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Complex structural rearrangements are
present in high-grade dysplastic Barrett’s
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Abstract

Background: Oesophageal adenocarcinoma (EAC) incidence is increasing and has a poor survival rate. Barrett’s
oesophagus (BE) is a precursor condition that is associated with EAC and often occurs in conjunction with chronic
gastro-oesophageal reflux, however many individuals diagnosed with BE never progress to cancer. An
understanding of the genomic features of BE and EAC may help with the early identification of at-risk individuals.

Methods: In this study, we assessed the genomic features of 16 BE samples using whole-genome sequencing.
These included non-dysplastic samples collected at two time-points from two BE patients who had not progressed
to EAC over several years. Seven other non-dysplastic samples and five dysplastic BE samples with high-grade
dysplasia were also examined. We compared the genome profiles of these 16 BE samples with 22 EAC samples.

Results: We observed that samples from the two non-progressor individuals had low numbers of somatic single
nucleotide variants, indels and structural variation events compared to dysplastic and the remaining non-dysplastic
BE. EAC had the highest level of somatic genomic variations. Mutational signature 17, which is common in EAC,
was also present in non-dysplastic and dysplastic BE, but was not present in the non-progressors. Many dysplastic
samples had mutations in genes previously reported in EAC, whereas only mutations in CDKN2A or in the fragile
site genes appeared common in non-dysplastic samples. Rearrangement signatures were used to identify a
signature associated with localised complex events such as chromothripsis and breakage fusion-bridge that are
characteristic of EACs. Two dysplastic BE samples had a high contribution of this signature and contained evidence
of localised rearrangements. Two other dysplastic samples also had regions of localised structural rearrangements.
There was no evidence for complex events in non-dysplastic samples.

Conclusions: The presence of complex localised rearrangements in dysplastic samples indicates a need for further
investigations into the role such events play in the progression from BE to EAC.
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Background
The incidence of oesophageal adenocarcinoma (EAC) is
increasing in Western countries and the long-term sur-
vival rate for the cancer is poor, with a 5-year survival rate
of 14% [1, 2]. The strongest risk factor for developing
EAC is being diagnosed with the precursor condition, Bar-
rett’s oesophagus (BE) [3]. BE involves the replacement of
the stratified squamous epithelium that is usually present
in the distal oesophagus with metaplastic columnar epi-
thelium and is associated with chronic gastric reflux [4].
BE has been proposed to involve progression through a
number of histologic stages starting with a non-dysplastic
metaplastic stage, through low-grade dysplasia (LGD),
high-grade dysplasia (HGD) before leading to the develop-
ment of EAC [5]. However, the majority of patients diag-
nosed with BE do not go on to develop EAC and are
termed non-progressors [6]. It is estimated that 0.12–
0.33% of patients diagnosed with BE will progress to EAC
annually [7, 8]. The molecular basis for the progression of
BE to EAC in those individuals who develop cancer,
termed progressors, is not yet fully understood.
In recent years, a number of studies have used next-gen-

eration sequencing data to characterise the molecular
characteristics of EAC and the changes that are associated
with progression of BE to EAC. EAC has been shown to
have a high mutation burden of single nucleotide variants
(SNVs) of 8–10 mutations per megabase [9–11], making it
one of the most highly mutated cancers after lung cancer
and melanoma [12]. The majority of EACs have mutations
in the tumour suppressor TP53, and other recurrently
mutated genes include SMAD4 and ARID1A [9]. Although
mutations in tumour suppressor genes are common,
recurrent SNVs or indels in oncogenes are rare, indicating
that other mechanisms must be at work to activate onco-
genes to drive cancer progression. BE has also been found
to have a high mutation burden, with numbers higher
than some invasive cancers, including breast and pancre-
atic cancer [13]. Mutations in genes such as ARID1A,
SMARCA4 and TP53 have been identified in non-dysplas-
tic and dysplastic BE [10, 13, 14].
When mutational signature analysis is performed using

EAC samples, the presence of signature 17 is common.
This signature is characterised by T:A >G:C transversions
within a CTT tri-nucleotide context and has been pro-
posed to arise from oxidative damage due to gastrointes-
tinal reflux, although this has not yet been definitively
proven [9, 11]. Signature 17 has also been reported to be
present at similar levels in BE samples to that observed in
EAC [10, 13]. Other mutational signatures are also present
in EAC. Recently it has been proposed that the presence
of mutation signature 3 is important for disease progres-
sion in a subset of samples. This signature is associated
with BRCA1 and BRCA2 mutations and is indicative of
defective homologous recombination [15]. Little is known

about the presence of mutational signatures such as signa-
ture 3 in BE samples.
Genomic instability is common in EAC, with many

EAC samples having high numbers of structural vari-
ation events and a significant proportion of the genome
affected by copy number alterations [11]. Whole-genome
doubling events and telomere shortening occurs fre-
quently [13, 16]. In a recent whole-genome sequencing
study of 129 EACs, it was observed that recurrently mu-
tated genes were more often affected by rearrangements,
amplifications and deletions than SNVs or indels [15].
Genes that were recurrently affected by rearrangements
included CDKN2A, SMYD3, RUNX1, CTNNA3, ERBB2,
EGFR, MDM2 as well as fragile site genes WWOX and
FHIT. In comparison with EAC, BE samples have a
lower percentage of the genome affected by copy num-
ber changes, and loss of CDKN2A has been identified as
an early event in BE [10, 13]. In a longitudinal
case-cohort study, Li and co-workers observed that indi-
viduals with BE who did not progress to EAC (non-pro-
gressors) had relatively stable genomes over time,
whereas BE patients who progressed to EAC developed
chromosomal instability with initial copy number gains
and losses followed by whole-genome doubling [17].
Telomere shortening has also been observed across the
different histological grades of BE [18].
Catastrophic genomic events such as chromothripsis

and breakage-fusion-bridge (BFB) are common in EAC.
We have previously demonstrated that almost a third of
EAC cases examined had such a genomic catastrophe
and that these events often lead to the amplification of
oncogenes such as MDM2, MYC and KRAS [11]. The
presence of localised regions of hypermutation, termed
kataegis, were also identified. Secrier et al. also observed
that such events were common, with many samples
showing evidence of complex rearrangements (32%),
chromothripsis (30%) or kataegis (31%) [15]. Little is
known about the prevalence of catastrophic events in
BE. Using SNP arrays, Li and co-workers identified that
16% of BE patients who later progressed to EAC had evi-
dence of chromothripsis prior to the detection of cancer
[19]. However, no information about kataegis or the inci-
dence of other complex events such as BFB are known.
To date, no whole-genome sequenced BE samples have
been examined to determine whether genomic catastro-
phes are present in these pre-cancer lesions.
A number of models have been proposed for the mo-

lecular progression of Barrett’s oesophagus to EAC. A
linear model of progression has been proposed to in-
volve the early loss of CDKN2A, followed by mutations
in TP53 in turn leading to increases in copy number and
genome doubling [17, 20–24]. Stachler et al. proposed
two potential pathways for development, with one in-
volving gradual accumulation of losses in tumour
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suppressor genes, followed by activation of oncogenes
and genomic instability [13]. The second pathway is pro-
posed to involve loss of TP53 as an early event followed
by genome doubling and genomic instability, oncogene
activation and aneuploidy [13]. The role of genomic
catastrophes in models of progression is poorly under-
stood. We have previously postulated that genomic
catastrophes that lead to amplification of oncogenes
could be one way that BE may rapidly undergo progres-
sion to EAC [11].
The aim of this study was to characterise the genomic

landscape of 16 BE from 14 donors, including 2 non-
dysplastic samples from 2 non-progressors, 7 other
non-dysplastic and 5 dysplastic samples and compare
them with the genomic features of 22 EAC samples. In
particular, the presence of localised complex structural
rearrangements in BE samples was determined.

Methods
Samples and DNA extraction
Samples used in this study were obtained from patients
who have given their written, informed consent and with
approval from the Metro South Health research ethics
committee. Samples were obtained from 14 patients with
Barrett’s oesophagus, with a total of 16 samples col-
lected. BE samples were obtained from patients under-
going endoscopy at the Princess Alexandra Hospital,
Brisbane, Australia. The biopsy sample site was recorded
prospectively. Haematoxylin and eosin (H&E) slides
were examined by a qualified pathologist (GL) to deter-
mine the stage of the BE samples. Biopsies collected at
the same location as those used for H&E were snap fro-
zen and stored prior to extraction of DNA. Biopsies used
for DNA extraction in the study were sectioned prior to
thawing and one piece used for histological to confirm
the presence of goblet cells as an indication of epithelial
tissue in the same sample. Representative images of
H&E slides for Barrett’s samples are presented in Add-
itional file 1: Figure S8. Matched normal samples were
also obtained from each patient and were either blood
or adjacent endoscopically and histologically normal tis-
sue. DNA was extracted and quantified using Qubit
(Thermo Fisher Scientific, Waltham, Massachusetts, MA,
USA). Twenty-two oesophageal adenocarcinoma (EAC)
samples were analysed for comparison. The collection and
clinical information for these samples have previously
been described [11]. Clinical and sample collection infor-
mation for the cohort is available in Table 1 and Additional
file 2: Table S1a (EAC samples) and 1b (BE samples).

Whole-genome sequencing
EAC samples were sequenced previously [11]. BE samples
underwent whole-genome paired-end sequencing on a
HiSeq2000 or a X-Ten (Illumina, San Diego, CA, USA) at

one of two facilities: The Kinghorn Cancer Centre, Garvan
Institute of Medical Research (Sydney, Australia) or
Macrogen (Geumcheon-gu, Seoul, South Korea). EAC
samples underwent reanalysis (ie. sequence alignment and
variant calling) in order to allow direct comparison be-
tween BE and EAC samples. All samples were aligned to

Table 1 Clinical characteristics of cohort

ID Age Sex Sample type

NP-1-1 77 M NON-PROGRESSOR

NP-1-2 80 M NON-PROGRESSOR

NP-2-1 58 M NON-PROGRESSOR

NP-2-2 62 M NON-PROGRESSOR

NDBE-1 64 M NON-DYSPLASTIC

NDBE-2 67 M NON-DYSPLASTIC

NDBE-3 66 M NON-DYSPLASTIC

NDBE-4 56 M NON-DYSPLASTIC

NDBE-5 79 M NON-DYSPLASTIC

NDBE-6 60 M NON-DYSPLASTIC

NDBE-7 78 M NON-DYSPLASTIC

HGD-1 39 M DYSPLASTIC (HIGH GRADE)

HGD-2 71 M DYSPLASTIC (HIGH GRADE)

HGD-3 67 M DYSPLASTIC (HIGH GRADE)

HGD-4 81 M DYSPLASTIC (HIGH GRADE)

HGD-5 67 M DYSPLASTIC (HIGH GRADE)

EAC-1 46 M EAC

EAC-2 58 M EAC

EAC-3 74 M EAC

EAC-4 64 M EAC

EAC-5 59 F EAC

EAC-6 71 M EAC

EAC-7 77 M EAC

EAC-8 27 M EAC

EAC-9 54 M EAC

EAC-10 48 M EAC

EAC-11 59 M EAC

EAC-12 72 M EAC

EAC-13 65 M EAC

EAC-14 57 M EAC

EAC-15 64 M EAC

EAC-16 74 M EAC

EAC-17 70 M EAC

EAC-18 77 M EAC

EAC-19 49 M EAC

EAC-20 68 M EAC

EAC-21 58 M EAC

EAC-22 75 M EAC
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the human genome assembly GRCh37 using BWA-MEM.
Mean coverage was determined using qCoverage (avail-
able at http://sourceforge.net/projects/adamajava). EAC
samples had a mean coverage of 76 (range 63–135), BE
samples had a mean coverage of 81 (range 61–134) and
matched normal samples had a mean coverage of 38
(range 30–69) (Additional file 2: Table S1c). All samples
had a minimum tumour or Barrett’s epithelium percent-
age of 20%, as determined by ascatNGS (Additional file 2:
Table S1c).

SNV and indel calling
SNV calling was carried out using a dual calling strategy
using the consensus of two different tools: qSNP [25]
and GATK [26] as previous described [11]. Indel calling
(1-50 bp) was carried out using GATK. Variant annota-
tion for gene consequence was performed using SnpEff
and the Ensembl gene annotation [27]. To compare
overlapping variants in the non-progressor samples
NP-1 and NP-2, pileups were performed at each variant
position identified in the variant calling pileup using
qbampileup (available at http://sourceforge.net/projects/
adamajava) in order to look for weak evidence for vari-
ants in each sample. A variant was considered to be
present when there were no alternate alleles present in
the normal sample, when there were at least 10 reads of
coverage and if there was at least one good quality read
in the BE sample. Reads that were not considered to be
high quality were: duplicate reads, reads with mapping
quality < 10, reads with CIGAR score < 34 or greater
than 3 mismatches in the read.

Mutational signatures
Mutational signatures were detected using the non-nega-
tive matrix factorization (NMF) method described by
Alexandrov et al. [12]. EAC and BE samples were analysed
together. Signatures obtained using NMF were compared
with the known signatures described in the COSMIC
database using cosine similarity (http://cancer.sanger.a-
c.uk/cosmic/signatures, accessed 27 October 2017). To
determine the contribution of each signature to a sample,
we used the quadratic programming approach available in
the R package, SignatureEstimation [28]. To prevent over-
fitting, signatures that contributed less than 10% for a
sample were removed and mutations were reassigned to
the signatures that remained.

Kataegis
Localised regions of hypermutation, known as kataegis,
were identified as previously described [11]. Briefly, inter
-mutational distance was calculated as the number of base
pairs between mutations ordered by chromosome and
position. Inter-mutational distances were segmented using
piecewise constant fitting and putative regions of kataegis

were defined as segments containing six or more consecu-
tive mutations with a mean inter-mutation distance of
≤1000 bp.

Copy number and structural variant analysis
Copy number was determined using sequencing data
and the tool ascatNGS [29]. In order to be conservative
in the analysis we only considered high level amplifica-
tions, homozygous deletions or regions with significant
gain or loss in a duplicated genome, in a similar manner
to that described in the COSMIC database (https://can-
cer.sanger.ac.uk/cosmic/help/cnv/overview). The follow-
ing definitions were using for copy number amplification
or deletion. An amplification was called with a region
having either: i) average genome ploidy <= 2.7 AND
total copy number > = 6 OR ii) average genome ploidy >
2.7 AND total copy number > = 9. A region of loss was
called if either i) average genome ploidy <= 2.7 AND
total copy number = 0 OR ii) average genome ploidy >
2.7 AND total copy number < (average genome ploidy -
2.7). Copy number per gene was determined by annota-
tion against Ensembl known genes (version 75). Struc-
tural variants were determined using qSV as previously
described [11].

Rearrangement signatures
We used the same statistical framework using NMF that
was used for mutational signature analysis for the identi-
fication of rearrangement signatures [12]. SVs were clas-
sified into the same categories as has been previously
described and applied to a breast cancer cohort by
Nik-Zainal and co-workers [30]. SVs were classified into
types of events: deletions, duplications, inversions and
inter-chromosomal translocations. SVs were further
characterised by size and whether the breakpoints were
clustered or non-clustered. Size categories (for events
that were not translocations) were: 1–10 kb, 10–100 kb,
100 kb–1Mb, 1–10Mb, more than 10Mb. Clustered SV
breakpoints were defined using the BEDTools cluster
function [31]. Clustered events were defined using the
presence of ≥10 breakpoints in a 1Mb window, a metric
that has previously been applied by Letouze et al. [32].

Identification of localised complex events
For EAC and BE samples, samples were identified as hav-
ing patterns similar to chromothripsis or breakage-fu
sion-bridge (BFB) by manual review of each chromosome
using a combined plot of copy number LogR ratio (LRR)
and B allele frequency (BAF), copy number events and
structural events. Evidence for complex events was deter-
mined by looking for: 1) the features of chromothripsis as
described by Korbel and Campbell [33] including oscillat-
ing copy number, random joins, retention of heterozygos-
ity; 2) evidence of BFB including telomeric loss and a local
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region of amplification with a high number of inversions;
and 3) localised region of complexity including regions
with clustered SV breakpoints that also had several
changes in copy number and/or retention of heterozygos-
ity or a region that was highly amplified (copy number >
9).

Telomere length
Telomere length was determined using sequencing data
and the tool qMotif, which is available at http://source-
forge.net/projects/adamajava and as previously described
[34]. qMotif counts the number of reads containing the
telomeric repeat (TTAAGG). Counts are normalised to
the mean genomic coverage of a sample and the relative
telomere length is expressed as the log2 ratio of read
counts in the EAC/BE sample BAM file to the matched
normal BAM file read counts.

Results
Comparison of genomic features of BE and EAC
We have previously reported the genomic features of 22
EAC samples that underwent whole-genome sequencing
[11]. Here, we compared the somatic events of these
EAC samples with 16 BE samples from 14 patients with
different histological stages on a genome-wide scale.
Clinical information for the cohort are detailed in Table
1 and Additional file 2: Tables S1a (EAC samples) and
S1b (Barrett’s samples). The BE samples were comprised
of samples from 2 non-progressor patients (NP-1 and
NP-2) with BE that had not progressed to cancer over a
number of years. For each non-progressor we examined
2 samples which were taken 3 years apart for patient
NP-1 and 4 years apart for patient NP-2 (Additional file
1: Figure S1). We also characterised 7 non-dysplastic BE
and 5 dysplastic BE samples. All dysplastic samples were
determined histologically to be HGD. Five of the
non-dysplastic samples, and one of the dysplastic sam-
ples, were from patients with EAC and biopsies were
taken from a region adjacent to, but well separated from,
the tumour at the time of surgery. All BE and EAC sam-
ples underwent paired-end whole-genome sequencing to
a mean base pair depth of 81x (BE) and 76x (EAC), and
matched normal samples (blood or adjacent endoscopic-
ally normal oesophageal/gastric sample) to a mean base
pair depth of 38x. The coverage for each sample is listed
in Additional file 2: Table S1c.
As has been previously described [11], the EAC sam-

ples exhibited high numbers of somatic SNVs/indels,
with a median of 7.33 mutations/Mb (range = 1.40–
33.85) (Fig. 1 a). When comparing EAC, dysplastic and
non-dysplastic BE samples, a significant difference in
somatic mutations was observed (ANOVA, P = 0.033).
Dysplastic BE samples had a median of 3.9 mutations/
Mb (range = 0.66–7.23), and non-dysplastic samples had

a median of 1.28 mutations/Mb (range = 0.12–9.10).
There was a significant difference observed between
EAC and non-dysplastic samples (post hoc Tukey HSD
P = 0.048), but no significant difference between the mu-
tation burden of dysplastic BE and EAC (post hoc Tukey
HSD P = 0.21) or between non-dysplastic and dysplastic
BE (post hoc Tukey HSD P = 0.92). If only coding muta-
tions were examined a similar pattern was observed with
an overall significant difference (ANOVA, P = 0.002),
but no significant difference between EAC and dysplastic
samples (post hoc Tukey HSD P = 0.12) or non-dysplas-
tic and dysplastic samples (post hoc Tukey HSD P =
0.52).
To determine if non-progressor samples were genomi-

cally stable over time, we compared the SNVs present
within BE samples collected at two time points for the
donors NP-1 and NP-2. (Additional file 1: Figure S2).
Pileups were performed at each position in order to con-
sider weak evidence for each mutation where there was
strong evidence in one of the samples. Using this ap-
proach there was good overlap for both donors, with
79% of mutations for NP-1 and 90% of mutations for
NP-2 with evidence in both samples.
Mutational signature analysis was performed by ana-

lysing the BE and EAC samples together using the
framework described by Alexandrov (Fig. 1 b) [12]. Five
mutational signatures were observed, and were com-
pared to the signatures reported in the COSMIC data-
base using the cosine similarity (Additional file 1: Figure
S3a,b). The signatures identified were: Signature 17; Sig-
nature 3, which is associated with BRCA1 and BRCA2
mutations and homologous recombination defects; Sig-
nature 1, which is associated with aging; Signature 5, of
unknown aetiology; and Signature 2, which is attributed
to APOBEC activity. The signatures within the EAC sam-
ples were consistent with those previously reported using
these EAC samples, with the previously novel signature
now assigned to Signature 5 by cosine similarity [11].
Signature 17 is common in EAC samples (Fig. 1 b).

This signature is present in 21 of the 22 EAC samples,
with a mean of 34% of the mutations in EAC samples at-
tributed to this signature (range: 0–82.6%). It is also
present at similar levels in the dysplastic and non-dys-
plastic BE samples, with a mean of 28.9 and 35.5% re-
spectively, with no significant difference between the
groups (ANOVA, P = 0.83). There was no statistically
significant difference between the contributions of Sig-
nature 5 (P = 0.35), 2 (P = 0.22), 3 (P = 0.05) or 1 (P =
0.06). However, the overall trend was for lower levels of
Signature 1 in EAC samples (mean of 21.9%) compared
with non-dysplastic and dysplastic BE samples (mean of
31.4 and 46.9% respectively), and higher levels of Signa-
ture 3 in EAC samples (mean of 28%) compared with BE
samples (non-dysplastic mean of 13% and dysplastic
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mean of 6.2%). Non-progressor samples showed no evi-
dence of Signature 17, with mutations in these samples
assigned to Signatures 1, 5 and 3. The proportion of
each signature was similar when comparing the Visit 1
and Visit 2 samples for both non-progressors (NP-1 and
NP-2).
Structural variant events (SV) were identified using

qSV and copy number variants (CNV) identified using
ascatNGS. EAC samples had high numbers of SV events,
with a mean number per sample of 315 (range 101–824)
(Fig. 1 c) and a mean of 28% of the genome affected by
copy number deletions (copy number 0 or 1) or amplifi-
cations (copy number > =6) (Fig. 1 d). Dysplastic BE
samples had a mean of 62 SV events per sample (range

of 2–142) and between 1 and 14.5% of the genomes af-
fected by copy number changes. Non-dysplastic BE sam-
ples had a mean of 33 SV events (range of 12–81) and
few copy number changes, with a mean of 0.7% of the
genome affected. The overall occurrence of SV events
was statistically different between the three groups
(ANOVA, P = 0.0009), but no difference was observed
between non-dysplastic and dysplastic BE samples (post
hoc Tukey HSD P = 0.95). The overall difference in per-
centage of the genome affected by copy number dele-
tions or amplification was not statistically different
between the three groups (ANOVA, P = 0.08). Samples
from non-progressor patients had the fewest somatic SV
and CNV events, with between 2 and 16 SV events

a

b

c

d

e

Fig. 1 Somatic variants, mutational signatures and telomere length in BE and EAC. Barcharts and boxplots of: (a) number of SNP/indels in, from
left to right, non-progressors (NP-1 and NP-2), non-dysplastic BE, dysplastic BE, and EAC samples; (b) Proportion of each mutational signature:
Signature 1,2,3,5,17 (left) and boxplot of proportion of Signature 17 in non-dysplastic, dysplastic and EAC samples; (c) Number of SV events; (d)
Percent of the genome affected by copy number deletion or amplification (e) Telomere length. In the boxplots, ANOVA was used to determine
significance (*P < 0.05, **P < 0.001). Sample order for the figure can be found in Additional file 2: Table S1c
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identified and less than 1% percent of the genome af-
fected by copy number changes.
Telomere length was determined using qMotif (Fig. 1

e). There was no statistically significant difference in
telomere length between the groups (ANOVA, P = 0.11).
The majority of EAC samples (17/22) showed telomere
shortening with a mean log2 telomere ratio of − 0.48
where zero represents a tumour telomere length that is
equal to its matched normal. When examining all BE
samples together, telomeres only exhibited a modest
shortening (− 0.098). Three of five dysplastic samples
had shorter telomeres, however the mean telomere
length was close to zero: − 0.058. Most non-dysplastic
samples also had shorter telomeres (6/7), with a mean of
− 0.19. In non-progressor samples, one individual had
shorter telomeres in samples from both Visit 1 and Visit
2, and the other individual had longer telomeres in both
samples.

Mutations in previously reported EAC genes
We determined the EAC associated genes that were af-
fected by somatic SNVs, indels, SVs and copy number
deletions and amplifications. We concentrated on 73
genes that have been previously reported to be a driver
or recurrently mutated in EAC (Additional file 3) [9, 11,
15, 35]. Twenty-four of these genes were mutated in at
least one BE sample in the cohort (Fig. 2). Each EAC
sample had mutations in 3–14 of these 24 genes. Fragile
site genes (those listed as such by Secrier et al. [15])
were frequently affected by structural rearrangements:
FHIT (21/22), WWOX (19/22), MACROD2 (18/22) (Fig.
2 b). Other frequently mutated genes in the EAC sam-
ples that were also mutated in BE samples were TP53
(17/22), CDKN2A (10/22), SMYD3 (11/22) (Fig. 2 b).
Four of the 5 dysplastic BE samples also had mutations

in 4–9 EAC reported genes, with one sample having no
mutations in previously reported genes. Structural

a

b

c

Fig. 2 Mutations in previously reported EAC genes. The presence of SNVs, indels, copy number changes and structural variation in previously
reported EAC genes [9, 11, 15, 35]. In the analysis, 74 genes were used. Of these, 24 genes were affected in at least one BE sample and are shown
in the oncoplot. a Number of mutations in the 24 genes (b) Recurrent EAC genes that are not fragile sites (c) Mutations in fragile site genes.
Sample order for the figure can be found in Additional file 2: Table S1c
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variant breakpoints in the fragile site gene FHIT were
common, with mutations present in 4 samples. SVs were
also present in 2 samples for WWOX. Mutations in
other genes were more variable. TP53 mutations were
present in 2/5 dysplastic samples, whereas CDKN2A was
only present in one sample. Notably, no loss of function
SMAD4 mutations were observed in the dysplastic
samples.
Non-dysplastic samples exhibited mutations in only a

few (range of 0–6 per sample) of the previously reported
genes, with CDKN2A (3/7), FHIT (5/7) and WWOX (4/
7) frequently mutated. No TP53 or SMAD4 mutations
were observed in these samples. Non-progressor NP-1
had no mutations in genes previously reported to be
mutated in EAC (Fig. 2). In the non-progressor NP-2
samples, FHIT and WWOX were mutated in samples
taken at both Visit 1 and Visit 2 and CDKN2A in the
visit 1 sample.

Complex large-scale genomic events in BE samples
Complex genomic events such as chromothripsis and
BFB are common in EAC [11, 15]. We therefore deter-
mined whether such events are present prior to the de-
velopment of cancer. We examined the signatures of

rearrangement mutational processes which have previ-
ously been identified in breast cancer, liver cancer as
well as in EAC [15, 30, 32]. Analysis was performed
using 32 subclasses previously described by Nik-Zainal
et al. [30]. Rearrangements were classified based on
whether rearrangements were clustered or not clustered,
by rearrangement type (deletion, inversion, tandem du-
plication and deletion) and by size of the rearrangement.
Due to low numbers of SV events, the non-progressor
samples, and one dysplastic sample, which had only two
SV events, were not used in the analysis.
Four rearrangement signatures were identified within

the EAC and BE cohort (Additional file 1: Figure S4).
These signatures were compared against the six signa-
tures identified by Nik-Zainal and co-workers (RS1–6)
using cosine similarity. RS_A had a low correlation of
cosine similarity of 0.65 with RS3 and 0.67 with RS5.
RS_B was similar to RS2 (0.89) and RS_C was closest to
RS3 (0.82). RS_D was not highly correlated, with the
closest signature being RS4 (0.77) which represented
clustered SVs. The rearrangement signature RS_D con-
tributed to 0–78% of SV events within the samples
(Fig. 3). Ten EAC samples had a contribution of the
RS_D signature greater than 25% (Fig. 3). Two dysplastic

Fig. 3 Contribution of rearrangement signatures to BE and EAC samples. The upper barchart shows the number of SV breakpoints and the
contribution of the four rearrangement signatures to each sample. The lower barchart shows the contribution of each signature as a percentage.
The presence of complex events that resemble BFB or chromothripsis and TP53 mutations is also shown. Non-progressor samples and one
dysplastic sample are not shown due to having too few SV events to be used to identify signatures. Sample order for the figure can be found in
Additional file 2: Table S1c
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samples had high contribution of the signature RS_D, in
HGD-2 RS_D represented 73% of SVs and in HGD-3,
78%. These samples also had higher numbers of SV
events in comparison with most other BE samples, with
most SVs clustered in one or a few chromosomes. In
contrast, other dysplastic BE and non-dysplastic BE had
low or no evidence of RS_D, and lower numbers of SV
events overall.
We then manually reviewed EAC and BE samples on a

per-chromosome basis to determine if complex localised
events were present. The EAC samples with a high con-
tribution of RS_D frequently contained complex local-
ised events that resembled chromothripsis and BFB (Fig.
3). Such complex events were also identified in our pre-
vious publication using these EAC samples [11].
In the two dysplastic BE samples with a high propor-

tion of signature RS_D, we observed a number of fea-
tures of localised complexity (Fig. 4). In patient HGD-2,
chromosome 8 contained some characteristics of BFB
including telomeric loss, a high concentration of inver-
sions with 68 inversion breakpoints of the 104 break-
points on the chromosome, and highly amplified regions
(Fig. 4 a). Localised complex rearrangements with copy
number amplifications, oscillating copy number and
clustered SVs were also present on chromosome 7 (Add-
itional file 1: Figure S5). The events on chromosome 8
are candidate driving events as they resulted in the amp-
lification of known EAC genes, including GATA4 and
the oncogene MYC. In the dysplastic sample HGD-3,
chromosome 17 had 91 SV breakpoints (62% of total
breakpoints) and contained some of the characteristics
of chromothripsis, including oscillating copy number
and retention and loss of heterozygosity (Fig. 4 b). Both
samples had mutations in TP53 and evidence of either
considerable or modest telomere shortening with a log2
telomere ratio of − 0.58 for HGD-2 and -0.1 for HGD-3.
Localised regions of base substitution hypermutation,

known as kataegis, have previously been associated with
clustered SV events [30], and are common in EAC [11].
We looked for the presence of kataegis in BE samples and
observed that the two dysplastic samples with well-defined
localised complex events also had kataegic loci (Fig. 4 a,b).
HGD-2 had eight loci that were positive for kataegis, with
6 of these loci also located on chromosome 8 within the
regions with some evidence for BFB. Of the remaining 2
loci, 1 region was located on chromosome 7, which also
had local regions of complexity, and the other on chromo-
some 1. HGD-3 had 2 loci of kataegis, both of these on
chromosome 17 in the vicinity of events that showed
some evidence of chromothripsis.
We also observed some evidence for localised com-

plexity in 2 other dysplastic samples, although there was
insufficient evidence to define these regions as harbour-
ing chromothripsis or BFB. Chromosome 4 of the

dysplastic sample from HGD-4 had clustered SV break-
points (14 breakpoints) and oscillating copy number
(Additional file 1: Figure S6a). This sample had evidence
for telomere shortening. For donor HGD-5, two chro-
mosomes exhibited some localised complexity, with
chromosome 5 showing regions of oscillating copy num-
ber, while chromosome 18 (Additional file 1: Figure S6b)
contained 21 SV breakpoints and several highly ampli-
fied regions. This sample had no evidence of telomere
shortening. This sample was the only dysplastic sample
that was taken from a patient undergoing EAC tumour
resection. It is therefore a region of BE adjacent to the
EAC but was well separated from the tumour. Histology
for the sample also confirmed the region of biopsy was
high grade dysplasia and not EAC. In agreement with
the low number of SV events and percentage of the gen-
ome affected by copy number changes, we did not ob-
serve any evidence of complex events in non-progressor
samples or non-dysplastic samples (Additional file 1:
Figure S7).

Discussion
In this study, we characterised the whole-genomes of
non-progressor, non-dysplastic and dysplastic BE sam-
ples and compared them with a previously described
EAC cohort [11].
Overall, the mutation profile of BE samples agreed

with previous studies of such samples. Although a higher
burden of SNV/indels was observed in EAC compared
with BE samples, no significant difference in the number
of SNV/indel mutations was observed between
non-dysplastic and dysplastic samples, either when
examining all mutations or only coding mutations. The
fact that the mutational burden is not statistically differ-
ent between dysplastic and non-dysplastic samples may
be due to the low number of samples in each cohort,
however this observation is also in agreement with a
previous study using whole-genome sequencing [10]. In
contrast, Stachler and co-workers, using exome sequen-
cing, found a significant difference in the number of
SNV/indels between dysplastic and non-dysplastic sam-
ples [13]. Such differences observed between studies
may be due to the difficulties of accurately identifying
the dysplastic stage of BE by histopathology, as consider-
able inter-observer variability in the diagnosis of dyspla-
sia in BE has been reported [36]. Alternately, as only
strong evidence has been considered for the presence of
a mutation, it is possible that dysplastic samples may
have a more complex subclonal structure than
non-dysplastic samples and therefore some mutations
present in a lower number of cells could have been
missed.
Mutations in previously reported EAC genes increased

with progressing BE stages. The presence of CDKN2A
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and structural variations in fragile site genes WWOX
and FHIT in non-progressor and other non-dysplastic
samples agrees with previously published studies that
suggest that these are very early events in BE [17, 23,
37]. The presence of TP53 mutations in dysplastic

samples but not non-dysplastic samples, and the absence
of SMAD4 mutations in BE samples agrees with the
work of Weaver et al., who proposed that mutation of
TP53 marked the boundary from non-dysplastic to dys-
plastic and that SMAD4 mutations are only present in

a b

Fig. 4 Complex events in dysplastic BE samples. a Complex events in sample HGD-2 (b) Complex events in HGD-3. For each sample, the upper panel
shows a circos plot of structural variations (inner), B allele frequency (BAF), and copy number changes (green = loss, red = gain) according to
chromosomal location (outer ring). The lower panels show events per chromosome (chromosome 8 in HGD-2 and chromosome 17 in HGD-3) with
the top plot showing structural variations (colour coded according to the SV key shown); the second plot showing copy number changes (red =
amplification, green = deletion). The third plot shows log10 inter-mutational distance between single nucleotide variants (colour coded according to
the SNV key shown) with arrows indicating regions of kataegis. The fourth plot shows Log R ratio and the bottom plot shows BAF
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invasive cancer [14]. However, TP53 mutations have also
been reported to be present in non-dysplastic BE biop-
sies taken in regions adjacent to EAC [10].
Previous studies have reported the copy number

abnormalities of non-progressors and have demonstrated
that they are stable over time [17]. The observation of
structural variations in fragile site genes in both samples
of the NP-2 non-progressor patient in this study agrees
with Li et al. who saw similar chromosomal level events
in non-progressors and that these events were stable
across space and time [17]. The presence of CDKN2A
loss in NP-2 also agrees with previous observations [17].
Less is known about the progression of SNV and indel
mutations over time in non-progressor samples. In this
study, we observed that non-progressor samples have
between 273 and 2152 SNV/indel mutations on a
whole-genome level, but few coding mutations, with
none in previously reported EAC genes. In comparison,
Weaver et al. observed a number of mutations in previ-
ously reported EAC genes, including ARID1A and
SMARCA4 when examining 66 non-dysplastic patients
who had not progressed after a median follow-up time
of 58 months [14]. We used two time points from two
non-progressing patients to compare the overlap of mu-
tations between the samples. When weak evidence for a
variant was considered, the degree of overlap between
samples was high, with 79 and 90% of SNV/indels com-
mon to both samples. For each non-progressor, each bi-
opsy was taken from the same region, which may
contribute to the generally high degree of overlap. Fur-
thermore, the stability of SNV/indels present in these
samples is consistent with the studies of copy number
variation stability in non-progressors [19]. However,
given the small number of samples and time-points ex-
amined in this study it is difficult to make definitive con-
clusions about the degree of overlap observed in these
samples.
The presence of similar levels of Signature 17 in EAC

and BE samples agrees with previous studies that have
reported the presence of this signature in BE samples
[10, 13]. It has been suggested that Signature 17 is due
to oxidative damage [9], as a consequence of exposure
to gastric and bile acids which occurs during chronic
reflux. Therefore, mutations with the context for Signa-
ture 17 are likely to occur early in BE. Interestingly
there was no evidence for Signature 17 in non-prog
ressors, indicating that it is possible that these samples
have been less exposed to the mutational processes,
such as oxidative damage caused by reflux, or that the
repair mechanisms that cope with this damage are
intact. However, further analysis of a larger cohort of
non-progressor samples is required to determine if this
is a reproducible observation, particularly as in a tar-
geted amplicon sequencing of 26 EAC genes, it was

observed that 5/29 SNVs in non-progressors were T >
G in a TT context, the context that is associated with
Signature 17 [14].
We identified a rearrangement mutational signature

that was present in many EAC samples that had com-
plex genomic catastrophes including chromothripsis and
BFB. Two dysplastic BE samples also had a high propor-
tion of this signature. After manual review, the presence
of complex rearrangements in these samples was con-
firmed, indicating the possible utility of rearrangement
signatures to more easily identify samples with complex
events. However, it should be noted that many of the BE
samples only had a low number of SV events, and there-
fore rearrangement signature analysis in such samples
could be limited.
In total, we found some evidence for complex events

in four dysplastic BE samples, including two samples
with some characteristics of BFB and chromothripsis, as-
sociated kataegic loci and some early signs of complex
events in a further two samples. We have previously
proposed that genomic catastrophes may be a possible
mechanism whereby EAC arises rapidly in patients [11].
FISH experiments in medulloblastoma have also shown
that chromothripsis events were not subclonal but were
present in almost all tumour cells, suggesting that chro-
mothripsis was an early event in tumorigenesis [38]. In
support of this, Li and co-workers reported that 13 of 79
progressors (16.5%) had evidence of chromothripsis be-
fore the detection of EAC, as determined by SNP array
[19] and whole-genome doublings and high genomic di-
versity have also been observed in patients within the 24
months prior to the detection of EA [17]. To our know-
ledge this study is the first to use whole-genome sequen-
cing to identify evidence of BFB, chromothripsis and
kataegis in BE samples.
Telomere shortening and TP53 mutations are both

proposed to be involved in the development of cata-
strophic events. TP53 mutations have previously been
reported to be associated with chromothripsis in medul-
loblastoma and acute myeloid leukaemia [38]. Chromo-
thripsis has been proposed to arise via a number of
mechanisms, with Maciejowski and co-workers report-
ing that both chromothripsis and kataegis can arise due
to telomere crisis where telomere attrition leads to fre-
quent telomere fusions, driving genomic instability [39].
The absence of functional p53 further contributes to
telomere shortening and genomic instability as cells will
progress into mitosis early with uncapped telomeres,
leading to the tendency to generate end-to-end fusions
[40]. Telomere shortening and TP53 mutations are also
both reported to be early events in BE [14, 18], and we
have previously suggested these events may be a mech-
anism for driving genomic catastrophes in EAC [11].
The two dysplastic samples with TP53 mutations had
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the strongest evidence for chromothripsis and BFB, and
high levels of the RS_D rearrangement signature. These
samples also had shorter telomeres. Therefore, dysplastic
BE samples with TP53 mutations and shortened telo-
meres may be more at risk of undergoing genomic
catastrophes.
The presence of complex rearrangements in high-grade

dysplastic samples in this study adds further support for
these events to be considered drivers in the rapid progres-
sion from BE to EAC, despite the small number of sam-
ples examined. In addition, only high-grade dysplastic
samples were described and no low-grade dysplastic sam-
ples were examined, so the existence of complex events in
such samples is unknown. The ability to accurately define
a specimen as high-grade dysplasia or adenocarcinoma is
also problematic. Poor inter-observer reproducibility has
been observed among pathologists when differentiating
between high-grade dysplasia, intramucosal adenocarcin-
oma, and submucosal adenocarcinoma in a specimen [41]
and it is possible that high-grade dysplastic samples with
evidence of complexity may in fact already have pro-
gressed to adenocarcinoma. Therefore, the analysis of a
larger cohort is required in order to confirm the observa-
tions made in this study.

Conclusion
Overall, the genomic landscape of these BE samples
agrees with previously reported data with respect to mu-
tation burden, mutational signatures and telomere
length. We have identified evidence for the presence of
genomic catastrophes in high-grade dysplastic BE, and
these samples also had shortened telomeres and TP53
mutations. Therefore, these data provide further support
for the hypothesis that the rapid progression from BE to
EAC could be triggered by complex localised rearrange-
ment events such as chromothripsis or BFB. However,
due to the low number of samples used in this study,
there is a need for a collaborative effort to source a lar-
ger cohort of BE samples with long term follow-up for
whole genome sequencing in order to further character-
ise the genomic features of BE to EAC progression, in
particular to confirm the presence of genomic catastro-
phes and the role that these events play in the develop-
ment of invasive cancer.
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