix, see Reference 24 for a review. For Markov blanket estimation, there are at least two methods we
can use. The first one is p-learning,10 which provides a consistent estimate of the moral graph for mixed data. The second
one is nodewise regression, which was first proposed in Reference 8 for learning GGMs with an 𝓁1-penalty, and then
extended in Reference 25 for learning graphical models for binary data and in Reference 20 for learning graphical models
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for mixed data. This article extends the method further. In Appendix A, we show that the nodewise regression method
can be applied to learn mixed graphical models with an amenable penalty,26 which includes the Lasso, SCAD, and MCP
penalties as special cases. Further, the condition (8) can be easily satisfied by a slight twist of the sparsity constraints
imposed on the variable selection and Markov blanket estimation algorithms. Theorem 1 provides a formal justification
for the validity of Algorithm 1, whose proof is given in Appendix A.

Theorem 1 (Validity of Algorithm 1). Consider a GLM given in (9) with sample size n and dimension p, where the fea-
tures form a mixed graphical model with compatible joint and conditional distributions. Suppose that the GLM is sparse such
that the true model size |S∗| ≺ min{n∕ log(p),

√
n}, the mixed graphical model is sparse such that the maximum neighbor-

hood size k ≺ min{n∕ log(p),
√

n}, and the conditions 1 to 11 (given in Appendix A) are satisfied. If a regularization method
with an amenable penalty function is used for variable selection in step (a), and the nodewise regression method with an
amenable penalty function is used for Markov blanket estimation in step (b), then Algorithm 1 is valid for statistical inference
of high-dimensional GLMs.

Regarding Algorithm 1 and the proof for its validity, we have two remarks.

Remark 1 (Joint inference). Algorithm 1 can be easily extended to joint inference for a finite number of variables. For
example, we want to test a linear hypothesis H0 ∶ a′𝜷 = 0 vs H1 ∶ a′𝜷 ≠ 0, where a = (a1, a2, … , ap) denotes a p-vector
with r nonzero elements and r is finite. For this hypothesis, the subset GLM can be simply constructed as Y ∼ 𝛽0 + XD𝜷D,
where D = R ∪ (∪j∈R𝜉j) ∪ Ŝ∗ and R = {j ∶ aj ≠ 0, j = 1, 2, … , p}.

Remark 2 (Accelerating computing by screening). For the subset GLM, if we do not stick to the equivalent Wald test, but
directly perform the likelihood ratio test, then the condition (8) can be much relaxed. For linear regression, by Theorem 1
of Reference 27, the condition (8) can be relaxed as |Dj| = o(n), which is actually a sufficient and necessary condition for
the Chi-square approximation of the likelihood ratio test. For the logistic regression, the above condition can be relaxed
further. Reference 28 showed that if |Dj| and n grows large in such a way that |Dj|∕n → 𝜅 for some 𝜅 < 1∕2, then the
likelihood ratio test can be approximated by a rescaled Chi-square. Based on these results, the sparsity conditions in
Theorem 1 can be relaxed as |S∗| ≺ n∕ log(p) and k ≺ n∕ log(p). More importantly, in this case, Algorithm 1 can be much
accelerated by replacing the variable selection procedure, performed in step (a) as well step (b) for each node, by a sure
independence screening procedure.29,30

4 SIMULATION STUDIES

4.1 Linear regression

We generated 500 datasets from the linear regression Y = X𝜷∗ + 𝝐, where the sample size n = 300, the dimension p =
500, and the random error 𝝐 ∼ N(0, In). The features were generated in the following procedure according to a Bayesian
network with the adjacency matrix E given by

Ei,j =
⎧
⎪
⎨
⎪
⎩

1, if j − i = 1, i = 1, … , (j − 1),
1, if j − i = 2, i = 1, … , (j − 2),
0, otherwise.

(13)

First, we ordered the variables as X1,X2, … ,Xp, and randomly marked half of them as continuous and half as binary.
Next, we generated Z1 ∼ (0, 1), and set X1 = Z1 if X1 is continuous, and X1 ∼ Binomial(1, 1∕(1 + exp{−Z1})) otherwise;
and generated the variables Xj, j = 2, 3, … , p sequentially by setting

Zj =
j−1∑

i=1
𝜌EijXi and Xj =

⎧
⎪
⎨
⎪
⎩

Zj + 𝜖, if Xj is continuous,
Binomial

(

1, exp(Zj)
1+exp(Zj)

)

if Xj is binary,
(14)

where we set 𝜌 = 0.5. The true regression coefficients were given by (𝛽∗0 , 𝛽
∗
1 , 𝛽

∗
2 , … , 𝛽

∗
p ) = (1, 2, 2.5, 3, 3.5, 4, 0, … , 0).
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T A B L E 1 Coverage rates and widths of the 95% confidence intervals produced by MNR, desparsified Lasso, and ridge projection for
simulated examples, where “signal” and “noise” denote nonzero and zero regression coefficients, respectively

Measure Desparsified-Lasso Ridge projection MNR

Linear Coverage Signal 0.880 (0.015) 0.975 (0.007) 0.955 (0.010)

Noise 0.953 (0.010) 0.981 (0.006) 0.950 (0.010)

Width Signal 0.374 (0.006) 0.682(0.010) 0.379 (0.005)

Noise 0.377 (0.007) 0.693(0.012) 0.387 (0.006)

CPU(s) 390.9 2.393 224.6

Logistic Coverage Signal 0.135 (0.015) 0.199 (0.018) 0.940 (0.011)

Noise 0.990 (0.005) 1.000 (0.0002) 0.948 (0.010)

Width Signal 0.831 (0.011) 1.693 (0.025) 1.497 (0.016)

Noise 0.784 (0.014) 1.677 (0.030) 1.059 (0.017)

CPU(s) 2036 7.765 532.9

Survival Coverage Signal - - 0.939 (0.011)

Noise - - 0.945 (0.010)

Width Signal - - 0.395 (0.004)

Noise - - 0.370 (0.006)

CPU(s) - - 335.4a

Note: The CPU time (in seconds) was recorded for a single dataset with the method running in serial on a personal computer of i9-10900k CPU@3.6 GHz with
128 GB memory.
aWe set the SIS iteration number to 1 in step (a) of Algorithm 1.

Algorithm 1 was applied to this example, where variable selection was conducted using the SIS-MCP method imple-
mented in the R package SIS,31 the Markov blanket was estimated by nodewise regression with SIS-MCP used in
regressing for each node. For comparison, the desparsified-Lasso and ridge projection method were also applied to
this example. Both methods have been implemented in the R package hdi.32 For all other examples of this article, the
algorithms were implemented in the same way.

Table 1 summarizes the coverage rates and widths of the 95% confidence intervals produced by these methods for
each regression coefficient. For the nonzero regression coefficients (denoted by “signal”), the mean coverage rate and its
standard deviation are calculated by

pcover =
500∑

j=1

∑

i∈S∗

p̂(j)i ∕(500 ⋅ |S∗|), 𝜎(pcover) =
√

Var{p̂(j)i ∶ i ∈ S∗, j = 1, 2, … , 500}∕500, (15)

where p̂(j)i ∈ {0, 1} indicates the coverage of 𝛽i by the confidence interval, and Var{⋅} denotes the variance. By dividing by
500 in its calculation, 𝜎(pcover) represents the variability of the mean value (averaged over 500 independent datasets) for
a single regression coefficient. For the width of the confidence interval, the mean and standard deviation were calculated
similarly. For the zero regression coefficients (denoted by “noise”), the mean coverage rate, the mean width, and their
standard deviations were also calculated similarly. The comparison indicates that MNR significantly outperforms the
existing methods: For both the nonzero and zero regression coefficients, the mean coverage rates produced by MNR
are much closer to their nominal level. The reason why desparsified Lasso is coverage deficient has been explained in
Reference 16: Desparsified Lasso centers its confidence interval at a bias-corrected Lasso estimator which, unfortunately,
is still biased, although its bias has been much smaller than the original Lasso estimator.

4.2 Logistic regression

We simulated 500 datasets from a logistic regression, where we set n = 600, p = 800, and the true regression coefficients
(𝛽∗0 , 𝛽

∗
1 , 𝛽

∗
2 , … , 𝛽

∗
p ) = (1, 2, 2.5,−3, 3.5,−4, 0, … , 0). We set 𝜌 = 0.5. The features were generated according to (13) and
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(14) as in Section 4.1. The MNR, desparsified Lasso and ridge projection methods were applied to this example with the
results summarized in the lower part of Table 1. For MNR, SIS-MCP was used for both procedures of variable selection
and Markov blanket construction. The comparison indicates again that MNR significantly outperforms desparsified Lasso
and ridge projection in confidence interval construction for GLMs. The desparsified Lasso and ridge regression essentially
fail for the example.

4.3 Cox regression

To valid the MNR method in more general cases, we consider cox regression. We let 𝜆(t) denote the hazard rate at time t
and let 𝜆0(t) denote the baseline hazard rate. The Cox regression is given by

𝜆(t) = 𝜆0(t) exp{𝛽1X1 + 𝛽2X2 + · · · + 𝛽p,Xp},

from which we simulated 500 datasets with n = 400, p = 600. We set the true regression coefficients (𝛽∗1 , 𝛽
∗
2 , … , 𝛽

∗
p ) =

(1, 1, 1, 1, 1, 0, 0, … , 0), set the baseline hazard rate 𝜆0(t) ≡ 0.1, and set the censoring hazard rate 𝜆c = 1. We generated
the predictors by using Equations (13) and (14) with 𝜌 = 0.5, generated the event time from the Weibull distribution
with a shape parameter of 1 and a scale parameter of 𝜆0 exp(−

∑p
i=1Xi𝛽i), generated the censoring time from the Weibull

distribution with a shape parameter of 1 and a scale parameter of 𝜆c, and set the observed survival time as the minimum
of the event time and the censoring time for each subject.

The MNR method was applied to the datasets, where SIS-Lasso was applied for variable selection and SIS-MCP was
used for Markov blanket estimation. The results were summarized in Table 1. Unfortunately, the desparsified Lasso and
ridge regression were not available for this model and thus could not be used for comparison.

4.4 Variable selection by MNR

This section explores the potential of MNR in variable selection. As discussed in Reference 16, MNR converts the variable
selection problem to a multiple hypothesis testing problem. By computing and sorting adjusted P-values33 or q-values,34

we can select important variables at a prespecified false discovery rate (FDR). In this study, we generated 20 datasets
from a linear regression model under each of the following settings: (a) n = 200, 300, p = 1000, 𝜎2 = 1, true regression
coefficients (𝛽∗0 , 𝛽

∗
1 , 𝛽

∗
2 , … , 𝛽

∗
p ) = (1, 2, 2.5, 3, 3.5, 4, 0, … , 0) ∗ 𝛾 ; (b) n = 300, 500, p = 10 000, 𝜎2 = 1, true regression coef-

ficients (𝛽∗0 , 𝛽
∗
1 , 𝛽

∗
2 , … , 𝛽

∗
p ) = (1, 3,−3, 3.5, 4,−4, 4.5, 5,−5, 5.5, 6, 0, … , 0) ∗ 𝛾 ; where the value of 𝛾 ∈ (0, 1] is varied for

tuning the strength of signal. The explanatory variables were generated as in Section 4.1, but different values of 𝜌, includ-
ing 𝜌 = 0.1, 0.3 and 0.5, were used in equation (14). The proportion of binary predictors was set to 10%, that is, each dataset
consists of 100 and 1000 binary predictors under the settings (a) and (b), respectively.

By step 3 of Algorithm 1, a subset regression is implemented for each predictor, and thus relevant variables can be
selected based on the multiple hypothesis tests:

H0 ∶ 𝛽j = 0, H𝛼 ∶ 𝛽j ≠ 0, j = 1, 2, … p. (16)

Given the P-values of the subset regressions, we conduct the multiple hypothesis tests using the empirical Bayesian
method developed in Reference 35. As shown in Tables 2 and 3, MNR can exactly identify the true predictors for each
dataset at a FDR level of q = 0.001 or q = 0.0001, where the q-value is as defined in Reference 34. Tables 2 and 3 report
these results in terms of false selection rate (FSR) and negative selection rate (NSR), which are defined by:

FSR =
∑20

j=1|Ŝj∕S∗|
∑20

j=1|Ŝj|
, NSR =

∑20
j=1|S∗∕Ŝj|

∑20
j=1|S∗|

, (17)

where S∗ is the set of true variables and Ŝj is the set of selected variables for dataset j.
For comparison, we applied the popular likelihood regularization methods, including SIS-SCAD, SIS-MCP, SIS-Lasso,

and SIS-Elastic-Net, to these datasets for performing variable selection under their default settings in the package SIS. It
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T A B L E 2 Variable selection results by MNR, SIS-SCAD, SIS-MCP, SIS-Lasso, and SIS-Elastic-Net for linear regression datasets
simulated with n = 200,300, p = 1000, 𝛾 = 1, 1∕3, 𝜎2 = 1, and 𝜌 = 0.1, 0.3, and 0.5

MNR SIS-Elastic-Net

Measure q = 0.0001 q = 0.001 q = 0.01 q = 0.05 SIS-SCAD SIS-MCP SIS-Lasso 𝜶 = 0.1 𝜶 = 0.2

𝜌 = 0.1, n = 300, 𝛾 = 1

FSR 0 0 0 0.029 0.010 0.010 0.320 0.875 0.812

NSR 0 0 0 0 0 0 0 0.02 0.02
𝜌 = 0.3, n = 300, 𝛾 = 1

FSR 0 0 0.010 0.057 0.010 0.091 0.281 0.829 0.699

NSR 0 0 0 0 0 0 0 0.01 0.01
𝜌 = 0.5, n = 300, 𝛾 = 1

FSR 0 0 0.010 0.057 0.038 0.057 0.254 0.701 0.554

NSR 0 0 0 0 0 0 0 0 0
𝜌 = 0.5, n = 200, 𝛾 = 1∕3

FSR 0.010 0.010 0.030 0.117 0.546 0.560 0.429 0.674 0.579

NSR 0.05 0.04 0.02 0.02 0.02 0.01 0 0.01 0.01

Note: For the elastic-net penalty, we tried the setting 𝛼 = 0.1, 0.2.

is known that the likelihood regularization methods tend to select more false predictors to compensate their shrinkage
effects on regression coefficients, and this over-selection issue can become worse as the ratio p∕n increases due to the
increasing likelihood of spurious correlation. In statistics, spurious correlation refers to that two or more variables are
associated but not causally related due to either coincidence or the presence of unseen confounding factors. The MNR
method, as a multiple hypothesis test-based method, provides a promising way for addressing the spurious correlation
issue encountered in variable selection by controlling the FDR at a low level. As shown in Tables 2 and 3, MNR can
significantly outperform the likelihood regularization methods in high-dimensional variable selection; in particular, MNR
tends to have a smaller FSR value and is more robust to the strength of signal than the regularization methods. More
discussions on the properties of MNR in variable selection can be found in Sections 5 and 6.

5 IDENTIFICATION OF DRUG SENSITIVE GENES AND MUTATIONS

Disease heterogeneity is often observed in complex diseases such as cancer. For example, molecularly targeted cancer
drugs are only effective for patients with tumors expressing targets.36,37 The disease heterogeneity has directly motivated
the development of precision medicine, aiming to improve patient care by tailoring optimal therapies to an individual
patient according to his/her molecular profile and clinical characteristics. Identifying sensitive genes and mutations to
different drugs is an important step toward the goal of precision medicine.

In this study, we considered the CCLE dataset, which is publicly available at https://github.com/alexisbellot/GCIT/
tree/master/CCLE%20Experiments. The dataset consists of 8-point dose-response curves for 24 drugs (or chemical com-
pounds) across over 400 cell lines. For different drugs, the numbers of cell lines are slightly different. For each cell line,
it consists of the expression data of 18 988 genes and 1638 mutations, which bring the dimension of the full dataset to
p = 20 626. We used the area under the dose-response curve, which was termed as activity area in Reference 38, to measure
the sensitivity of a drug to each cell line. Compared to other measurements, such as IC50 and EC50, the activity area could
capture the efficacy and potency of the drug simultaneously. Since for each drug, the number of experimented cell lines
is small, while the number of genes and mutations is large, accurate identification of the drug sensitive genes/mutations
has posed a great challenge on the existing statistical methods. It is known that the regularization methods, such as
Lasso, SCAD, and MCP, tend to select more false predictors to compensate their shrinkage effects on regression coeffi-
cients. In addition, they tend to select spuriously correlated variables due to their likelihood optimization nature. Spurious
correlation often occurs in small-n-large-p regression due to randomness or unknown confounding factors. When spuri-
ously correlated variables exist, they tend to be selected by likelihood-based methods. For a dataset with a small number

https://github.com/alexisbellot/GCIT/tree/master/CCLE%20Experiments
https://github.com/alexisbellot/GCIT/tree/master/CCLE%20Experiments
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T A B L E 3 Variable selection results by MNR, SIS-SCAD, SIS-MCP, SIS-Lasso, and SIS-Elastic-Net for linear regression datasets
simulated with n = 300,500, p = 10 000, 𝛾 = 1, 1∕3, 1∕5, 𝜎2 = 1, and 𝜌 = 0.5

MNR

Measure q = 0.0001 q = 0.001 q = 0.01 q = 0.05 SIS-SCAD SIS-MCP SIS-Lasso SIS-Elastic-Net

n = 500, 𝛾 = 1

FSR 0 0 0.005 0.024 0.010 0.476 0.817 0.708

NSR 0 0 0 0 0 0 0 0
n = 500, 𝛾 = 1∕3

FSR 0 0 0.005 0.024 0.206 0.541 0.845 0.715

NSR 0 0 0 0 0 0 0 0
n = 300, 𝛾 = 1∕3

FSR 0 0 0.015 0.107 0.631 0.650 0.779 0.668

NSR 0 0 0 0 0 0 0 0.01
n = 300, 𝛾 = 1∕5

FSR 0 0 0.010 0.099 0.752 0.716 0.771 0.655

NSR 0.025 0.01 0.005 0 0 0 0 0.01
n = 300, 𝛾 = 1∕6

FSR 0 0 0.010 0.1 0.762 0.739 0.783 0.644

NSR 0.060 0.05 0.035 0.01 0.005 0.005 0 0.01

Note: For the elastic-net penalty, we set 𝛼 = 0.2.

of observations, the spuriously correlated variables often reduce not only the fitting error but also the prediction error
in cross-validation. MNR, as a conditional independence test-based method, provides a promising way for limiting the
selection of spuriously correlated variables by controlling the FDR at a reasonable level.

Algorithm 1 was applied to the dataset collected for each drug to select the drug-sensitive genes and mutations. The
selection was based on the adjusted P-values33 of the conditional independence tests for each single gene/mutation. We set
the significance level of the multiple hypothesis test at .05. If there were no genes/mutations selected at this significance
level, we just reported one gene/mutation with the smallest adjusted P-value. For comparison, the existing methods,
including desparsified Lasso11-13 and ridge projection, were applied to this example. For each drug, desparsified Lasso is
simply inapplicable due to the ultra-high dimensionality of the dataset; the package hdi32 aborted due to the excess of
memory limit. However, the ridge projection method still performed reasonably well. For this method, we also selected the
genes/mutations with the adjusted P-values less than .05 as significant, or reported one gene/mutation with the smallest
adjusted P-value if no gene/mutation was significant at the level .05.

Table 4 summarizes the results produced by the above methods. It shows that MNR and ridge projection can produce
similar or overlapped results for many drugs, while the confidence intervals produced by MNR tend to be narrower than
those by ridge projection for the genes/mutations selected by both methods. For example, for the drugs Topotecan and
Irinotecan, both methods selected the gene SLFN11 as a drug sensitive gene, and the confidence intervals by MNR are
narrower than those by ridge projection. In the literature, References 38 and 39 reported that SLFN11 is predictive of
treatment response for Topotecan and Irinotecan. For the drug 17-AAG, both methods selected NQO1 as a drug sensitive
gene. References 38 and 40 reported NQO1 as the top predictive biomarker for 17-AAG. Other examples include the drug
Nilotinib for which both methods selected APOL4, the drug PF2341066 for which both methods selected the mutation
SCD5, the drug PLX4720 for which both methods selected the mutation BRAFV600E, and the drug Erlotinib for which
both methods selected the mutation EGFR. It is known that EGFR is the target gene of the drug Erlotinib, and this target
gene has been correctly identified by MNR.

For a thorough study for the performance of MNR, we have also compared it with some popular high-dimensional
variable selection methods such as SIS-SCAD, SIS-MCP, and SIS-Lasso, which all fall into the class of likelihood regular-
ization methods. We compared the performance of these methods in variable selection, goodness-of-fit and prediction.
For this purpose, a 5-fold cross validation experiment was conducted for each drug. Table 5 reports results for three
selected drugs, 17-AAG, Irinotecan, and PLX4720. More results are presented in Table S3 of the supplementary material.
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T A B L E 4 Comparison of drug sensitive genes/mutations selected by desparsified Lasso, ridge projection, and MNR for 24
anti-cancer drugs, where “*” indicates that this gene was significantly selected and the number in the parentheses denotes the width of
the 95% confidence interval, and “-MUT” indicates a mutation

Drug Desparsified-Lasso Ridge MNR

17-AAG - NQO1(0.194) NQO1(0.247)

AEW541 - NFE2L3(0.327) GPATCH3(0.245)

AZD0530 - STK39(0.331) PYY(0.208)

AZD6244 - SPRY2(0.303) NRAS-MUT*(0.548)

Erlotinib - EGFR-MUT(1.498) EGFR-MUT*(0.814)

- CLK3-MUT*(1.506)

- EGFR*(0.261)

Irinotecan - SLFN11*(0.337) SLFN11*(0.2)

L-685458 - SELPLG(0.473) WDR86*(0.203)

Lapatinib - ERBB2(0.561) SCO1(0.303)

LBW242 - SET-MUT(10.27) SET-MUT*(5.075)

Nilotinib - APOL4*(0.474) CAMK2A-MUT*(2.017)

NCF4*(0.349)

CCL23*(0.352)

TRDC*(0.211)

RNASE2*(0.437)

APOL4*(0.277)

Nutlin-3 - SPIC(0.398) ASB16*(0.231)

Paclitaxel - ABCB1(0.326) TM2D2*(0.280)

Panobinostat - LOC100652995(0.250) SVIP*(0.201)

PD-0325901 - SPRY2(0.324) THRSP-MUT(2.696)

PD-0332991 - TMTC2(0.346) NFE2L3*(0.223)

PF2341066 - SCD5-MUT(8.433) SCD5-MUT*(3.239)

ANKRD22*(0.251)

WDFY4*(0.314)

PHA-665752 - GCFC2(0.387) PDPK1-MUT(3.429)

PLX4720 - BRAFV600E-MUT*(1.830) BRAFV600E-MUT*(0.899)

- PLEKHH3*(0.19)

- IRAK1-MUT*(1.66)

RAF265 - GNPTAB(0.354) FAM89B*(0.255)

Sorafenib - PROSER1(0.523) DNAJC5B*(0.284)

- THAP10*(0.261)

TAE684 - SELPLG(0.457) PPFIA1*(0.292)

TKI258 - WDFY4(0.464) THEMIS*(0.304)

Topotecan - SLFN11*(0.278) SLFN11(0.17)

ZD-6474 - APOL4(0.417) PGBD2*(0.206)

Note: For each dataset, ridge regression cost 2.6 minutes CPU time with a single thread running in serial, and MNR cost 46.5 minutes CPU time with 10
threads running in parallel. All methods were run on the same personal computer with i9-10900k CPU@3.6GHz and 128 GB memory.
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T A B L E 5 Comparison of MNR with SIS-SCAD, SIS-MCP, and SIS-Lasso for model prediction and variable selection on three selected
drugs, 17-AAG, Irinotecan, and PLX4720, via 5-fold cross-validation experiments: “MSFE” denotes the mean squared fitting error, “MSPE”
denotes the mean squared prediction error, and “Size” denotes the number of selected gene/mutations, which are reported as the average
over 5-fold results with the standard deviation given in the parentheses; “selected Genes/mutations” shows the genes and mutations
selected in the 5-fold experiments, where the number in the parentheses represents the selection frequency of each selected gene/mutation

Drug Methods MSFE MSPE Size Selected genes/mutations

17-AAG SIS-SCAD 0.62(0.21) 0.88(0.16) 20.0(11.5) NQO1(4),CDH6(3),MMP24(3),ZNF610(3),
ZFP30(3),ZNF14(3)

SIS-MCP 0.54(0.02) 0.89(0.14) 16.2(3.5) NQO1(5),CDH6(3),MMP24(3),
ZFP30(3),CBFB(3)

SIS-Lasso 0.77(0.17) 0.99(0.10) 7.8(11.0) MMP24(4),NQO1(2),ZFP30(2),CTDSP1(2)

MNR 0.93(0.04) 0.98(0.11) 1.2(0.5) NQO1(4)

Irinotecan SIS-SCAD 0.44(0.05) 0.55(0.08) 6.6(0.9) ARHGAP19(5),SLFN11(4)

SIS-MCP 0.46(0.05) 0.56(0.09) 3.8(0.8) ARHGAP19(5),SLFN11(4)

SIS-Lasso 0.43(0.06) 0.54(0.09) 9.8(3.0) ARHGAP19(5),CPSF6(5),
SLFN11(4),CD63(3)

MNR 0.74(0.02) 0.75(0.07) 1.0(0.0) SLFN11(5)

PLX4720 SIS-SCAD 0.59(0.05) 0.91(0.28) 9.8(5.1) GAPDHS(3),MAD1L1(3),RXRG(2),
LPL(2),ART3(2),ZFP106(2)

SIS-MCP 0.61(0.04) 0.89(0.27) 5.4(2.8) GAPDHS(3),ZFP106(2),ZEB2(2)

SIS-Lasso 0.60(0.06) 0.87(0.23) 10.2(5.6) SPRYD5(5),GAPDHS(4),RXRG(3)

MNR 0.52(0.05) 0.65(0.12) 3.2(3.8) BRAF.V600E-MUT(5), IRAK1-MUT(2)

As expected, MNR tends to select much less numbers of genes/mutations and have slightly larger prediction errors than
the likelihood regularization methods.

As mentioned previously, this phenomenon can possibly be explained by spurious correlation, which often causes the
likelihood-based methods to a high FDR. In contrast, MNR selects variables based on multiple hypothesis tests and it can,
as demonstrated by our previous simulation examples, effectively limit the effect of spurious correlation by controlling
the FSR at a low level. Further, we note that the genes/mutations selected by MNR for the three drugs in Table 5 have
been verified in the literature as described above. Finally, we note that for the drug PLX4720, MNR did not only select
a smaller number of genes/mutations, but also predicted more accurately. This is because it selected the right mutation
BRAF.V600E, while the likelihood regularization methods failed to do so.

In summary, MNR tends to select a more parsimonious but trustful model than the likelihood regularization methods
for high-dimensional regression problems.

6 DISCUSSION

Based on the Markov property of graphical models and the likelihood ratio test, this article provides a simple justification
for the MNR method such that it can be applied to statistical inference for high-dimensional GLMs with mixed features.
The MNR method has been tested on both simulated and real data problems. The numerical results indicate its superiority
over the existing methods. Compared to desparsified Lasso, MNR does not only produce more accurate confidence inter-
vals, but also is computationally more efficient. Both methods involve nodewise regression, but MNR avoids calculation
of the precision matrix Θ required by desparsified Lasso, which is costly when the dimension p is high.

The MNR method is highly attractive in that it has a high-dimensional inference problem reduced to a series of
low-dimensional inference problems. Consequently, the MNR method possesses an embarrassingly parallel structure,
and its computation can be much accelerated (than reported in the article) if running in parallel on a multi-core computer.
Other than parallel implementation, as mentioned in Remark 2, the computation of the MNR method can be further
accelerated by replacing the variable selection procedures involved in the method by some sure independent screening
procedures. This is worth a further investigation.
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As shown in this article, as a by-product, the MNR method can also be used for variable selection for high-dimensional
GLMs. Due to its use of the dependence structure among the predictors, the MNR method tends to outperform the existing
variable selection methods. A similar finding has been reported in Reference 41 that use of the correlation structure
among the predictors can often improve the performance of a variable selection method. In addition, due to its multiple
hypothesis testing nature, the MNR method can effectively limit the effect of spurious correlation that has bothered the
likelihood regularization methods under the small-n-large-p scenario.
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APPENDIX A

A.1 Formulation of undirected graphical models
The graphical model is often represented as a graph G = (V,E), where V = {1, 2, … , p} denotes the set of nodes and
E denotes the set of edges. This article focuses on the case that the graph is undirected, for which E is symmetric.
Let X1,X2, … ,Xp denote the variables associated with the p nodes of the graph. Consider a general pairwise graphical
model,42 whose joint distribution takes the form

f (x) ∝ exp

{ p∑

r=1
fr(xr) +

∑

(u,v)∈E
fuv(xu, xv)

}

,

where x = (x1, x2, … , xp) and fuv = 0 for {u, v} ∉ E. In this model, fr(xr) is the node potential function and fuv(xu, xv) is the
edge potential function. Furthermore, the pairwise interactions can be simplified by assuming that fuv(xu, xv) = 𝜃uvxuxv =
𝜃vuxvxu. In this simplified case, the joint distribution of the graphical model can be expressed as

f (x) = exp

{ p∑

r=1
fr(xr) +

∑

(u,v)∈E
𝜃uvxuxv − A(𝜃)

}

, (A1)

where A(𝜃) is the log-partition function.
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Let Vr = V ⧵ {r}, and let XVr = (X1,X2, … ,Xr−1,Xr+1, … ,Xp). The distribution of Xr conditioned on XVr is given by

f (xr|xVr ) = exp

{

fr(xr) + xr(
∑

v≠r
𝜃r,vxv) − Dr(𝜂r)

}

,

where 𝜂r = 𝜂r(𝜽r, xVr ) is a function of 𝜽r = (𝜃r,1, … , 𝜃r,r−1, 𝜃r,r+1, … , 𝜃r,p) and xVr .

A.2 Proof of validity of the MNR method for high-dimensional GLMs
Consider a GLM with the density function given by

f (y|x, 𝜷, 𝜎) = c(y, 𝜎) exp
{

yxT𝜷 − 𝜑(xT𝜷)
d(𝜎)

}

, (A2)

where 𝜎 is the dispersion parameter, 𝜑(⋅) is continuously differentiable, and x = (x1, x2, … , xp) is a p-vector of features.
This class of GLMs includes normal linear regression, Poisson regression, and logistic regression, among others.

Suppose that the features of the GLM (A2) can be modeled by a mixed graphical model, for which the joint distribution
can be represented in the form (A1), and the conditional distribution of each variable Xr can be represented by a GLM in
the form

f (xr|xVr ,𝜽r, 𝜏) = c(xr, 𝜏) exp
{xrxVr𝜽r − 𝜓(xVr𝜽r)

d(𝜏)

}

, (A3)

where V = {1, 2, … , p} is the index set of features, Vr = V ⧵ {r}, 𝜏 is the dispersion parameter, and 𝜓(⋅) is the cumulant
function. Moreover, the connectivity of the graphical model is determined by 𝜽1, … ,𝜽p; that is, for any pair of nodes (i, j),
the edge exists if and only if both 𝜃i,j and 𝜃j,i are nonzero. We refer to Reference 20 for discussions on compatibility of the
conditional and joint distributions. Taking the mixed graphical model by Gaussian and binomial random variables as an
example, for which the joint distribution is given in Reference 21, the conditional distribution of each Gaussian random
variable can be represented as a linear regression, and the conditional distribution of each binomial random variable can
be represented as a logistic regression.

To conduct variable selection for the GLM (A2), a regularization method is used, which is to solve the minimization
problem

arg min
||𝜷||≤R

n(𝜷) + 𝜌𝜆(𝜷), (A4)

wheren(𝜷) = 1
n

∑n
i=1 log f (y(i)|x(i), 𝜷, 𝜎)with the super-index i indexing the observations, 𝜌𝜆(⋅) is the regularized function,

and R is a scalar.
To determine the structure of the mixed graphical model formed by the features, the nodewise regression method is

used, which employs a regularization method to estimate the parameters of the conditional distribution for each node.
That is, for each node r, it is to estimate 𝜽∗r , the true value of 𝜽r, by solving the minimization problem

arg min
||𝜽r||≤R

n(𝜽r) + 𝜌𝜆(𝜽r), (A5)

where n(𝜽r) = 1
n

∑n
i=1 log f (x(i)r |x(i)Vr

,𝜽∗r , 𝜏) with the super-index i indexing the observations, 𝜌𝜆(⋅) is the regularized func-
tion, and R is a scalar. As stated in Reference 8, the support of 𝜽r can be used to estimate the neighborhood of the node
Xr.

The remaining part of this section is organized as follows. Section A.2.1 gives some definitions on the penalty and loss
functions. Section A.2.2 proves the consistency of Markov blanket estimation for each feature Xr. Section A.2.3 proves the
consistency of variable selection for the model (9). Finally, Section A.2.4 proves Theorem 1 of the main text.

A.2.1 Definitions on the penalty and loss functions
This section defines two terms, namely, amenable penalty and restricted strong convexity (RSC), which have been
discussed in References 26 and 43.
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Definition 1 (Amenable regularizer). A penalty function 𝜌𝜆 ∶ R → R is said 𝜇-amenable for some constant 𝜇 ≥ 0 if the
following conditions are satisfied:

(i) The function 𝜌𝜆(⋅) is symmetric around 0 [ie, 𝜌𝜆(t) = 𝜌𝜆(−t) for all t] and 𝜌𝜆(0) = 0.
(ii) The function 𝜌𝜆(⋅) is nondecreasing on R+.

(iii) The function t → 𝜌
𝜆(t)

t
is nonincreasing on R+.

(iv) The function 𝜌𝜆(⋅) is differential, for t ≠ 0.
(v) The function 𝜌𝜆(t) + 𝜇

2
t2 is convex, for some 𝜇 > 0.

(vi) limt→0+ 𝜌
′
𝜆
(t) = 𝜆.

The amenable penalty is very general, which includes the Lasso penalty,1 SCAD penalty,2 and MCP penalty3 as special
cases. The following lemma on amenable regularizers was taken from Reference 43.

Lemma 1. If 𝜌𝜆(⋅) is a 𝜇-amenable regularizer, then the following holds:

(i) For all t ≠ 0, |𝜌′
𝜆
(t)| ≤ 𝜆.

(ii) The function q𝜆(t) − 𝜇

2
t2 is concave and differentiable everywhere.

Definition 2 (RSC). An empirical loss function n is said satisfying an (𝛼, 𝛾)-RSC condition if there exist constants
𝛼1, 𝛼2 > 0 and 𝛾1, 𝛾2 ≥ 0 such that for any pair 𝜽, Δ ∈ Rp,

⟨∇n(𝜽 + Δ) − ∇n(𝜽),Δ⟩ ≥
⎧
⎪
⎨
⎪
⎩

𝛼1||Δ||22 − 𝛾1
log p

n
||Δ||21, ∀ ||Δ||2 ≤ 1,

𝛼2||Δ||2 − 𝛾2

√
log p

n
||Δ||1, ∀ ||Δ||2 ≥ 1.

(A6)

The following lemma was taken from Reference 26, which states that if n is convex, given 𝛼1 and 𝛾1 in (A6), then
𝛼2 = 𝛼1 and 𝛾2 = 1 hold.

Lemma 2. Given the empirical loss function n as defined in (A5), ||𝜽||1 ≤ R, R is a scalar, and n is convex. If the first
equation in (A6) holds and n ≥ 4R2

𝛾
2
1 log p, then

⟨∇n(𝜽 + Δ) − ∇n(𝜽),Δ⟩ ≥ 𝛼1||Δ||2 −
√

log p
n

||Δ||1, ∀ ||Δ||2 ≥ 1.

A.2.2 Consistency of Markov blanket estimation
This section provides a theoretical guarantee for the consistency of Markov blanket estimation when the nodewise regres-
sion method with a nonconvex penalty function is used for estimation. Refer to the GLM (A3), we let 𝜽r denote a
p-dimensional parameter vector of the regression for node r, which includes an intercept term stored as the rth element
𝜃r,r. In general, we let 𝜃r,i denote the ith element of 𝜽r. Let 𝜽∗r denote the true regression parameter vector for node r, and
let Sr = {i ∶ 𝜃∗r,i ≠ 0, i ≠ r} denote the support of 𝜽∗r . Let k = maxp

r=1|Sr|. Formally, the following assumptions are made
for the proof.

Assumption 1. For each node r, the empirical loss functionn(𝜽r) is convex and satisfies the RSC-condition with (𝛼1, 𝛾1);
in addition, the penalty function 𝜌𝜆 is 𝜇-amenable with 𝜇 <

4
3
𝛼1, and there exist constants 𝜆 and R such that

4 max

{

||∇n(𝜽∗r )||∞, 𝛼2

√
log k

n

}

≤ 𝜆 ≤

√
(4𝛼1 − 3𝜇)𝛼2

384k
,

max
{

2||𝜽∗r ||1,
48k𝜆

4𝛼1 − 3𝜇

}

≤ R ≤ min
{

𝛼2

8𝜆
, 𝛼2

√
n

log p

}

.

The following lemma is a restatement of Theorem 1 of Reference 26.

Lemma 3. Suppose that a regularizer satisfies Definition 1, an empirical convex lossn satisfies Definition 2, and a regular-
ization parameter 𝜆 satisfies Assumption 1. If the sample size n ≥ 16R2 max{𝛾2

1 ,1}
𝛼2 log p, for any vector 𝜃 satisfying the following
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first-order condition

⟨∇n(𝜃) + ∇𝜌𝜆(𝜃), 𝜃 − 𝜃⟩ ≥ 0, for all feasible 𝜃 ∈ R
p
,

then the following error bound holds:

||𝜃 − 𝜃
∗||2 ≤

6𝜆
√

k
4𝛼1 − 3𝜇

,

where ||𝜃∗||0 = k.

Assumption 2. There exists a constant 𝜌max such that the largest eigenvalue of the sample covariance matrix satisfies

𝜆max

(

1
n

n∑

i=1
(X(i))(X(i))T

)

< 𝜌max < ∞, (A7)

where X(i) denotes the ith row of the design matrix X, and 𝜆max(⋅) denotes the maximum eigenvalue of a matrix.

The following lemma is known as the eigenvalue interlacing theorem.44

Lemma 4. Suppose A ∈ Rn×n is a real symmetric matrix. Let B ∈ Rm×m, m < n, be a principal submatrix of symmetric
matrix A. Suppose the matrix A has the eigenvalues 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆n, and the matrix B has the eigenvalues 𝛾1 ≤ 𝛾2 ≤ · · · ≤
𝛾m. Then

𝜆k ≤ 𝛾k ≤ 𝜆k+n−m, k = 1, 2, … ,m.

If m = n − 1, then

𝜆1 ≤ 𝛾1 ≤ 𝜆2 ≤ 𝛾2 ≤ · · · ≤ 𝛾n−1 ≤ 𝜆n.

By Lemma 4, Assumption 2 implies that for any r ∈ V,

𝜆max

(

1
n

n∑

i=1
X(i)Vr

X(i)Vr

T
)

< 𝜌max <∞. (A8)

For notational simplicity, we let Q∗ = ∇2
n(𝜽∗r ), and let Q∗

A,B denote a submatrix of Q∗ formed with the rows in the set A
and the columns in the set B.

Assumption 3. For each node r, there exists a constant 𝜌min such that 𝜆min(Q∗
Sr ,Sr

) > 𝜌min > 0, where 𝜆min(⋅) denotes the
minimum eigenvalue of a matrix.

Assumption 4 (Incoherence condition). For each node r, there exists a constant 𝜂 ∈ (0, 1) such that

|||Q∗
Sc

r ,Sr
(Q∗

Sr ,Sr
)−1|||∞ ≤ 1 − 𝜂,

where Sc
r denotes the complementary set of Sr.

Assumption 5. For each node r, there exists a constant C > 0 such that 𝜃∗r,min ≥ 2C
√

k log p
n

, where 𝜃
∗
r,min = minp−1

i=1 |𝜃
∗
r,i|.

Assumptions 6 and 7 were taken from Reference 45. For mixed graphical models, we cannot bound each variable
directly, but we can bound their first and second moments.

Assumption 6. For each node r, the first and second moments of Xr are bounded, that is, there exist finite constants 𝜅m
and 𝜅v such that

E|Xr| < 𝜅m and E(X2
r ) < 𝜅v.
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Further, the log-partition function A(⋅) of the joint distribution satisfies

max
u∶|u|≤1

𝜕
2

𝜕𝜽2
r

A(𝜽∗ + uer) ≤ 𝜅h,

for some constant 𝜅h < ∞, where 𝜽∗ = (𝜽∗1,𝜽
∗
2, … ,𝜽∗p), and er ∈ Rp2 is an indicator vector equaling to one at the index

corresponding to 𝜽r and zero elsewhere. In addition,

max
𝜂∶|𝜂|≤1

𝜕
2

𝜕𝜂2 Ār(𝜂,𝜽∗) ≤ 𝜅h,

where Ār(𝜂,𝜽) is given by

Ār(𝜂;𝜽) = log
∫


exp

{

𝜂x2
r +

∑

u∈V
𝜃uxu +

∑

(u,v)∈E
𝜃uvxuxv +

∑

u∈V
C(xu)

}

dx

for some scalar 𝜂.

With Assumption 6, the following two lemmas can be established, whose proofs can be found in Reference 45.

Lemma 5. Suppose Assumption 6 holds. For any node Xr of a mixed graphical model, we have

P

(

1
n

n∑

i=1
(X (i)

r )2 ≥ 𝛿

)

≤ exp(−cn𝛿2),

where 0 < 𝛿 ≤ min{2𝜅v∕3, 𝜅h + 𝜅v}, and c > 0 is the constant.

Lemma 6. Suppose Assumption 6 holds. For any node Xr of a mixed graphical model and any i ∈ {1, 2, … ,n},

P(|X (i)
r | ≥ 𝛿 log 𝜂) ≤ c𝜂−𝛿,

where 𝛿 > 0 is any positive real number, and c > 0 is a constant.

Assumption 7. There exist constants 𝜅2 > 0 and 𝜅3 > 0 such that ||𝜓 ′′ (t)||∞ ≤ 𝜅2 and ||𝜓 ′′′(t)||∞ ≤ 𝜅3, for any t ∈ R,
where 𝜓(⋅) is the cumulant function for the GLM (A3).

Lemma 7 is a restatement of Theorem 1 of Reference 43, which is the key to the proof of Theorem 2.

Lemma 7 (Theorem 1 of Reference 43). Consider the GLM (9) and the regularized M-estimator

𝜷 ∈ arg min
||𝜷||1≤R

{n(𝜷) + 𝜌𝜆(𝜷)}. (A9)

Suppose n is a twice-differentiable, (𝛼, 𝜏)-RSC function and 𝜌𝜆 is 𝜇-amenable for some 𝜇 <
3
4
𝛼1. Further suppose that:

(a) The parameters (𝜆,R) satisfy the bounds

4 max

{

||∇n(𝜷∗)||∞, 𝛼2

√
log k

n

}

≤ 𝜆 ≤

√
(4𝛼1 − 3𝜇)𝛼2

384k
,

max
{

2||𝜷∗||1,
48k𝜆

4𝛼1 − 3𝜇

}

≤ R ≤ min
{

𝛼2

8𝜆
, 𝛼2

√
n

log p

}

, (A10)

where 𝜷∗ denotes the true parameter vector of the GLM (9).
(b) For some 𝛿 ∈ [4R𝜏1 log p∕(n𝜆), 1], the dual vector ẑ from the primal-dual witness (PWD) construction satisfies the strict

dual feasibility condition:

||̂zSc || ≤ 1 − 𝛿, (A11)

where S denotes the support set of 𝜷∗ and Sc denotes the complementary set of S.
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Then if n ≻ k log p and 𝜷∗ is k-sparse, (A9) has a unique stationary point given by the primal output 𝜷 given by the PDW
construction.

Theorem 2. Consider a set of variables {X1,X2, … ,Xp} and the associated graphical model G = (V,E), for which the node-
wise GLM is given by (A3). Suppose that for each node Xr, a regularization method is used to estimate 𝜽r by minimizing the
empirical loss (A5). If Assumptions 1 to 7 hold and n ≻ k log p, where k has been assumed to increase with n and p, then
there exist constants c1, c2, and c3 such that

P(Ŝr = Sr) ≥ 1 − 2 exp{−c1 log p} − exp{−c2 log p} − c3 min {n, p}−2
.

Proof. The proof is based on the PDW strategy,43 which is to first show that the primal output �̂�r given by the PDW
construction is the unique stationary point of (A5), and then show that the support of 𝜷∗r can be recovered by �̂�r as the
sample size n → ∞. For the first step, by Lemma 7, it suffices to verify the strict dual feasibility condition (A11) for the
conditional distribution of each node Xr as other conditions of Lemma 7 have been satisfied by our assumptions. The
second step can be accomplished based on the 𝛽min-condition, that is, Assumption 5.

Part (i), which is to verify the strict dual feasibility condition. Let �̂�r ∶= ((�̂�r)Sr , 0Sc
r
) be the primal output constructed

with the PDW technique. Let q𝜆(t) = 𝜆|t| − 𝜌𝜆(t). Differentiating the loss (A5) with respect to 𝜽r leads to the equation

∇n(�̂�r) − ∇q𝜆(�̂�r) + 𝜆ẑ = 0, (A12)

through which ẑSc
r

is defined; that is, ẑ = (ẑSr , ẑSc
r
), where ẑSr ∈ 𝜕||(�̂�r)Sr ||1, and ẑSc

r
is chosen to satisfy the above zero

sub-gradient condition.
Equation (A12) implies that

∇n(�̂�r) − ∇n(𝜽∗r ) + ∇n(𝜽∗r ) − ∇q𝜆(�̂�r) + 𝜆ẑ = 0.

Define Q = ∫ 1
0 ∇

2
n(𝜽∗r + t(�̂�r − 𝜽∗r ))dt. Then

Q(�̂�r − 𝜽∗r ) + ∇n(𝜽∗r ) − ∇q𝜆(�̂�r) + 𝜆ẑ = 0

and

Q∗(�̂�r − 𝜽∗r ) + (Q −Q∗)(�̂�r − 𝜽∗r ) + ∇n(𝜽∗r ) − ∇q𝜆(�̂�r) + 𝜆ẑ = 0.

To simplify the equation, we define Re ∶= (Q −Q∗)(�̂�r − 𝜽∗r ). Then the equation can be expressed in the matrix form as

[
Q∗

S,S Q∗
S,Sc

Q∗
Sc,S Q∗

Sc,Sc

][
(�̂�r)S − (𝜽r)∗S

0

]

+

[
ReS

ReSc

]

+

[
∇n(𝜽∗r )S − ∇q𝜆(�̂�r)S
∇n(𝜽∗r )Sc − ∇q𝜆(�̂�r)Sc

]

+ 𝜆

[
ẑS

ẑSc

]

= 0,

where S = Sr = {i ∶ 𝜃∗r,i ≠ 0} by the PDW construction. Further, by some algebra,

ẑSc = 1
𝜆

{
(∇q𝜆(�̂�r)Sc − ∇n(𝜽∗r )Sc − ReSc )

+ Q∗
ScS(Q

∗)−1
S,S(ReS + ∇n(𝜽∗r )S − ∇q𝜆(�̂�r)S + 𝜆ẑS)

}

.

By the selection property (vi) of the nonconvex regularizer, we have

∇q𝜆(�̂�r)Sc = ∇q𝜆(0Sc) = 0Sc ,

which leads to

ẑSc = −1
𝜆
(∇n(𝜽∗r )Sc + ReSc ) + 1

𝜆
Q∗

ScS(Q
∗)−1

S,S(ReS + ∇n(𝜽∗r )S − ∇q𝜆(�̂�r)S + 𝜆ẑS). (A13)
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By Lemma 1, we have

||∇q𝜆(�̂�r)S − 𝜆ẑS)||∞ ≤ 𝜆.

Taking the supreme norm on both sides of (A13) via applying Assumption 4, we have

||ẑSc ||∞ ≤
2 − 𝜂

𝜆
||∇n(𝜽∗r )||∞ +

2 − 𝜂

𝜆
||Re||∞ + 1 − 𝜂. (A14)

To have the strictly dual feasibility ||zSc ||∞ < 1, it suffices to show the following two inequalities hold:

||∇n(𝜽∗r )||∞ <
𝜂

2(2 − 𝜂)
𝜆, (A15)

||(Q −Q∗)(�̂�r − 𝜽∗r )||∞ <
𝜂

2(2 − 𝜂)
𝜆. (A16)

Consider the inequality (A15). Given a constant c > 0, we need to show the upper bound for the probability

P

(

||∇n(𝜽∗r )||∞ ≥ c
√

1
k

)

.

For each observation i ∈ {1, 2, … ,n} and each variable j ∈ Vr = V ⧵ {r}, we define the random variable W (i)
j =

(𝜓 ′(x(i)Vr
𝜽∗r ) − x(i)r )x

(i)
j . It is easy to figure out that the jth component of ∇n(𝜽∗r ) is equal to 1

n

∑n
i=1W (i)

j . Our goal is to bound
the above probability via bounding maxj∈Vr |

1
n

∑n
i=1W (i)

j |. Toward this goal, we define the event

 ∶=

{

max
j∈Vr

{

1
n

n∑

i=1

(

X (i)
j

)2
}

≤ Δ

}

,

for some constant Δ ≤ min{2𝜅v∕3, 𝜅h + 𝜅v}. Then

P

(

||∇n(𝜽∗r )||∞ ≥ c
√

1
k

)

≤ P(c) + P

({

||∇n(𝜽∗r )||∞ ≥ c
√

1
k

}

∩

)
Δ
= I1 + I2. (A17)

To bound the term I2, we consider the expectation of the moment function conditioned on XVr . For any t ∈ R,

log E[exp(tW (i)
j )|XVr ] = log[exp(tX (i)

j 𝜓
′(X(i)Vr

𝜽∗r ))] ⋅ E[exp(−tX (i)
j X (i)

r )]

= tX (i)
j 𝜓

′(X(i)Vr
𝜽∗r ) ⋅ E[exp(−tX (i)

j X (i)
r )]

= tX (i)
j 𝜓

′(X(i)Vr
𝜽∗r ) + (𝜓(−tX (i)

j + X(i)Vr
𝜽∗r ) − 𝜓(X(i)Vr

𝜽∗r )),

where the last equality follows from the fact that 𝜓 is the cumulant generating function for the underlying exponential
family. Then, by using the Taylor expansion for the function 𝜓(−tX (i)

j + X(i)Vr
𝜽∗r ) at X(i)Vr

𝜽∗r ,

log E[exp(tW (i)
j )|XVr ] =

1
2
(X (i)

j t)2𝜓 ′′ (X(i)Vr
𝜽∗r ) ≤

𝜅2

2
(X (i)

j )
2t2

,

where the bound 𝜅2 is from Assumption 7. Therefore,

E[exp(tW (i)
j )|XVr ] ≤ exp

{
𝜅2

2
(X (i)

j )
2t2

}

.

Since W (1)
j ,W (2)

j , … ,W (n)
j are mutually independent,

E

[

exp

(

t
n∑

i=1
W (i)

j

)

|XVr

]

≤ exp

{
𝜅2

2

n∑

i=1
(X (i)

j )
2t2

}

.
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Consequently, conditioned on the XVr , intersected with the event ,
∑n

i=1W (i)
j is sub-Gaussian. By the tail probability

inequality of sub-Gaussian (Chernoff bound),

P

({

||∇n(𝜽∗r )||∞ ≥ c
√

1
k

}

∩|XVr

)

≤ 2 exp
{

− c2n2

2n𝜅2Δ
1
k
+ log p

}

≤ 2 exp{−c1 log p},

for some constant c1 > 0, where the last inequality holds as n ≻ k log p. Integrating over the values of XVr , we get a bound
for I2:

I2 = P

({

||∇n(𝜽∗r )||∞ ≥ c
√

1
k

}

∩

)

≤ 2 exp{−c1 log p}.

Next, we consider to bound the term I1 in (A17). By using Lemma 5, if n ≻ k log p, then there exists a constant c2 > 0 such
that

P(c) = P

(

max
j∈Vr

{

1
n

n∑

i=1
(X (i)

j )
2

}

> Δ

)

= 1 −
∏

j∈Vr

(

1 − P

(

1
n

n∑

i=1
(X (i)

j )
2
> Δ

))

≤ e−cnΔ2+log(p−1)
≤ e−c2 log(p)

.

Combining the bounds for I1 and I2, we get

P

(

||n(𝜽∗r )||∞ ≤ c
√

1
k

)

≤ 1 − 2 exp(−c1 log p) − exp(−c2 log p).

Now we start to consider the inequality (A16), where

Q −Q∗ = Q − ∇2
n(𝜽∗r )

=
∫

1

0

{
∇2
n(𝜽∗r + t(�̂�r − 𝜽∗r )) − ∇2

n(𝜽∗r )
}

dt

=
∫

1

0

1
n

n∑

i=1

{

𝜓
′′ (X(i)Vr

(𝜽∗r + t(�̂�r − 𝜽∗r )) − 𝜓
′′ (X(i)Vr

𝜽∗r )
}

X(i)Vr
(X(i)Vr

)Tdt

=
∫

1

0

{

t ⋅ 1
n

n∑

i=1
𝜓
′′′(X(i)Vr

𝜽m
r )X

(i)
Vr
(�̂�r − 𝜽∗r )TX(i)Vr

(X(i)Vr
)T
}

dt,

where 𝜽m
r denotes a point between 𝜽∗r and �̂�r. Given an indicator vector ej, j ∈ Vr, whose jth element is 1 and all other

elements are 0. Therefore,

eT
j (Q −Q∗) =

∫

1

0

{

t ⋅ 1
n

n∑

i=1
𝜓
′′′(X(i)Vr

𝜽m
r )eT

j X(i)Vr
(�̂� − 𝜽∗)TX(i)Vr

(X(i)Vr
)T
}

dt

≤
𝜅3

2
⋅

1
n

n∑

i=1
eT

j X(i)Vr
(�̂�r − 𝜽∗r )TX(i)Vr

(X(i)Vr
)T .

Define the event ∶=
{

maxr,i |X (i)
r | ≤ 4 log(min{n, p})

}

. By using Lemma 6, we have that for any j ∈ Vr, with probability
1 − c3 min {n, p}−2, the following inequality holds:

eT
j (Q −Q∗)(�̂�r − 𝜽∗r ) ≤

𝜅3

2
⋅

1
n

n∑

i=1
eT

j X(i)Vr
(�̂�r − 𝜽∗r )TX(i)Vr

(X(i)Vr
)T(�̂�r − 𝜽∗r )
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≤ 2𝜅3 log(min{n, p}) ⋅ 1
n

n∑

i=1
(�̂�r − 𝜽∗r )TX(i)Vr

(X(i)Vr
)T(�̂�r − 𝜽∗r )

≤ 2𝜅3 log(min{n, p})𝜌max||�̂�r − 𝜽∗r ||22.

Further, it implies

||(Q −Q∗)(�̂�r − 𝜽∗r )||∞ ≤ 2𝜅3 log(min{n, p})𝜌max||�̂�r − 𝜽∗r ||22
≤ 2𝜅3𝜌max log p ⋅ C2

𝜆
2k,

where the last inequality follows from Lemma 3 that ||�̂�r − 𝜽∗r ||2 ≤ C𝜆
√

k with C = 6
4𝛼1−3𝜇

> 0.

Therefore, if 𝜆k ≤ 1
2𝜅3𝜌max log p⋅C2

𝜂

2(2−𝜂)
holds, then, with probability 1 − c3 min {n, p}−2, we have

||(Q −Q∗)(�̂�r − 𝜽∗r )||∞ <
𝜂

2(2 − 𝜂)
𝜆.

As the consequence, with probability 1 − 2 exp{−c1 log p} − exp{−c2 log p} − c3 min {n, p}−2, the strictly dual feasibility
holds.

Part (ii), which is to show the support of 𝜽∗r can be recovered as the sample size n →∞. By Lemma 3, we have

||�̂�r − 𝜽∗r ||∞ ≤ ||�̂�r − 𝜽∗r ||2 ≤ C ⋅ 𝜆
√

k.

Thus, with probability 1 − 2 exp{−c1 log p} − exp{−c2 log p} − c3 min {n, p}−2, we have

||�̂�r − 𝜽∗r ||∞ ≤ ||�̂�r − 𝜽∗r ||2 ≤ C
√

k log p
n

.

By using Assumption 5 that 𝜃∗r,min > 2C
√

k log p
n

, we can prove the consistency of Markov blanket estimation, that is, P(Ŝr =
Sr) > 1 − 2 exp{−c1 log p} − exp{−c2 log p} − c3 min {n, p}−2. ▪

A.2.3 Consistency of variable selection for the GLM
Let Q = ∇2

n(𝜷∗), where 𝜷∗ denote the true regression coefficient vector of the GLM. Let QA,B denote a submatrix of Q
formed with the rows in the set A and the columns in the set B. Let S∗ denote the support of 𝜷∗, and let Sc

∗ = V ⧵ S∗ denote
the complementary set of S∗.

Assumption 8. There exist a constant 𝜌min such that 𝜆min(QSc
∗,S∗ ) > 𝜌min > 0, where 𝜆min(⋅) denotes the minimum

eigenvalue of a matrix.

Assumption 9 (Incoherence condition). There exists a constant 𝜂 ∈ (0, 1) such that

|||QSc
∗,S∗ (QS∗,S∗ )

−1|||∞ ≤ 1 − 𝜂.

Assumption 10. There exists a constant C such that 𝛽∗min ≥ 2C
√

k log p
n

, where k = |S∗| denotes the size of the true model,
and 𝛽

∗
min is the smallest nonzero entry of 𝜷∗.

Assumption 11. There exist constants 𝜅2 > 0 and 𝜅3 > 0 such that ||𝜑′′ (t)||∞ ≤ 𝜅2 and ||𝜑′
′′(t)||∞ ≤ 𝜅3, for any t ∈ R,

where 𝜑(⋅) is the cumulant function of the GLM (9).

Corollary 1. Consider the GLM (9) and the regularized M-estimator (A9). Suppose n is a twice-differentiable, (𝛼, 𝜏)-RSC
function and 𝜌𝜆 is 𝜇-amenable for some 𝜇 <

3
4
𝛼1. Further suppose that Assumptions 2, 6, and 8 to 11 hold and the

parameters (𝜆,R) satisfy the bounds (A10). Then if n ≻ k log p and 𝜷∗ is k-sparse, the support set of 𝜷∗ can be recovered
with a probability not less than 1 − 2 exp{−c1 log p} − exp{−c2 log p} − c3 min {n, p}−2, where c1, c2, and c3 denote some
constants.

The proof of the corollary follows from that of Theorem 2 closely and is thus omitted.
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A.2.4 Proof of Theorem 1

Proof. The validity of the algorithm can be proved by verifying the conditions (6) to (8) given in the main text. The condi-
tion (7) follows from the consistency of Markov blanket estimation, which directly follows from Theorem 2. The condition
(6) follows from the consistency of variable selection, which directly follows from Corollary 1. Following from (i) the spar-
sity of the GLM and the Markov blanket, and (ii) the consistency of variable selection and Markov blanket estimation,
the condition (8) is satisfied. ▪
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