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ABSTRACT: Image segmentation is a fundamental precursor to quantitative image analysis. At present, no standardised methodology
exists for segmenting images of fluorescent proxies for trace evidence. Experiments evaluated (i) whether manual segmentation is repro-
ducible within and between examiners (with three participants repeatedly tracing three images) (ii) whether manually defining a thresh-
old level offers accurate and reproducible results (with 20 examiners segmenting 10 images), and (iii) whether a global thresholding
algorithm might perform with similar accuracy, while offering improved reproducibility and efficiency (16 algorithms tested). Statisti-
cally significant differences were seen between examiners’ traced outputs. Manually thresholding produced good accuracy on average
(within �1% of the expected values), but poor reproducibility (with multiple outliers). Three algorithms (Yen, MaxEntropy, and
RenyiEntropy) offered similar accuracy, with improved reproducibility and efficiency. Together, these findings suggest that appropriate
algorithms could perform thresholding tasks as part of a robust workflow for reconstruction studies employing fluorescent proxies for
trace evidence.
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Powder which fluoresces under ultraviolet light has been suc-
cessfully employed as a proxy for microscopic trace evidence in
experiments exploring the transfer and persistence of particulates
in forensically relevant scenarios (1–3). With a diameter of
approximately 15 lm (2), fluorescent powder has been used to
represent diverse evidence types, including silt-sized elements of
soil (1,4) and pollen grains (5). Utilising a fluorescent proxy can
allow for the rapid generation of data, since sampling can be
nondestructive (photographic) rather than destructive (involving
the physical or chemical processing of samples) (2). Accord-
ingly, such studies can help to expand our understanding of trace
evidence dynamics and, therefore, inform the nuanced

interpretation of evidence within casework scenarios, a current
priority for research within the forensic sciences (6).
Studies which utilise fluorescent proxies tend to follow sim-

ilar methodologies; the fluorescent material is introduced to a
surface, imaged repeatedly during the experiment, and the
resultant images are segmented and analysed. At present, there
does not appear to be a standardised methodology for seg-
menting images in the context of persistence studies which
employ a fluorescent proxy, but most appear to involve a
form of thresholding (Table 1; (e.g., [1,3–5,7]). Where it is
explicit that thresholding has been used to segment the images
(e.g., [7]) it is not readily apparent whether the threshold
value was manually defined or calculated with an algorithm
(Table 1).
Thresholding is one of the simplest methods of image seg-

mentation; a threshold value is defined for an attribute of each
pixel (e.g., brightness or luminance levels), and every pixel’s
brightness value is reassigned to either black or white depending
on whether the original value of the pixel fell above or below
the threshold (8,9). It has been firmly established within the
fields of computer science and machine vision that different
thresholding algorithms are appropriate for different contexts,
and treating the same input image with different algorithms can
result in very different outputs ([8,10,11]; Fig. 1). It has also
been suggested that manually defining a threshold level may be
unreliable, and therefore problematic as part of a reproducible
workflow (12–14).
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Accordingly, the aim of this paper was to evaluate the perfor-
mance of different methods of thresholding upon the types of
images likely to be encountered in the course of a persistence
study employing a fluorescent proxy. Experiments were under-
taken to explore the concerns that segmentation methods which
involve manual input might be to a certain extent observer-
dependent and to explore whether different methods of thresh-
olding were capable of segmenting the images with fidelity. The
overarching aim was to establish whether one of the tested meth-
ods might be most suitable for use with this type of imagery,
and particularly, for future experiments, whether a method would
enable rapid and accurate processing of very large numbers of
images.
Three experiments were undertaken, with the following aims:

1 Experiment One: To explore the extent to which the results
of manual segmentation (i.e., tracing) are reproducible within
and between examiners

2 Experiment Two: To explore the extent to which the results
of segmentation by thresholding, where the value of the
threshold is manually defined, are both reproducible within
and between examiners and accurate compared to the original
image

3 Experiment Three: To evaluate whether a global thresholding
algorithm could segment the images with similar accuracy to
the manual methods of segmentation, while offering
improved reproducibility and efficiency

It can be noted that three aspects of performance are consid-
ered within these experiments: accuracy (the extent to which the
produced segmentation was concordant with the expected seg-
mentation), reproducibility (the extent to which the results of the
technique would be reproducible if the segmentation were

repeated), and efficiency (the amount of time required to employ
the segmentation method (see [15]).

Evaluating Accuracy

Manual segmentation (tracing) is generally presented as the
“gold standard” of image segmentation and, assumed to reflect the
original image with fidelity, is often used as a stand-in for a
ground truth when evaluating the performance of novel segmenta-
tion methods (12,15–17). In order for a segmentation method to be
considered viable for future work, it should deliver good levels of
accuracy (i.e., one should aim for fidelity to the original image).

Evaluating Reproducibility

The second aspect of performance considered was the repro-
ducibility of each segmentation technique (i.e., the extent to
which measurements were reliable). While an algorithm should
always return the same output from the same input (introducing
deterministic error), manual processes may introduce both
stochastic and deterministic error and it is entirely possible that
providing an examiner with the same input image repeatedly, or
providing multiple examiners with the same input image, might
result in dissimilar outputs. This concept has been explored to
some extent within the forensic sciences in the context of deci-
sion-making under conditions of uncertainty, with studies evalu-
ating the extent to which examiners consistently reach the same
conclusions when visually examining ambiguous marks (18,19).
In order for a segmentation method to be considered viable for
use in future experiments, it should produce similar, if not iden-
tical, results when used repeatedly or by different examiners.

TABLE 1––Examples of the methodologies used to process imagery from persistence studies which employ a fluorescent proxy for trace evidence

Year Paper Title Purpose of the UV Image Processing and Analysis Method (Verbatim)

2006 The transfer and persistence of trace
particulates: experimental studies using
clothing fabrics

To emulate lighter flint particles (1) “photographs were pixelated using Corel Photo-Paint 9 and the
number of particles in each image were computed (as a function
of pixel brightness)”
(Bull et al. [1]: 191)

2009 The Forensic Analysis of Sediments
Recovered from Footwear

To explore the movement of silt-
sized particles (4)

“This digital image was then pixelated in IDRISI to provide an
indication of the amount of silt-sized material remaining on the
sole.”
(Morgan et al. [4]: 9)

2012 Multiple transfers of particulates and
their dissemination within contact
networks

To act as a proxy for particulate trace
evidence while investigating
multiple transfers (3)

“The presence of UV powder on the stub was [. . .] quantified using
an image rasterisation technique in MATLAB which was
specifically adapted for the specifications of this study from Bull
et al.[2006]”
(French et al. [3]: 34)

2013 The recovery of pollen evidence from
documents and its forensic implications

As a proxy for pollen on the surface
of documents (5)

“The digital images taken of each experiment were imported into
Coral Photo Paint 11 [sic]. The images were graphically enhanced,
pixelated and then five sections of 32 9 7 pixels were counted”
(Morgan et al. [5]: 377)

2017 Tracers as invisible evidence—The
transfer and persistence of flock fibres
during a car exchange

UV flock fibres as a tracer (7) “A Matlab (version R2012b) algorithm was created to enable fast
automated counting of flock fibres on pictures. The individual
pictures were loaded into Matlab and processed automatically.
Firstly, the original RGB (red, green, and blue) colour images
were converted to a grey value image by extracting the green
channel. Subsequently, the foreground (i.e., the flock fibres) was
separated from the background (i.e., the target materials) by
thresholding. A region of interest (ROI) was selected as well.
Next, the fibres were counted. As a result of the varying
illumination conditions, the size of one fibre (in pixels) was not
the same on all pictures and therefore had to be estimated for each
image first. Subsequently, adding up all the foreground pixels and
dividing them by the estimated number of pixels per fibre, yielded
the amount of fibres on an image.”
(Slot et al. [7]: 181)
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Evaluating Efficiency

Given that the time required to conduct visual data analysis
can place a ceiling on the amount of data that can be collected
over the course of experiments (20), it would be useful to arrive
at a segmentation method that is not only comparatively accurate
and comparatively reproducible, but also comparatively rapid
(see also [15]). Accordingly, this paper also intended to evaluate,
on the basis of time, whether it would be viable to employ each
segmentation method upon a large set of images.
The overall aim, therefore, was to identify a method of seg-

mentation that could be used as part of a robust workflow for
the analysis of ultraviolet fluorescence images in the context of
future persistence studies.

Materials

Images

Images were generated during a persistence study where fluo-
rescent powder with a median diameter of approximately 15 lm
had been transferred to swatches of black cotton by flicking with

a stiff-bristled paintbrush, after (2). Ultraviolet illumination was
provided with a 385 nm torch, and imaging followed the proce-
dure outlined in (3), with samples housed in a purpose-built UV-
dark box which excluded visible light and held the torch and
camera lens a fixed distance from the samples. Images were
acquired as 8-bit red, green, and blue (RGB) colour (see Figs 2
and 3). Each swatch was composed of multiple layers of fabric,
bound together by a staple (visible in the images in Fig. 3). The
staple performed two functions: binding the upper layer of sam-
ple fabric to a lower layer which could be attached to other sur-
faces and handled without removing particles from the
experiment, and, secondly, providing a landmark that could be
used for image registration during the analysis of images from a
persistence study.

Methods

Experiment 1: Implementing Manual Segmentation (Tracing)

Experiment one aimed to assess the reproducibility of manual
segmentation (tracing) under optimal conditions, addressing the
concerns raised over variation between examiners (12–14). Three

FIG. 1––The results of applying four different local thresholding algorithms to the same input image (in this case a diatom, a form of environmental trace
evidence). Algorithms were applied in ImageJ, with a radius of 15 pixels (from L-R, Bernsen, Contrast, Median, and Phansalkar).
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participants were provided with three 300 9 300 pixel subsec-
tions of images in three rotations (Fig. 2), and asked to manually
segment them to the best of their ability, by tracing over the flu-
orescent particles in white, and filling the background with
black. The tracing was conducted in Adobe Photoshop (CS4) by
opening the image, creating a new layer with a lowered opacity,

and tracing over the foreground regions of the images using the
brush and pencil tools. The participants were not aware that the
nine images they were presented with were actually multiple ori-
entations of three images. These images were all in focus and
evenly illuminated; no efforts were made to deliberately compli-
cate the task.

FIG. 2––The images and rotations used in Experiment 1. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3––The images to which thresholds were applied in Experiments 2 and 3. [Color figure can be viewed at wileyonlinelibrary.com]
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Experiment 2: Implementing Manually Defined Threshold Values

In order to explore inter-examiner reproducibility, images of
ten swatches (Fig. 3) were given to 20 participants. The partici-
pants were asked to apply a threshold filter to segment the image
into the foreground (fluorescent particles) and background (non-
fluorescent fabric). This was done in Adobe Photoshop (CS4),
using the pathway Image > Adjustments > Threshold. In order
to explore intra-examiner reproducibility, one examiner was
asked to threshold each image 20 times with this method. This
was conducted over a period of several weeks so that the exam-
iner could not recall previous answers. The amount of time taken
for each participant to complete the task was noted.

Experiment 3: Implementing the Thresholding Algorithms

The thresholding algorithms were implemented using NIH Ima-
geJ. ImageJ was chosen for its accessibility (it is freeware with an
intuitive graphical user interface) and for its potential to be cus-
tomised through the installation of additional plugins and the writ-
ing of macros (21–24). In this study, a suite of 16 global
thresholding algorithms were applied to the same 10 images used in
experiment 2 (Fig. 3) utilising the plugin Auto Threshold v1.15
(25). Mathematical notation for each algorithm is available in the
publications outlined in (25), namely (26–38). Macros were written
in order to open, process, and save the outputs of batches of images.
As it has been established within the fields of computer

science and machine vision that some thresholding algorithms
perform better or worse on unimodal or bimodal images, and
with different levels of noise (8), it was considered important
that the thresholding algorithms were tested upon images repre-
sentative of all of the histogram shapes that one might encounter
in a study involving fluorescent powder as a proxy for forensic
trace evidence. Accordingly, the 10 images used in experiments
2 and 3 (Fig. 3) were representative of the four histogram types

(Fig. 4) seen in the images generated by the persistence study
from which the images were drawn (i.e., they were selected by
stratified sampling from the available images).

Evaluating the Accuracy of Segmented Outputs

In order to evaluate the accuracy of different segmentation
methods, researchers tend to compare the output of each method
to a “ground truth” generated by a human manually inspecting the
image and defining the “true” segments (e.g., [12,15–17]). This is
not, however, a “true” ground truth as it is to a certain extent sub-
jective to the interpreter (15). Accordingly, here, instead of refer-
ring to a “ground truth,” the different segmentation outputs were
compared against the “mean manual segmentation values (n = 3)”
for each image. These were calculated by getting one examiner to
“trace” each image used in experiments 2 and 3 three times. Three
metrics (A–C) of the accuracy of analyses are presented here:

Metric A: Absolute Error in the Percentage of the Image
Identified as Foreground

The percentage of each image defined as foreground was cal-
culated in ImageJ, using the pathway Analyse > Analyse Parti-
cles. While it would have been possible to assess the number of
foreground regions identified, the percentage seemed a more
appropriate measure since the number of regions is affected by
contiguity (i.e., two contiguous particles would be counted as
one region, and this study was primarily interested in the esti-
mated extent of the foreground, not its distribution).

Metric B: Relative Error in the Percentage of the Image
Identified as Foreground

As well as expressing the error as an absolute value (i.e., the
residual between the estimate of percentage foreground and the

FIG. 4––Examples of the four different histogram types observed in the images used in Experiments 2 and 3.
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mean estimate of percentage foreground obtained by manual seg-
mentation [tracing]), it is here also expressed as a relative value
(i.e., the percentage overestimation or underestimation compared to
the mean percentage value obtained from the manual segmentation).
It was considered important to express both since the values for the
extent of the foreground were variable, ranging from approximately
3% to approximately 22% of the image. Accordingly, a 1% abso-
lute difference in the estimate is not equally significant for each
image. Similarly, an apparently large relative deviation might trans-
late to a relatively small absolute deviation.

Metric C: The Dice Coefficient of Similarity

In order to ensure that the images had been segmented with
fidelity, it was important to ensure that the segmented outputs
were not just quantitatively similar (i.e., that, for example, both
classified 5% of the pixels in the image as foreground) but also
that they overlapped (i.e., that they identified the same 5% of the
pixels as foreground). Accordingly, the Jaccard Index and Dice
coefficients were calculated (two measures commonly used
within quantitative comparison of segmented outputs [16]). Both
of these equations consider two images, asking whether each
pixel is classified as foreground in either, both, or neither of the
images (i.e., the area of the image which represents true and false
positives and negatives, with 0 indicating no overlap between the
images, and 1 indicating total overlap [Fig. 5]). This analysis
was conducted in ImageJ using the LIM Tools Similarity Index
plugin (39,40). For experiment 1, the mean similarity index value
was calculated by comparing images 1 and 2, 1 and 3, then 2
and 3, and taking the mean of the three values. For experiments
2 and 3, results were obtained by comparing the output image to
the first manual segmentation output. Since both similarity coef-
ficients produced similar outcomes, only one (the Dice coeffi-
cient) is presented in this paper, to illustrate the results.

Results

Experiment One: Evaluating the Reproducibility of Segmentation
by Tracing

Figure 6 displays the percentage of each 300 by 300 pixel
image section defined as foreground by the three examiners
(n = 3). Two trends were observed. Each examiner produced a
range of values (i.e., there were similar but not identical outputs
each time the image was segmented) and the mean value of these
ranges varied between examiners (Table 2). An ANOVA was

conducted on these data, and for all three of the images, this varia-
tion in the percentage of the image defined as foreground between
the examiners was statistically significant at p < 0.01 (Table 2).
Considering the Dice coefficient values produced when compar-

ing each of the three segmentations for each examiner (i.e., com-
paring segmentations 1 and 2, 1 and 3, and 2 and 3 for each image
section), the mean Dice coefficient value was 0.80 � 0.12 across
all three examiners (n = 27; Table 3). Examiner two yielded the
highest coefficient values when comparing their three segmenta-
tion attempts, with a mean Dice Coefficient value across all
images of 0.95 � 0.02 (n = 9; Table 3). Examiners 1 and 3
exhibited similar levels of performance, with mean Dice Coeffi-
cient values of 0.71 � 0.08 and 0.75 � 0.02 respectively (n = 9),
when comparing their three segmentation attempts.

Experiment Two: Evaluating the Accuracy, Reproducibility, and
Efficiency of Segmentation by a Manually Defined Threshold
Value

Accuracy—Segmentation by manually defining a threshold
value appeared to offer good levels of accuracy when the indi-
vidual runs were averaged; the mean values for the estimate of
the extent of the foreground were within �1% of the mean val-
ues obtained by tracing (Fig. 7A; Table 4). The results from the
intra-examiner images (i.e., where one examiner had repeatedly
manually defined a threshold value) tended to slightly underesti-
mate the extent of the foreground, with a mean residual of
�0.96 � 3.73% (n = 200), which translated to a mean mis-esti-
mation of �21.06 � 41.73% (n = 200; Fig. 7B). The inter-
examiner images (i.e., where multiple examiners had manually
defined a threshold value) tended to slightly overestimate the
extent of the foreground, with a mean residual of 0.95 � 6.45%
(n = 200), and a mean overestimation of 11.50 � 96.68%
(n = 200) when compared to the mean values obtained by trac-
ing (Fig. 7A,B; Table 4).

Reproducibility—The reproducibility of manually defining a
threshold value was poorer than for manually segmenting the
images (tracing). A much larger range and interquartile range of
values for error were seen, along with multiple outliers (Fig. 7).
The inter-examiner images produced the widest interquartile
range of errors and numerous extreme outliers, with a maximum
overestimation of almost 1000% (Fig. 7B). This range of esti-
mates translated into a range of Similarity Index values; the min-
imum Dice coefficient values observed were 0.59 for tracing
(n = 30), 0.45 for the intra-examiner images (n = 200), and 0.07

FIG. 5––An explanation of the Dice and Jaccard Indices of similarity. FN, false negative; FP, false positive; TN, true negative; TP, true positive.
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(n = 200) for the inter-examiner output images (Fig. 7C). This is
indicative of some segmentations of the images having very poor
overlap with the supposedly accurate traced image.

Efficiency—Manually defining a threshold value required
approximately one minute per image. The tracing, which was
undertaken to create a mean against which the segmentations
could be compared, took approximately one hour per image.

Experiment Three: Evaluating the Performance of 16 Global
Thresholding Algorithms

Accuracy—The global thresholding algorithms performed with
varying levels of accuracy (Fig. 8; Table 4). While some of the

algorithms vastly overestimated the extent of the foreground in
comparison with the mean value obtained by tracing (e.g., MinEr-
ror and Percentile [Fig. 9], which produced a mean estimate of the
foreground of more than 500% of the expected values [Fig. 8B]),
other algorithms resulted in estimates which were very similar to
the mean manual segmentation values. The global algorithms
which performed with greatest similarity to the mean manual seg-
mentation values were Yen (mean residual 0.58 � 5.69%, and a
mean mis-estimation of �9.99 � 59.01% [n = 10]), MaxEntropy
(mean residual �0.77 � 4.72%, and a mean mis-estimation of
�22.40 � 51.96% [n = 10]), and RenyiEntropy (mean residual
0.18 � 5.08%, and a mean mis-estimation of �12.75 � 54.85%
[n = 10]). The mean Dice coefficient values for these algorithms
were comparable to those produced by the manual methods;
0.78 � 0.17 for Yen, 0.79 � 0.16 for MaxEntropy, and
0.78 � 0.16 for RenyiEntropy (n = 10). All three algorithms pro-
duced a minimum Dice Coefficient value of 0.49 (n = 10). Com-
paring the three best-performing algorithms to the manual
methods (Table 4), it can be seen that the results produced by the
algorithms are similar to the results produced by the manual meth-
ods.

Reproducibility—Global thresholding algorithms are determin-
istic, always producing the same output for a given input. The
variation in accuracy seen in Fig. 8 corresponds to the algo-
rithms performing with different levels of accuracy on the 10
different images upon which they were tested, when compared
to the mean manual segmentation values for the extent of the
foreground.

Efficiency—The algorithms, in combination with a macro,
required less than 1-second to open, process, save, and close
each image.

Discussion

Experiment One: Evaluating the Reproducibility of Segmentation
by Tracing

All three examiners produced ranges of values for their esti-
mates of the extent of the foreground (i.e., variation was observed
each time the image was traced). For all images, there was statisti-
cally significant variation between the results of the three

FIG. 6––Variation in the percentage of each image section defined as foreground (n = 3) in Experiment 1.

TABLE 2––Summary table for the percentage of each image defined as fore-
ground.

Image
Section

Participant
Number N Mean SD

ANOVA Results, Comparing
Participants

f-ratio p-Value p < 0.05?

1 1 3 3.64 0.17 84.817 0.00004 U
2 3 2.38 0.07
3 3 2.50 0.13

2 1 3 5.16 0.33 20.986 0.00196 U
2 3 3.39 0.33
3 3 3.71 0.40

3 1 3 3.00 0.17 122.184 0.00001 U
2 3 1.54 0.02
3 3 1.65 0.14

TABLE 3––The mean Similarity Index values for the three examiners’ output
images, when comparing segmentation attempts 1 and 2, 1 and 3, and 2 and

3.

Participant Number N

Dice Coefficient value

Mean SD Min Max

1 9 0.71 0.08 0.56 0.77
2 9 0.95 0.02 0.90 0.97
3 9 0.75 0.02 0.71 0.79
Total 27 0.80 0.12
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FIG. 7––Metrics of performance for the manual methods of segmentation.

TABLE 4––Descriptive statistics for Experiments 2 and 3.

Segmentation method

Metrics of Performance

(A) Absolute Error (residuals)
in the Extent of the
Foreground (%)

(B) Relative Error
(mis-estimation) in the Extent of

the Foreground (%) (C) Dice Coefficient Values

N Mean SD N Mean SD N Mean SD

Manual
Manual segmentation (tracing) 30 0.11 1.62 30 2.35 26.65 30 0.82 0.08
Manually defined threshold (1 examiner) 200 �0.96 3.73 200 �21.06 41.73 200 0.82 0.13
Manually defined threshold (20 examiners) 200 0.95 6.45 200 11.50 96.68 200 0.72 0.23

Global algorithms
Default 10 3.84 7.74 10 70.48 144.25 10 0.62 0.30
Huang 10 25.44 21.11 10 567.20 594.79 10 0.33 0.32
Intermodes 10 �3.22 2.77 10 �51.82 36.62 10 0.74 0.22
IsoData 10 2.98 6.20 10 55.49 116.19 10 0.63 0.29
Li 10 9.61 11.37 10 159.87 211.10 10 0.54 0.34
MaxEntropy 10 �0.77 4.72 10 �22.40 51.96 10 0.79 0.16
Mean 10 24.26 9.41 10 466.74 329.82 10 0.32 0.30
MinError 10 53.74 20.58 10 917.85 565.52 10 0.20 0.20
Minimum 10 �5.09 2.69 10 �73.91 31.45 10 0.33 0.31
Moments 10 1.92 3.13 10 28.79 42.01 10 0.66 0.28
Otsu 10 1.44 3.17 10 25.42 51.20 10 0.64 0.28
Percentile 10 41.94 6.15 10 763.39 491.28 10 0.23 0.23
RenyiEntropy 10 0.18 5.08 10 �12.75 54.85 10 0.78 0.16
Shanbhag 10 �3.01 3.76 10 �52.57 46.90 10 0.55 0.31
Triange 10 4.04 3.24 10 51.82 41.91 10 0.59 0.25
Yen 10 0.58 5.69 10 �9.99 59.01 10 0.78 0.17
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examiners as to the percentage of the image that was defined as
foreground. This is perhaps slightly surprising, as manual segmen-
tation (tracing) is held to be the “gold standard” of segmentation
techniques, against which others are compared (16). These find-
ings support the assertions seen in the published literature that seg-
mentation methods which involve manual input may be to a
certain extent “observer-dependent” (14) and variable between
examiners when images contain regions of ambiguity (i.e., where
pixels could be seen as belonging to either the foreground or the
background), as in the analysis of images of soils (12).
It is worth emphasising that the images in experiment one

were intended to represent optimal conditions for successful seg-
mentation; no efforts were made to deliberately complicate the
task of the examiners. The images were relatively small, taken
with adequate and even illumination, and were in focus. It might
be suggested that if such variation is observed under these con-
ditions, it is possible that variation might be equal or greater for
larger images taken under less standardised or less ideal lighting
conditions or slightly out of focus. It also suggests that it may
not be appropriate to divide the segmentation task of tracing for
a single data set between multiple examiners.

Despite the variance between examiners, the similarity
indices suggested that the internal reliability for each examiner
was relatively good, with a minimum mean Dice coefficient
value of 0.71 � 0.08 (for examiner 1; n = 9), and a maxi-
mum mean Dice coefficient value of 0.95 � 0.02 (for exam-
iner 3). The difference in the Dice coefficient values between
examiners suggests that some examiners may be more consis-
tent when performing the task of manual segmentation than
others. Given that, in the course of a larger experiment
involving fluorescent particulates, it is likely that the segmen-
tation would be carried out by a single examiner, it is there-
fore possible that the examiner would be unaware how much
error the process of manual segmentation (tracing) might be
introducing into the dataset.

Experiment Two: Evaluating the Accuracy, Reproducibility, and
Efficiency of Segmentation by a Manually Defined Threshold
Value

In experiment two, it was seen that segmenting an image
using a manually defined threshold level was far more

FIG. 8––Metrics of performance for the global algorithms in order of ascending median.
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efficient than tracing (taking approximately one minute per
image, rather than one hour per image). Accordingly, while it
would not be feasible to trace every image in a large dataset,
it might be possible to segment them by manually defining
threshold values.
While manually defining a threshold level offered, on average,

a similar level of accuracy to manual segmentation (tracing), it

offered a far lower level of reproducibility. While the mean val-
ues returned for the estimates of the foreground were within
�1% of the mean traced estimates, large ranges of values were
seen for the estimates, and numerous outliers were observed
(Fig. 7). Therefore, while it was far faster than manually seg-
menting (tracing) the images, manually defining a threshold level
was seen to introduce a larger amount of error into the dataset.

FIG. 9––Example outputs for one image (image 1), showing varying levels of accuracy. [Color figure can be viewed at wileyonlinelibrary.com]
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Since the experiments conducted here suggested that manually
defining a threshold value yielded results that were highly vari-
able (i.e., it is possible that the segmented output will accurately
reflect the input, but it is plausible that it will not), it might be
suggested that manually defining a threshold level might not be
a reliable method of segmentation for this form of ultraviolet flu-
orescence imagery. Since the quality of any quantitative output
is contingent upon the quality of the segmentation step, this may
be considered problematic.

Experiment Three: Evaluating the Performance of 16 Global
Thresholding Algorithms

The global algorithms tested here offered reproducible esti-
mates for the extent of the foreground (always returning the
same output from the same input), with efficiency (taking less
than 1-second to open, process, save, and close an image). The
different algorithms performed with varying levels of accuracy
(Fig. 8). The best-performing algorithms, which in these experi-
ments were the Yen, MaxEntropy, and RenyiEntropy global
algorithms, offered mean estimates of the extent of the fore-
ground that were concordant with (i.e., within �1% of) the mean
traced estimates (Fig. 8; Table 4).
Accordingly, on the basis of maximising reproducibility (with-

out sacrificing accuracy), for a robust image processing work-
flow which is capable of processing large numbers of ultraviolet
fluorescence images, these experiments suggest that it might be
advisable to employ an appropriate algorithm. For future work,
using an appropriate algorithm may provide a fast method of
image segmentation, which does not compromise on levels of
accuracy or reliability. The results of these experiments suggest
that for ultraviolet fluorescence imagery of green powder fluo-
rescing on a dark fabric background, the Yen, RenyiEntropy, or
MaxEntropy algorithms may be appropriate. It should be noted,
however, that since thresholding algorithms could perform with
different levels of accuracy on images with different amounts
and distributions of fluorescent material, it would be advisable
for researchers to perform an evaluative study on the specific
images to be used before employing a particular algorithm
within a transfer and persistence experiment.
Future work could consider further testing of these algorithms

under less ideal conditions (e.g., with less homogeneous lighting,
out of focus images, or where there is less contrast between the
foreground and background of the image). It is worth stressing
that the algorithms tested here (i.e., global thresholding algo-
rithms) are amongst the simplest methods of image segmenta-
tion; future work may want to explore the performance of more
sophisticated segmentation methods within this context.
In summary, for images of fluorescent powder on dark fabric

under ultraviolet illumination, manual segmentation (tracing)
offered high levels of accuracy when compared to the mean
manual segmentation and moderate reproducibility, but lacked
efficiency, taking too long to be employed in a much larger
study. Manual thresholding offered similar levels of accuracy
and improved efficiency, but sacrificed reproducibility. A thresh-
olding algorithm can offer improved reproducibility, superior
efficiency, and, if the algorithm is appropriate, it can do so with-
out sacrificing accuracy.

Conclusions

Four main conclusions can be drawn from these experiments.

1 When manually segmenting (tracing) images of fluorescent
powder under ultraviolet illumination, different examiners
may arrive at different answers as to the extent of the fore-
ground, and variation may be observed when the same exam-
iner repeatedly segments an image.

2 While segmentation by manually applying a threshold can
offer a faster alternative to manual segmentation (tracing),
this method also raises problems regarding the reproducibility
of results. While a mean value may approach an accurate
answer for quantitative analyses, a single segmentation may
produce an inaccurate value (i.e., in these experiments a
range of values and outliers were seen).

3 Using an algorithm to define a threshold value can over-
come these issues around reproducibility while offering
increased efficiency. In these experiments, it was suggested
that many algorithms are inappropriate for use with ultravi-
olet fluorescence imagery, but some offer results which are
quantitatively similar to the outputs achieved by manual
methods.

4 In these experiments, the three algorithms which performed
with the greatest accuracy were Yen, MaxEntropy, and
RenyiEntropy. All three of these global algorithms produced
results which mis-estimated the foreground by amounts com-
parable to a human examiner conducting manual segmenta-
tion, but at much faster speeds. It may be possible to employ
these algorithms in future experiments as part of a rapid and
robust image processing workflow.

Together, these findings suggest that persistence studies
which employ fluorescent powder proxies for trace evidence
could harness the power of thresholding algorithms and macros
to accelerate data analysis without compromising on accuracy.
Establishing a robust automated approach for segmentation has
the potential to significantly expand the amount of data that
can be collected regarding the transfer and persistence of trace
particles. Such data can provide a valuable empirical evidence
base to underpin the interpretation of forensic trace evidence
and to respond to calls for further experimentation within these
areas (6,41,42).
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