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In this study, we investigated whether chemical 6-hydroxydopamine (6-OHDA) stimuli caused cardiac sympathetic denervation
(SD), and we analyzed gene expression profiles to determine the changes in the lncRNA/circRNAs-miRNA-mRNA network in the
affected spinal cord segments to identify putative target genes and molecular pathways in rats with myocardial ischemia–
reperfusion injury (MIRI). Our results showed that cardiac sympathetic denervation induced by 6-OHDA alleviated MIRI.
Compared with the ischemia reperfusion (IR, MIRI model) group, there were 148 upregulated and 51 downregulated mRNAs,
165 upregulated and 168 downregulated lncRNAs, 70 upregulated and 52 downregulated circRNAs, and 12 upregulated and 11
downregulated miRNAs in the upper thoracic spinal cord of the SD-IR group. Furthermore, we found that the differential
genes related to cellular components were mainly enriched in extracellular and cortical cytoskeleton, and molecular functions
were mainly enriched in chemokine activity. Pathway analysis showed that the differentially expressed genes were mainly
related to the interaction of cytokines and cytokine receptors, sodium ion reabsorption, cysteine and methionine metabolism,
mucoglycan biosynthesis, cGMP-PKG signaling pathway, and MAPK signaling pathway. In conclusion, the lncRNA/circRNAs-
miRNA-mRNA networks in the upper thoracic spinal cord play an important role in the preventive effect of cardiac
sympathetic denervation induced by 6-OHDA on MIRI, which offers new insights into the pathogenesis of MIRI and provides
new targets for MIRI.

1. Introduction

Myocardial ischemia/reperfusion injury (MIRI) accounts for
a large proportion of the total incidence of heart diseases,
and it seriously affects human quality of life [1–3]. Previous
studies have reported the cellular and molecular mecha-
nisms of neural–cardiac interactions [4, 5] during patholog-
ical remodeling after MIRI [6]. However, to date, no effective
methods have been found to prevent MIRI.

Cardiac nerves, comprising both the sensory nerves and
the autonomic nerves, transmit the information from the

heart to the spinal cord and brain, which then results in an
appropriate sympathetic neural outflow [7]. The role of sym-
pathetic activity in the development of cardiac electrical
activity has been well known for decades [8, 9]. Neural reg-
ulation is involved in an imbalance between the sympathetic
and parasympathetic nervous systems within the ischemic
myocardial tissues. Experimental studies have shown that
cardiac innervation abnormality is an important cause of
the sympathetic nervous system overactivity. Several studies
have reported the vital role of the sympathetic nerves in
MIRI progression, and sympathetic nerves have been shown
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to infiltrate the myocardial microenvironment thereby accel-
erating cardiac injury [10, 11]. In this study, we examined
the preventive effect of cardiac sympathetic denervation
induced by 6-OHDA, a catecholamine-specific toxin [12],
on MIRI rats.

Myocardial ischemia/reperfusion injury is a complex
process, and further understanding of the related biological
processes and their regulation is necessary [13, 14]. Several
lines of evidence have revealed a close correspondence
between the spinal cord and cardiovascular system [15–17];
indeed, the spinal cord and cardiovascular system develop
in concert and are functionally interconnected in heart dis-
ease. It is an accepted fact that noncoding RNAs (ncRNAs)
of the spinal cord are vital components of the regulation
and cross-talk among MIRI-related signaling pathways
[16]. In recent years, a strong consensus has been reached
that ncRNAs, including long noncoding RNAs (lncRNAs)
and circular RNAs (circRNAs), play an important role in
many cellular processes and occurrence of diseases [18–23].
However, the underlying mechanisms based on the function
of lncRNAs, circRNAs, and mRNAs in the spinal cord fol-
lowing MIRI remain unclear. Thus, it is necessary to analyze
the lncRNAs and circRNAs comprehensively and explore the
role of the lncRNA/circRNAs-miRNA-mRNA network in
MIRI.

In this study, we first investigated whether cardiac sym-
pathetic denervation induced by 6-OHDA alleviates MIRI.
Next, we performed high-throughput sequencing on the spi-
nal cord tissues for the first time to describe and analyze the
expression profiles of ncRNAs, including lncRNA and cir-
cRNA. Furthermore, we performed Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis of differentially expressed lncRNAs and circRNAs.
We also constructed lncRNA/circRNA-miRNA-mRNA net-
works to further explore their underlying mechanism and
possible relationships in the preventive effect of cardiac sym-
pathetic denervation induced by 6-OHDA on MIRI.

2. Materials and Methods

2.1. Animals. Adult male Sprague–Dawley rats (weighing
250–300 g) were used, and two animals were placed in each
cage. The animals had free access to food and water and
were housed in a light- and temperature-controlled room.
The experiment started following the approval of the Institu-
tional Animal Care and Use Committee in Tongji Hospital,
Huazhong University of Science and Technology (approval
No. TJ-A0804).

2.2. Groups and Chemical Sympathetic Denervation. The
rats were randomly assigned to the following two groups:
MIRI model (IR) group and sympathetic denervation
(SD)+ IR (SD-IR) group (n= 9 for each group). In the
SD-IR group, intraperitoneal (i.p.) injections of 50mg/kg
6-hydroxydopamine (6-OHDA, Sigma), containing 0.1%
ascorbic acid in the saline solution of 6-OHDA, were admin-
istered for 3 consecutive days [1, 24, 25], whereas MIRI rats
received i.p. injections of the same volume of saline. One
day after the last injection, rats (n=6 for each group) were

deeply anesthetized, and left ventricular tissues were har-
vested for further laboratory study, whereas other rats
received the establishment of MIRI model.

2.3. Establishment of the MIRI Model. The MIRI model was
modified from a previous study [3, 15, 16, 26, 27]. In brief,
after routine disinfection, anesthesia, and tracheal intuba-
tion, surgical thoracotomy was conducted. In both groups
(n= 9 for each group), the left anterior descending coronary
artery (LAD) was ligated 2mm below the left atrial append-
age for 30 minutes and then reperfused for 2 hours. The core
temperature was maintained throughout the protocol. The
rats were monitored to confirm ischemic ST segment eleva-
tion during LAD occlusion by an electrocardiogram. Serum
troponin cTnl of the two groups was measured 2 hours after
reperfusion as an index of myocardial necrosis. Hearts were
harvested for hematoxylin and eosin (H&E) staining and
2,3,5-triphenyl tetrazolium chloride (TTC) staining.

2.4. Determination of Norepinephrine Content. The nor-
epinephrine (NE) content of myocardial tissue from the
left ventricle was measured using a high-performance liq-
uid chromatography (HPLC) method [28–31]. In brief,
cardiac tissue of the left ventricle was weighed (about
100mg) and homogenized in 500μL of precooled methanol/-
water (V:V=2/1). The homogenate mixture was sonicated

Table 1: Primer sequences for reverse transcriptase-quantitative
polymerase chain reaction.

Primer name Primer sequences (5′ to 3′)
LncRNA

NONRATT012797.2-F CTGGGGTGAGAAGGGCTGAC

NONRATT012797.2-R AAGGTGTTTTCCCGGAGGGC

NONRATT029190.2-F ACTGGGGTGGCACTTAGAGG

NONRATT029190.2-R TGTCCACCGTAACATCCCCT

NONRATT000247.2-F CAGGGCCTTGTGCTTGCTA

NONRATT000247.2-R ATGTTTTCCCTCCGCTGCTT

NONRATT004098.2-F ACCTCTTCCCCTCAGCCTACAG

NONRATT004098.2-R TCACTGCCATGAATCACATTCCA

NONRATT025664.2-F ATGCCAACCTTACTATACGTTTCC

NONRATT025664.2-R TGACTCTCCCACCAACTTCAG

mRNA

Ubd-F GGTGAAGCCCAGTGATGAAGAGC

Ubd-R GGGAGGCACAGCAGTCACATTC

Ccl12-F CTGCTCATAGCTGCCGCCATC

Ccl12-R GCCTCCGAATGTGGATCTTCTGC

Cxcl10-F GTTCTCTGCCTCGTGCTGCTG

Cxcl10-R AACATGCGGACAGGATAGACTTGC

LOC100912599-F GCAGTTCAAGCAGCAGCATCAC

LOC100912599-R AACAAGGGACACCATTCACAGAGC

Dpep1-F CATCGCATGTGCCAGCTCTATCC

Dpep1-R GCCACCTTCCACGCCAATCAG

GAPDH-F GACATGCCGCCTGGAGAAAC

GAPDH-R AGCCCAGGATGCCCTTTAGT
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(12000 rpm, 10 minutes, 4°C) and the supernatant was col-
lected, while the remaining pellets were repeatedly treated
twice. Three supernatants were combined and dried, and
then redissolved in 100μL formic acid solution (0.1%). Next,

the following chemicals were added in turn to the superna-
tant (10μL): NEM solution (2.5mM, 80μL), tBBT solution
(1M in DMSO, 10μL), borate buffer (0.2M, pH8.8,
700μL), 5-AIQC solution (200μL), formic acid (10μL).
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Figure 1: Chemical sympathetic denervation attenuates myocardial ischemia–reperfusion injury. (a) Serum NE and (b) serum cTnI
concentrations in rats with IR or SD-IR. (c) Representative images of hematoxylin and eosin staining and Masson trichrome staining of
rat hearts 24 h after IR injury. Scale bar = 100 μm. (d) Representative photographs of TTC-Evan blue staining in hearts subjected to IR
and SD-IR surgery. (e) Quantification of AAR and infarct area vs. AAR in rat hearts in IR group and SD-IR group. Data are expressed
as mean± SEM. ∗∗p < 0:01, ∗∗∗∗ p < 0:0001 vs. IR group. NE: norepinephrine; IR: ischemia reperfusion; AAR: area at risk.
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The solution was sonicated (12000 rpm, 10 minutes, 4°C) and
the supernatant was filtered by a 0.22μm membrane filter
before HPLC analysis. HPLC analyses were conducted on
the 1290-6470 UPLC-MS/MS system (Agilent, USA). Data
preprocessing was performed using Mass Hunter Worksta-
tion software (Agilent, Version B.08.00).

2.5. Myocardial Tissue Staining. Myocardial tissue staining
was performed as described previously [15]. In brief, each
myocardial tissue sample was cut transversely. Hematoxylin
and eosin (H&E) staining was used to observe myocardial
pathology. After deparaffinization, 4-μm-thick sections were
immersed in hematoxylin (cat. no. H9627; Sigma-Aldrich;
Merck KGaA) for 5–7min at room temperature, differenti-
ated in 1% acid alcohol for 2–5 seconds, and stained with
0.5% eosin (cat. no. 71014544; Sinopharm Chemical Reagent
Co., Ltd.) for 2 minutes at room temperature.

After rinsing with distilled water for 30 seconds, the
sections were dehydrated with graded alcohols and cleared
in xylene. Infarct size was assessed by TTC staining 2 hours
after reperfusion. After surgery, the hearts were removed
and frozen for 20 minutes at −20°C, and then transversally
cut into sections with a thickness of 1–2mm. The tissue
sections were incubated for 10 minutes in 2% TTC in dark
conditions at 37°C and then fixed overnight in 10% formal-
dehyde at 4°C. The infarct area was white, while the normal
tissues were red.

Infarct size and area at risk (AAR) in TTC-stained car-
diac sections of the left ventricle were determined as previ-
ously described [32]. Briefly, Pale regions were regarded as
the areas of necrosis (AON). AON and AAR were calculated
as the average percent area per slice from both sides of each
section. Then, they were normalized to slice weight as
follows: weight of total AAR= (weight of slice 1×% AAR
of slice 1) + (weight of slice 2×% AAR of slice 2) + (weight

of slice 3×% AAR of slice 3) + (weight of slice 4×% AAR
of slice4) + (weight of slice 5×% AAR of slice 5). AON
weight was calculated in the same manner.

Finally, infarct size was expressed as the percentage of
the weight of AON to the weight of AAR [33]. If the AAR
was >90%, this animal was excluded.

2.6. RNA Sequencing for lncRNA-circRNA-mRNA. Two
hours after reperfusion, the animals were quickly sacrificed
to limit their suffering. The upper thoracic (T1–T4) spinal
cord segments were immediately cut and frozen with liquid
nitrogen and sent to Oebiotech Corporation (Shanghai,
China) for RNA sequencing. The extraction of total RNA
from T1–T4 spinal tissues was conducted by using the mir-
Vana™ PARIS™ Kit (Ambion-1556, USA) in accordance
with the user manual. We assessed total RNA integrity using
Agilent Bioanalyzer 2100 (Agilent Technologies). The spinal
samples from the two groups were selected for microarray
analysis. We used the Affymetrix® GeneChip® Whole Tran-
script Expression Arrays to analyze lncRNA and mRNA
expression profiles, and we applied Agilent circRNA Micro-
array 8x60K to analyze circRNA expression profiles in the
T1–T4 spinal cord segments [34]. Microarray data were
obtained and analyzed by Oebiotech Corporation (Shanghai,
China). The RNA-sequencing results were used to prioritize
the heart-related spinal genes.

2.7. Identifying Differentially Expressed Genes and Gene
Ontology (GO) Analysis. The differentially expressed
mRNAs, lncRNAs, and circRNAs from the RNA-seq data
were identified by using the edgeR algorithm. The mRNAs,
lncRNAs, and circRNAs were deemed differentially
expressed if they showed a false-discovery rate (FDR)< 5%
and fold change (FC)> 2. The molecular functions, cellular
components, and biological processes of differentially
expressed lncRNAs and circRNAs were described by using
GO analysis (http://www.geneontology.org).

2.8. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Analysis. The gene set scores were calculated by
using the FAIME algorithm based on the rank-weighted
gene expression levels of individual samples (from the
T1–T4 segments of the spinal cord), which converts each
sample’s transcriptomic profile to molecular mechanisms.
KEGG analysis was applied to determine the biologic path-
way roles of these differentially expressed lncRNAs and cir-
cRNAs based on the latest KEGG data (http://www.genome
.jp/kegg/). Student’s t test was used to identify the differen-
tially expressed KEGG pathways between IR and SD-IR sam-
ples. The KEGG pathways with adjusted p< 0.05 by
Benjamini–Hochberg procedure were considered differen-
tially expressed.

2.9. RT-qPCR Analysis for the Upper Thoracic Spinal Cord.
The total RNA extracted from the T1–T4 segments of
the spinal cord using the TRIzol® reagent (Invitrogen;
Thermo Fisher Scientific, Inc.) in line with the manufac-
turer’s instructions was used for the generation of cDNA.
The primers were designed using the Primer Express 3.0
software (Applied Biosystems; Thermo Fisher Scientific,
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Figure 2: Differentially expressed RNAs. Through high-
throughput RNA sequencing, we found that 148 mRNAs were
upregulated and 51 mRNAs were downregulated; 165 lncRNAs
were upregulated and 168 lncRNAs were downregulated; 70
circRNAs were upregulated and 52 circRNAs downregulated; and
12 miRNAs were upregulated and 11 miRNAs were downregulated.

4 Oxidative Medicine and Cellular Longevity

http://www.geneontology.org
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/


Chromosomes

N
um

be
r

Type
circRNA
lncRNA

0

1000

2000

3000

Ch
r1

Ch
r2

Ch
r3

Ch
r4

Ch
r5

Ch
r6

Ch
r7

Ch
r8

Ch
r9

Ch
r1

0

Ch
r1

1

Ch
r1

2

Ch
r1

3

Ch
r1

4

Ch
r1

5

Ch
r1

6

Ch
r1

7

Ch
r1

8

Ch
r1

9

Ch
r2

0

Ch
rX

Ch
rY

Ch
rM

T

(a)

Figure 3: Continued.

5Oxidative Medicine and Cellular Longevity



Chr10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

Chr2

0
20

40
60

80
100

120

140
160

180

200

220
240

260

Chr3

0
20
40
60
80
100
120
140
160

Ch
r4

0
20
40
60
80

100
120

140
160

180

Chr
5

0
20

40
60

80
100120140160

Chr6

0
20406080100120140

Chr7

020406080100120
140

Chr8

02040068010
0

12
0

Chr9

02040608010
012

0Chr10

020
40

60
8010

0

Chr11 020
40

60
80

Chr12 0
20

40

Chr13

0
20

40
60

80
100

Chr14

0
20

40
60
80

100

Ch
r1

5

0
20
40
60
80
100

Ch
r1

6

0
20
40

60
80

Chr
17

0
20

40
60

80

Chr18

0
20

40

60
80

Chr19

0
20

40
60

Chr20

0
20

40

X

0
20

40
60

80
100

120
140

YMT

0 0

(b)
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Inc.); the specific forward and reverse primer sequences are
listed in Table 1. RNA samples were quantified using a spec-
trophotometer (BioPhotometer; Eppendorf AG) and then
synthesized to cDNA by reverse transcription using the
PrimeScript™ RT reagent kit (Takara Bio, Inc.). The temper-
ature protocol was conducted using the following protocol:
15 minutes at 37°C, 5 seconds at 85°C, and held at 4°C. cDNA
was quantitated via RT-qPCR using a TB green® Premix Ex
Taq (cat. no. RR420A; Takara Bio, Inc.). The thermocycling
conditions for PCR were as follows: Initial denaturation for
30 seconds at 95°C, followed by 40 cycles of 15 seconds at
95°C, 15 seconds at 60°C, and 45 seconds at 72°C. The thresh-
old cycle (Cq) was used to estimate the amount of target
mRNA. The comparative Cq method with a formula for
relative FC (2-ΔΔCq) was used to quantify the amplified tran-
scripts. The relative gene expression levels were determined
via normalization to GAPDH. Experiments were evaluated
in triplicate and repeated ≥3 times.

2.10. Construction of lncRNA/circRNA-miRNA-mRNA
Network. The TargetScan (Release 7.2) and Miranda (ver-
sion 0.10.80) software were used to predict the relationship
among lncRNA/circRNA, miRNAs, and mRNAs through

base pairing. These predicted results were integrated to build
the potential lncRNA/circRNA-miRNA-mRNA network.
The Cytoscape software (version 3.7.2) was used to visualize
the above data so as to explore the role of lncRNA/circRNA-
miRNA-mRNA ceRNA network in the pathogenesis of
MIRI after cardiac sympathetic denervation.

2.11. Computational Prediction of Protein–Protein
Interaction (PPI) Analysis. The STRING database (ver.
10.5; https://string-db.org/) is an online database tool for
searching known or predicted information on PPIs. The
minimum PPI interaction score was set at 0.900 (highest
confidence), and the wide disconnected node in the network
was observed to obtain a complex PPI network of differen-
tially expressed mRNAs. The Cytoscape software (version
3.7.2) was used to visualize the PPI network, and Cytohubba
(a plug-in of Cytoscape) was used to identify the most rele-
vant nodes by setting the degree. The PPI analysis was lim-
ited to an interaction threshold of 0.4 (medium confidence).

2.12. Statistical Analysis. Data were presented as the mean
± SEM and were analyzed using GraphPad Prism software
v5.0 (GraphPad Software, Inc.). Based on Gene Ontology

Type
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Figure 3: Comparison of the characteristics of lncRNAs, circRNAs, and mRNAs expression profiles in IR group and SD-IR group. (a) The
distribution of lncRNAs and circRNAs on chromosomes. (b) LncRNAs and mRNAs on chromosomes. (c, d) Classification of lncRNAs and
circRNAs.
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Figure 4: Differential expression patterns of lncRNAs, circRNAs, and mRNAs. (a) The specific lncRNAs, circRNAs, and mRNAs shared
between IR group and SD-IR group. (b) The volcano plot of lncRNAs, circRNAs, and mRNAs expression. Red color is indicative of
upregulated and blue color is indicative of downregulated genes, where p< 0.05 and |FC|> 2 are considered statistically significant; grey
color is indicative of nonsignificantly different genes. (c) The hierarchical heat map shows the deregulated lncRNAs, circRNAs, and
mRNAs in the T1–T4 spinal cord segments between IR group and SD-IR group; up- and downregulated genes are colored in red and
green, respectively (p< 0.05 and log2|FC|> 1).
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Biological Process (GOBP) definition, Fisher’s exact test was
applied to determine whether the proportion of differentially
expressed genes in a given GOBP gene set was significantly
enhanced. RT-qPCR parameters were analyzed using the
unpaired t test for repeated measures, with P value less than
0.05 was considered statistically significant.

3. Results

3.1. Chemical Sympathectomy-Induced Cardiac Alterations.
The level of NE in the cardiac tissues of the SD-IR group
(n=6, 0.1650± 0.1057 ng/mg) was significantly lower com-
pared with that in the IR group (n= 6, 2.687± 0.1349 ng/mg)
(Figure 1(a)).

3.2. Characteristics of Myocardial Ischemic Tissue. In the two
groups, we observed the development of ST-segment eleva-
tion and QRS complex changes on an electrocardiogram;
moreover, there was a cyanotic change in the myocardium

of the occluded area 30 minutes after cardiac ischemia.
Serum cardiac troponin cTnI (0.73± 0.26μg/L) in the SD-
IR group was significantly lower than that in the IR group
(15.14± 2.44μg/L) 2 hours after reperfusion (Figure 1(b)).
These results verified the successful occlusion of the LAD.

In the IR group, a structural disorder of the cardiac tissue
was observed, with different degrees of vacuolar degenera-
tion and necrosis, as well as loose stroma (Figure 1(c)).
Moreover, the number of cardiomyocyte fibers was mark-
edly increased after IR. In the SD-IR group, myocardium
showed a better architecture, and the myocardial fibers and
myocardial cells were relatively intact and arranged in an
orderly manner (Figure 1(c)).

The results from TTC staining clearly exhibited a
reduced myocardial infarction—indicated by the pale color
region in the transverse section of heart—in the IR group
(Figure 1(d)). To ensure that the difference in the infarct size
was not caused by different myocardium injuries, we mea-
sured the area at risk (AAR) and found no difference

Table 2: The detail information of the top 30 up-regulated mRNAs in the T1-4 spinal cord between SD-IR group and IR group.

Gene ID log2FC (SD-IR/IR) Pvalue Description

LOC102553010 4.40 0.021887 Leukocyte elastase inhibitor A-like

RGD1359290 4.10 0.019123 Ribosomal_L22 domain containing protein RGD1359290

LOC108348083 3.91 0.014045 Delta-1-pyrroline-5-carboxylate synthase

RGD1305184 3.83 0.011827 Similar to CDNA sequence BC023105

Gns 3.81 0.012511 Glucosamine (N-acetyl)-6-sulfatase

Prf1 3.57 0.003838 Perforin 1

LOC100911034 3.47 0.020641 Cysteine desulfurase, mitochondrial-like

Ubd 2.99 0.024065 Ubiquitin D

Mcpt9 2.96 0.016414 Mast cell protease 9

LOC100910446 2.95 0.039393 Syntaxin-7-like

Sctr 2.94 0.009767 Secretin receptor

Ccl12 2.92 0.000115 Chemokine (C-C motif) ligand 12

Cxcl10 2.89 0.011969 C-X-C motif chemokine ligand 10

Ngp 2.81 0.000296 Neutrophilic granule protein

Rhag 2.78 0.001015 Rh-associated glycoprotein

Cxcl11 2.74 0.020485 C-X-C motif chemokine ligand 11

Car1 2.64 2.06E-05 Carbonic anhydrase I

Padi3 2.50 0.02082 Peptidyl arginine deiminase 3

S100a5 2.43 0.031729 S100 calcium binding protein A5

Unc45b 2.19 0.016491 Unc-45 myosin chaperone B

Cd5l 2.10 0.034827 Cd5 molecule-like

Ermap 2.03 0.010957 Erythroblast membrane-associated protein

Capn13 1.94 0.046362 Calpain 13

Clec5a 1.87 3.08E-05 C-type lectin domain family 5, member A

Gbp1 1.84 0.040079 Guanylate binding protein 1

Hemgn 1.77 8.40E-05 Hemogen

Cxcl13 1.76 0.00143 C-X-C motif chemokine ligand 13

Kel 1.76 0.00334 Kell blood group, metallo-endopeptidase

LOC680322 1.75 0.028182 Similar to histone H2A type 1

Ms4a3 1.75 0.003821 Membrane spanning 4-domains A3

jlog 2FCj > 1; p < 0.05 by analysis of variance.
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between the two groups (Figure 1(e)). TTC staining showed
a significant reduction in infarct size in the SD-IR group
(9.26± 0.16%, n=6) compared with the IR group (15.05
± 0.70%, n=6) (Figure 1(e)).

3.3. Differential Expression of lncRNAs, circRNAs, miRNA,
and mRNAs. To fully understand the role of cardiac sympa-
thetic denervation in myocardial ischemia/reperfusion
injury, we simultaneously analyzed the profiles of differential
expression of lncRNAs, circRNAs, miRNAs, and mRNAs
through microarray analysis. Significant difference was
defined as fold change ≥2 and p< 0.05. In this study, the
SD-IR group identified 333 lncRNAs, 122 circRNAs, 23
miRNAs, and 199 mRNAs with significant differential
expression (Figure 2). Through high-throughput RNA
sequencing, we found that 165 lncRNAs were upregulated
and 168 lncRNAs were downregulated; 70 circRNAs were

upregulated and 52 circRNAs were downregulated; 12 miR-
NAs were upregulated and 11 miRNAs were downregulated;
and 148 mRNAs were upregulated and 51 mRNAs were
downregulated (Figure 2).

A total of 23711 lncRNAs and 12007 circRNAs
(Figures 3(a) and 3(b)) were identified in all chromosomes.
Among lncRNAs, most (51.1%) were sense_genic_exonic
lncRNA, followed by sense_genic_intronic lncRNAs (9.8%),
sense_intergenic_downstream lncRNAs (8.5%), sense_inter-
genic_upstream lncRNAs (5.3%), antisense_genic_exonic
lncRNA (6.8%), antisense_genic_intronic lncRNAs (6.6%),
antisense_intergenic_downstream lncRNAs (4.8%), and anti-
sense_intergenic_upstream lncRNAs (7.1%) (Figure 3(c)). In
circRNA, the vast majority (94.4%) were sense_genic_exonic
circRNA, followed by sense_genic_intronic circRNAs (1%),
sense_intergenic_downstream circRNAs (0.8%), sense_inter-
genic_upstream circRNAs (1%), antisense_genic_exonic

Table 3: The detail information of the top 30 down-regulated mRNAs in the T1-4 spinal cord between SD-IR group and IR group.

Gene ID
log2FC

(SD-IR/IR)
Pvalue Description

LOC100912599 -5.31 0.010395 NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial-like

LOC100911994 -3.89 0.01095 Coiled-coil domain-containing protein 132-like

Clcn2 -3.51 0.029527 Chloride channel, voltage-sensitive 2

LOC100910308 -3.47 7.97E-05 Multifunctional protein ADE2-like

LOC100910207 -3.12 0.018014 Protein Dr1-like

Vwa5a -2.62 0.02532 von Willebrand factor A domain containing 5A

Dpep1 -2.53 0.015698 Dipeptidase 1 (renal)

NEWGENE_1582994 -2.45 0.02675 DCN1, defective in cullin neddylation 1, domain containing 2

LOC103689986 -2.41 1.64E-06 Protein YIF1B

Iqcf3 -2.40 0.036362 IQ motif containing F3

Ahsg -2.32 0.021173 Alpha-2-HS-glycoprotein

Hpgd -2.01 0.008083 Hydroxyprostaglandin dehydrogenase 15 (NAD)

RGD1561778 -1.94 0.016898 Similar to dendritic cell-derived immunoglobulin(Ig)-like receptor 1, DIgR1 - mouse

LOC297568 -1.88 0.032025 Alpha-1-inhibitor III

Rlim -1.78 0.042544 Ring finger protein, LIM domain interacting

Slc39a12 -1.65 0.017633 Solute carrier family 39 member 12

LOC100911865 -1.62 1.20E-02 TBC1 domain family member 12-like

Myo18b -1.61 0.003815 Myosin XVIIIb

Tspan10 -1.59 0.012324 Tetraspanin 10

Sds -1.57 0.025502 Serine dehydratase

Trim63 -1.39 0.010581 Tripartite motif containing 63

LOC102550588 -1.38 0.030436 Zinc finger protein 709-like

Sh2d4b -1.37 2.44E-05 SH2 domain containing 4B

Hif3a -1.35 0.002856 Hypoxia inducible factor 3, alpha subunit

Galnt15 -1.30 0.01374 Polypeptide N-acetylgalactosaminyltransferase 15

LOC687780 -1.30 0.029663 Similar to Finkel-Biskis-Reilly murine sarcoma virusubiquitously expressed

Trpv4 -1.29 0.015774 Transient receptor potential cation channel, subfamily V, member 4

Mt1 -1.18 0.033903 Metallothionein 1

Fbxw10 -1.11 0.016073 F-box and WD repeat domain containing 10

Dcst1 -1.10 0.024549 DC-STAMP domain containing 1

jlog 2FCj > 1; p < 0.05 by analysis of variance.
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circRNA (0.7%), antisense_genic_intronic circRNAs (0.2%),
antisense_intergenic_downstream circRNAs (0.4%), and anti-
sense_intergenic_upstream circRNAs (1.5%) (Figure 3(d)).

3.4. Differential Expression Patterns of mRNAs, lncRNAs,
and circRNAs in MIRI. The expression patterns of mRNAs,
lncRNAs, and circRNAs in the T1–T4 spinal cord 2 hours
after MIRI were examined using microarray. From the vol-
cano map and hierarchical clustering analysis results
between the SD-IR group and the IR group, a landscape of
the expression characteristics of the mRNAs, lncRNAs, and
circRNAs was obtained (Figure 4(a)). The volcano plots dem-
onstrated that large numbers of mRNAs, lncRNAs, and cir-
cRNAs were differentially expressed between the two groups
(Figure 4(b)). Furthermore, these differential alterations of
mRNA, lncRNA, and circRNA expression in the T1–T4 spinal
cord were associated with cardiac sympathetic denervation.

The hierarchical heat map showed the deregulated mRNAs,
lncRNAs, and circRNAs in the T1–T4 spinal cord segments
between the SD-IR group and the IR group (Figure 4(c));
up- and downregulated genes are colored in red and green,
respectively (p<0.05 and log2|FC|>1).

3.5. Analysis of mRNAs, lncRNAs, circRNAs, and miRNAs
Changes in the Spinal Cord after Cardiac Sympathetic
Denervation. Among the differentially expressed mRNAs,
there were 199 genes exhibiting fold change (FC) higher than
1. The number of downregulated mRNAs was 51, whereas
the number of upregulated mRNAs was 148. The most
upregulated mRNAs were Fxyd2, Tyrp1, Il31ra, RT1-CE4,
Scn11a, MGC108823, Tnc, Irf8, and MGC105567. The most
downregulated mRNAs were LOC100911256, Cyp4b1,
LOC103689986, LOC103693165, Sh2d4b, LOC100910308,
Nfs1, Prex2, LOC103691806, and Hif3a. The detailed

Table 4: The detail information of the top 30 up-regulated lncRNAs and top 30 down-regulated lncRNAs in the T1-4 spinal cord between
SD-IR group and IR group.

Upregulation Downregulation
LncRNA ID log2FC (SD-IR/IR) Pvalue LncRNA ID log2FC (SD-IR/IR) Pvalue

NONRATT015643.2 6.61 0.030213 NONRATT002082.2 -8.80 0.003863

NONRATT003628.2 6.28 0.006736 NONRATT004821.2 -8.62 0.025764

NONRATT005973.2 6.21 0.009866 NONRATT010722.2 -7.18 0.000854

NONRATT016279.2 6.00 0.004952 NONRATT000247.2 -5.80 0.00261

NONRATT008379.2 5.61 0.014618 NONRATT027814.2 -5.77 0.012322

NONRATT013717.2 5.58 0.036523 NONRATT008629.2 -5.75 0.017423

NONRATT016674.2 5.56 0.047236 NONRATT005321.2 -5.65 0.002079

NONRATT017458.2 5.44 0.008762 NONRATT028463.2 -5.59 0.000887

NONRATT002859.2 5.27 0.016794 TCONS_00021543 -5.51 0.006752

NONRATT009760.2 5.22 0.028265 NONRATT004098.2 -5.28 0.011345

TCONS_00002734 5.09 0.011358 NONRATT007713.2 -5.20 3.10E-05

NONRATT011768.2 4.95 0.01038 NONRATT004090.2 -5.07 0.010222

NONRATT009811.2 4.73 0.000946 NONRATT018759.2 -5.06 0.001982

NONRATT026200.2 4.54 0.004819 NONRATT003447.2 -5.03 0.010344

NONRATT030638.2 4.44 0.025926 NONRATT007815.2 -5.02 0.039319

NONRATT008615.2 4.37 0.001033 NONRATT025664.2 -4.82 5.13E-05

NONRATT012797.2 4.35 0.023183 NONRATT019695.2 -4.69 0.008267

NONRATT020189.2 4.33 0.011361 NONRATT006541.2 -4.66 3.19E-11

NONRATT020809.2 4.27 0.02875 NONRATT019538.2 -4.60 0.013069

NONRATT029190.2 4.25 0.001325 NONRATT026641.2 -4.54 0.01747

NONRATT022867.2 4.24 0.031209 NONRATT024737.2 -4.38 0.010641

NONRATT000517.2 4.24 0.031431 TCONS_00013588 -4.30 6.80E-06

NONRATT003681.2 4.18 0.012182 NONRATT020675.2 -4.21 0.010623

NONRATT021791.2 4.16 0.009107 NONRATT010709.2 -4.20 0.043975

NONRATT023302.2 4.14 0.038514 NONRATT022516.2 -4.14 0.048093

NONRATT003838.2 4.12 0.043331 NONRATT020315.2 -4.13 0.01375

NONRATT018320.2 4.10 0.005454 TCONS_00002731 -4.02 0.028687

NONRATT013257.2 3.87 0.043965 NONRATT006149.2 -3.89 0.003669

NONRATT000472.2 3.79 0.048619 NONRATT011296.2 -3.87 0.033214

NONRATT005188.2 3.76 0.019322 TCONS_00007997 -3.75 0.001282

jlog 2FCj > 1; p < 0.05 by analysis of variance.
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Table 5: The detail information of the top 20 up-regulated circRNAs in the T1-4 spinal cord between SD-IR group and IR group.

CircRNA ID log2FC (SD-IR/IR) Pvalue

circRNA_06761|Chr3:13146571_13147147_- 3.91 0.000446

circRNA_03748|Chr15:51936366_51954838_- 3.80 0.000648

circRNA_01962|Chr10:103586432_103677527_- 3.27 0.017323

circRNA_11924|Chr9:119105074_119127222_+ 3.16 0.019308

circRNA_01988|Chr10:109580083_109583063_- 3.16 0.01944

circRNA_04213|Chr16:81879800_81897683_- 3.10 0.027871

circRNA_05436|Chr2:5570780_5576549_- 3.08 0.047573

circRNA_09388|Chr6:38617368_38619590_+ 3.06 0.03965

circRNA_04650|Chr17:86845723_86873000_- 2.89 0.013496

circRNA_02217|Chr11:70539679_70570814_- 2.74 0.026695

circRNA_06237|Chr2:218919131_218929338_- 2.69 0.040249

circRNA_11356|Chr8:128384378_128391077_- 2.61 0.04823

circRNA_08473|Chr5:50318351_50319000_- 2.60 0.036427

circRNA_02159|Chr11:47165426_47169764_+ 2.56 0.001643

circRNA_05629|Chr2:45801786_45859187_+ 2.41 0.033552

circRNA_09485|Chr6:60609626_60633969_+ 2.26 0.009238

circRNA_06869|Chr3:33465220_33473531_+ 2.22 0.023101

circRNA_00547|Chr1:143712491_143723739_- 2.19 0.006884

circRNA_08772|Chr5:123824724_123825786_+ 2.15 0.005133

circRNA_01552|Chr10:55283300_55338553_+ 2.06 0.028481

jlog 2FCj > 1; p < 0.05 by analysis of variance.

Table 6: The detail information of the top 20 down-regulated circRNAs in the T1-4 spinal cord between SD-IR group and IR group.

CircRNA ID log2FC (SD-IR/IR) Pvalue

circRNA_06863|Chr3:29584278_29597359_- -3.41 0.004976

circRNA_11934|Chr9:119750465_119765191_- -3.34 0.007029

circRNA_02911|Chr13:92762599_92783433_+ -3.28 0.009623

circRNA_04274|Chr17:5524117_5571375_+ -3.25 0.013595

circRNA_04457|Chr17:53489461_53499989_+ -3.20 0.013695

circRNA_11984|ChrX:13905156_13917538_+ -2.97 0.035854

circRNA_08837|Chr5:129413066_129491380_+ -2.89 0.048702

circRNA_03573|Chr15:13454469_13468631_- -2.26 0.019466

circRNA_07224|Chr3:113195876_113197193_- -2.26 0.016518

circRNA_07819|Chr4:64451679_64474930_- -2.24 0.021549

circRNA_04050|Chr16:23555919_23573530_+ -2.12 0.00851

circRNA_09970|Chr7:9826042_9826424_- -1.97 0.035185

circRNA_11137|Chr8:96067918_96073130_- -1.61 0.040373

circRNA_07862|Chr4:66193731_66214585_+ -1.57 0.049364

circRNA_07510|Chr3:175512077_175535023_+ -1.57 0.038954

circRNA_11420|Chr9:8350080_8421978_+ -1.53 0.007153

circRNA_03499|Chr14:113838631_113857380_+ -1.40 0.04037

circRNA_09492|Chr6:64852693_64861750_+ -1.32 0.035057

circRNA_02339|Chr12:587083_591296_- -1.19 0.014725

circRNA_04622|Chr17:84855705_84901793_+ -1.03 0.038253

jlog 2FCj > 1; p < 0.05 by analysis of variance.
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information regarding the differentially expressed mRNAs is
listed in Tables 2 and 3.

The results showed that 333 lncRNAs, including 165
upregulated and 168 downregulated lncRNAs, were signifi-
cantly altered in the SD-IR group compared with the IR
group. The most upregulated lncRNAs were NON-
RATT003225.2, TCONS_00000042, NONRATT013473.2,
NONRATT011603.2, NONRATT018299.2, NONRATT-
001917.2, NONRATT017719.2, NONRATT004831.2,
TCONS_00008547, and NONRATT025548.2. The most
downregulated lncRNAs were NONRATT003165.2, NON-
RATT006541.2, NONRATT031746.1, TCONS_00013588,
TCONS_00009293, NONRATT007713.2, NONRATT-
016595.2, NONRATT011191.2, NONRATT025664.2, and
NONRATT010240.2. Additional information regarding the
differentially expressed lncRNAs is presented in Table 4.

Compared with the IR group, the SD-IR group showed
70 upregulated and 52 downregulated circRNAs. The most
upregulated circRNAs were circRNA_00336, circRNA_
00446, circRNA_00547, circRNA_01552, circRNA_01962,
circRNA_01988, circRNA_02159, circRNA_02217, cir-
cRNA_03207, and circRNA_03748. The most downregu-
lated circRNAs were circRNA_02339, circRNA_02911,
circRNA_03499, circRNA_03573, circRNA_04050, cir-
cRNA_04274, circRNA_04457, circRNA_04622, circRNA_
06863, and circRNA_07224. Additional information regard-
ing the differentially expressed circRNAs is presented in
Tables 5 and 6.

Among the differentially expressed miRNAs, there
were 12 upregulated and 11 downregulated miRNAs in

the SD-IR group compared with the IR group. The upreg-
ulated miRNAs were rno-miR-293-5p, rno-miR-183-5p,
rno-miR-96-5p, rno-miR-493-5p, novel248_mature, rno-
miR-363-3p, novel21_star, rno-miR-146a-3p, novel98_
mature, rno-miR-3553, novel438_mature, and novel174_
mature>novel176_mature>novel705_mature. The downreg-
ulated miRNAs were novel586_mature, novel88_mature,
novel342_mature, rno-miR-206-3p, novel190_mature, rno-
miR-1-3p, novel655_mature, novel62_mature, rno-miR-7a-
2-3p, novel252_mature, and novel275_mature>novel301_
mature. Additional information regarding the differentially
expressed miRNAs is shown in Table 7.

3.6. GO and KEGG Analysis of Differentially Expressed
mRNAs, lncRNAs, circRNAs, and miRNAs. To investigate
the spinal molecular mechanisms of cardiac sympathetic
denervation on MIRI, we performed GO and KEGG path-
way analyses of the differentially expressed mRNAs
(DEM), lncRNAs (DEL), circRNAs (DEC), and miRNAs in
SD-MIRI vs. IR group (Tables 8 and 9).

Based on GO analysis, DEL focusing on cell components
were related to the Golgi cisterna, membrane, axon, cyto-
plasm, and cytoplasmic microtubules, while those focusing
on molecular function (MF) were related to translation initi-
ation factor activity, protein tyrosine kinase binding, myosin
binding, and SNAP receptor activity (Figure 5(a)). The GO
function prediction showed that DEC focusing on cell com-
ponents were related to the VCP-NPL4-UFD1 AAA ATPase
complex, nuclear chromosome telomeric region, and actin
cytoskeleton, whereas those focusing on molecular functions

Table 7: The detail information of differentially expressed miRNAs in the T1-4 spinal cord between SD-IR group and IR group.

miRNA_ID log2FC (SD-IR/IR) Pvalue Length

Upregulation

novel21_star 3.695484 0.021677 23

Rno-miR-293-5p 2.798924 0.000538 21

novel98_mature 2.479701 0.03268 23

novel174_mature>novel176_mature>novel705_mature 2.236875 0.046924 22

Rno-miR-146a-3p 2.118125 0.026213 21

Rno-miR-96-5p 0.903083 0.005817 23

Rno-miR-183-5p 0.614791 0.003377 22

Rno-miR-493-5p 0.60771 0.007994 22

Rno-miR-363-3p 0.60157 0.019368 21

Rno-miR-3553 0.600458 0.03527 23

Downregulation

novel190_mature -3.63316 0.016898 23

novel275_mature>novel301_mature -3.4838 0.045199 24

novel586_mature -3.41968 0.000414 23

novel88_mature -2.24793 0.005616 23

novel252_mature -1.81632 0.044256 23

novel62_mature -1.46827 0.03968 24

Rno-miR-206-3p -1.07274 0.014845 22

Rno-miR-1-3p -0.86313 0.029666 22

Rno-miR-7a-2-3p -0.67697 0.040237 22

jlog 2FCj > 1; p < 0.05 by analysis of variance.
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(MF) were related to retinoic acid-responsive element bind-
ing, ubiquitin binding, ATPase activity, and sequence-
specific DNA activity (Figure 5(b)).

KEGG analysis revealed the potential mechanism of DEL
and DEC in the SD-IR group (Figures 5(c) and 5(d)). Namely,
DEL are involved in the regulation of dilated cardiomyopathy
(DCM), hypertrophic cardiomyopathy (HCM), insulin signal-
ing pathway, and mTOR signaling pathway (Figure 5(c)). The
parent gene of DEC might take part in MAPK signaling path-
way, cGMP-PKG signaling pathway, protein processing in
endoplasmic reticulum, and adrenergic signaling in cardio-
myocytes (Figure 5(d)).

3.7. Verification of Differentially Dysregulated mRNAs and
lncRNAs. We focused on the differentially dysregulated
mRNAs and lncRNAs with more significant changes.

Compared with the IR group, the lncRNAs selected in
the SD-IR group, including NONRATT012797.2 and NON-
RATT029190.2, were significantly overexpressed and con-
sistent with the RNA-sequencing results (Figures 6(a)
and 6(c)). The lncRNAs selected in the SD-IR group, includ-
ing NONRATT000247.2, NONRATT004098.2 and NON-
RATT025664.2, were significantly downregulated compared
with the control group and were consistent with the RNA-
sequencing results (Figures 6(a) and 6(c)).

For further research, we selected three upregulated
mRNAs (Ubd, Ccl12, Cxcl10) and two downregulated
mRNAs (LOC100912599, Dpep1) (Figures 6(b) and 6(c))
in the SD-IR group for RT-qPCR verification, p value
<0.05, fold change ≥2. The primers of mRNAs and lncRNAs
are listed in Table 1. Therefore, these results proved the
accuracy of the microarray results.

Table 8: The Gene Ontology (GO) terms enriched for the differentially expressed genes.

GO ID Term Gene number Pvalue

biological_process

GO:0035458 Cellular response to interferon-beta 12 1.80E-18

GO:0006952 Defense response 11 2.39E-14

GO:0071346 Cellular response to interferon-gamma 9 2.22E-08

GO:0071222 Cellular response to lipopolysaccharide 11 2.09E-07

GO:0050832 Defense response to fungus 4 8.84E-07

GO:0070098 Chemokine-mediated signaling pathway 6 9.17E-07

GO:0031640 Killing of cells of other organism 4 2.35E-06

GO:0032496 Response to lipopolysaccharide 12 2.41E-06

GO:0042742 Defense response to bacterium 8 2.62E-06

GO:0019731 Antibacterial humoral response 4 3.59E-06

cellular_component

GO:0005615 Extracellular space 34 8.43E-09

GO:0005623 Cell 6 4.24E-05

GO:0030863 Cortical cytoskeleton 3 0.00016

GO:0031012 Extracellular matrix 8 0.000245

GO:0000786 Nucleosome 4 0.000876

GO:0009897 External side of plasma membrane 8 0.001475

GO:0005578 Proteinaceous extracellular matrix 7 0.001944

GO:0005576 Extracellular region 13 0.003785

GO:0030018 Z disc 4 0.006991

GO:0030141 Secretory granule 4 0.010644

molecular_function

GO:0048248 CXCR3 chemokine receptor binding 3 3.51E-08

GO:0005525 GTP binding 15 2.48E-07

GO:0003924 GTPase activity 13 3.24E-07

GO:0008009 Chemokine activity 5 1.05E-06

GO:0045236 CXCR chemokine receptor binding 3 3.30E-06

GO:0042288 MHC class I protein binding 3 6.49E-05

GO:0003779 Actin binding 9 9.09E-05

GO:0005506 Iron ion binding 7 0.00032

GO:0004867 Serine-type endopeptidase inhibitor activity 5 0.000333

GO:0051879 Hsp90 protein binding 3 0.000451
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3.8. Construction of the mRNA-miRNA-lncRNA/circRNA
Network. CircRNA participates in the regulation of biologi-
cal processes in different ways. It is well known that circRNA
contains multiple binding sites of miRNA and is also regu-
lated by miRNA. Analysis of circRNA-miRNA interaction
may clarify the function and mechanism of circRNA.

As shown in Figure 7(a), the network involves 30
lncRNAs, 35 mRNAs, and 13 miRNAs. At the same time,
a circRNA-miRNA-mRNA ceRNA network was constructed
(Figure 7(b)), involving 26 circRNAs, 44mRNAs, and 16miR-
NAs. Each differentially expressed lncRNA can be associated
with one or more miRNAs. For example, lncRNA NON-
RATT016892.2 has established connections with two miR-
NAs, including rno-miR-1-3p and rno-miR-206-3p. miR-
1187 is connected with four circRNAs, including circRNA_
02339/Chr12:587083_591296, circRNA_07789/Chr4:5866-
1995_58669806, circRNA_04050/Chr16:23555919_23573530,
and circRNA_07510/Chr3:175512077_175535023. Finally, cir-
cRNA_01445/Chr10:37180938_37185721 has only established
a connection with miR-438 (Figure 7(b)).

The two networks have multiple common nodes
(Figure 7(c)), such as lncRNA NONRATT024121.2, lncRNA
NONRATT022775.2, lncRNA NONRATT022692.2, lncRNA
NONRATT011191.2, and lncRNA NONRATT017402.2,
which all interact with miR-493-5p.

3.9. PPI Network and Functional Analysis of the
Differentially Expressed mRNAs. To further address the most
significant clusters of differentially expressed mRNAs in the
ceRNA network, we conducted the PPI network analysis by
using the STRING database version 11.0 and visualization
under the Cytohubba plug-in and the Cytoscape. The most

significant hub upregulated genes in the PPI network were
Cxcl10, Cxcl11, Mmp9, Gbp2, Gbp5, Irgm, Mpa21, and
Igf1, while the most significant hub downregulated genes
were Ahsg, Trim63, and Trpv4 (Figure 8(a)).

To clarify the role of differential genes in the preven-
tive effect of cardiac sympathetic denervation on MIRI,
we performed GO and KEGG analyses on the differentially
expressed mRNAs. The results suggested that the molecu-
lar functions (MF) are mainly enriched in the CXCR3 che-
mokine receptor binding, MHC class I protein binding,
GTP binding, GTPase activity, and chemokine activity
(Figure 8(b)). In the cell components (CC), functions are
highly enriched in autophagy-related processes, which are
related to the cortical cytoskeleton, nucleosomes, secretory
granules. KEGG analysis showed that the differentially
expressed mRNAs were involved in cytokine–cytokine
receptor interaction, NOD-like receptor signaling pathway,
chemokine signaling pathway, and inflammatory mediator
regulation of TRP channels (Figure 8(c)). These results
showed that most of the hub genes play a role in the pre-
ventive effect of cardiac sympathetic denervation on MIRI.

4. Discussion

This study provides novel information on the vital role of
cardiac sympathetic denervation in the process of myocar-
dial ischemia/reperfusion injury. Our main findings are as
follows: (1) Cardiac sympathetic denervation induced by 6-
OHDA alleviated myocardial ischemia/reperfusion injury.
(2) The expression profiles of lncRNA, circRNA, and mRNA
in the upper thoracic spinal cord were identified by RNA-seq
analysis. Among them, there were 148 upregulated and 51

Table 9: The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for the differentially expressed genes.

Pathway ID Term Gene number Pvalue

rno04960 Aldosterone-regulated sodium reabsorption 4 2.24E-05

rno04978 Mineral absorption 4 4.64E-05

rno05322 Systemic lupus erythematosus 5 0.000233

rno04614 Renin-angiotensin system 3 0.000307

rno04060 Cytokine-cytokine receptor interaction 8 0.00035

rno05145 Toxoplasmosis 5 0.000464

rno04621 NOD-like receptor signaling pathway 6 0.000495

rno04657 IL-17 signaling pathway 4 0.001424

rno05144 Malaria 3 0.00156

rno04972 Pancreatic secretion 4 0.00207

rno04668 TNF signaling pathway 4 0.002791

rno04750 Inflammatory mediator regulation of TRP channels 4 0.003408

rno04976 Bile secretion 3 0.003981

rno05133 Pertussis 3 0.004186

rno05202 Transcriptional misregulation in cancers 5 0.004801

rno04062 Chemokine signaling pathway 5 0.004938

rno04970 Salivary secretion 3 0.00532

rno00830 Retinol metabolism 3 0.006364

rno04650 Natural killer cell mediated cytotoxicity 4 0.00852

rno04974 Protein digestion and absorption 3 0.008842
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Figure 5: Functional analysis of the differentially expressed lncRNAs and circRNAs between IR group and SD-IR group. (a) The top 30
Gene Ontology terms of differentially expressed lncRNAs. Green color is related to biological processes; blue color is related to cellular
components; and red color is related to molecular functions. (b) The top 30 Gene Ontology terms of differentially expressed circRNAs.
Richly factor refers to the ratio of the number of differentially expressed genes in the KEGG pathway accounting for the total number of
genes that are related to this pathway. The larger the richly factor, the higher the degree of enrichment; the size of the bubble indicates
the number of genes, which is qualified by Q-value. (c) The top 20 KEGG pathway enrichment analysis of differentially expressed
lncRNAs. (d) The top six KEGG pathway enrichment analysis of differentially expressed circRNAs.
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downregulated mRNAs, 165 upregulated and 168 downregu-
lated lncRNAs, and 70 upregulated and 52 downregulated cir-
cRNAs in the SD-IR group compared with the IR group. (3)
We selected three mRNAs from the most upregulated mRNAs
and three lncRNAs from the most downregulated lncRNAs
for RT-qPCR low-throughput verification, and the results
were consistent with the sequencing results. By providing
new insights into the function of lncRNA/circRNA-miRNA-
mRNA networks, our results contribute to the understanding
of the pathogenesis of MIRI and provide new targets for MIRI.

In recent years, a large number of studies have con-
firmed that cardiac sympathetic activity plays an important
role in many cardiac diseases and processes [35–40]. Lu

et al. reported that sympathetic hyperinnervation and/or
myocardial infarction remodeled myocardial glutamate sig-
naling and ultimately increased the severity of ventricular
tachyarrhythmias [9]. It has also been shown that left stellate
ganglion (LSG) suppression protects against ventricular
arrhythmias. Yu et al. found that optogenetic modulation
could reversibly inhibit the neural activity of LSG, thereby
increasing electrophysiological stability and protecting
against myocardial ischemia-induced ventricular arrhyth-
mias [41]. These reports and our results also suggest that
the presence of decreased cardiac sympathetic activity can
have a cardioprotective effect, and that this depends on effec-
tive sympathetic denervation.
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Figure 6: Validation of lncRNAs and mRNAs by RT-qPCR in the T1–T4 spinal cord IR group and SD-IR group. (a) The expression levels of
lncRNA NONRATT012797.2 and NONRATT029190.2 were significantly upregulated in SD-IR group, whereas the expression levels of
lncRNA NONRATT000247.2, NONRATT004098.2, and NONRATT025664.2 were significantly downregulated in SD-IR group. (b) The
expression levels of mRNA Ubd, Ccl12, and Cxcl10 were significantly upregulated in SD-IR group, whereas the expression levels of
mRNA LOC100912599 and Dpep1 were significantly downregulated in SD-IR group. (c) The expression levels of five lncRNAs and five
mRNAs. Two upregulated lncRNAs, three downregulated lncRNAs, three upregulated mRNAs, and two downregulated mRNAs were
validated by RT-qPCR. Data are expressed as mean± SEM. ∗P < 0:05, ∗∗p < 0:01, ∗∗∗ p < 0:001 vs. IR group.
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Figure 7: Continued.
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Recently, significant efforts have been made to under-
stand the alterations of ncRNAs in different spinal cord
segments and their contributions to specific outcomes of
diseases [16, 26, 42–44]. The spinal cord is a complex and
dynamic neural structure. It contains sympathetic pregangli-
onic neurons within the intermediolateral cell column
[45–47]; they are involved in the generation of sympathetic
activity in many autonomic targets, including the heart and
blood vessels [36, 48–50]. There is accumulating evidence
of the interaction between the spinal cord and the heart
[51–55]. We previously demonstrated the changes of novel
lncRNAs in the upper thoracic spinal cord of rats with MIRI
[42]. In recent years, there has been considerable effort to
explore the relationship between cardiac sympathetic activ-
ity and cardiovascular diseases. However, the changes in spi-
nal lncRNAs in rats with MIRI after cardiac sympathetic
denervation have not been reported. Here, we aimed to
understand the involvement of specific patterns of changes
in the lncRNA/circRNAs-miRNA-mRNA network of the
upper thoracic spinal cord regions of animals with myocar-
dial ischemia-reperfusion injury after cardiac sympathetic
denervation.

LncRNAs are involved in the progression of coronary
artery disease (CAD) [56]. Xu et al. reported that lncRNA

AC096664.3/PPAR-gamma/ABCG1-dependent signal trans-
duction pathway contributes to the regulation of cholesterol
homeostasis [56]. As one of the differentially expressed
lncRNAs between CAD patients and healthy controls,
lncRNA ENST00000602558.1 plays a key role in the patho-
genesis of atherosclerosis. Cai et al. showed that lncRNA
ENST00000602558.1 regulated ABCG1 expression and cho-
lesterol efflux from vascular smooth muscle cells through a
p65-dependent pathway [57]. The study by Li et al. provided
the characterization of lncRNA expression profile and identi-
fication of novel lncRNA biomarkers to diagnose CAD [58].
According to our study, spinal lncRNA as a sponge of miRNA
mainly participates in the process of MIRI through cysteine
and methionine metabolism, mTOR signaling pathway, insu-
lin signaling pathway, and adipocytokine signaling pathway.

Circular RNAs (circRNAs) play a critical role in the
physiology and pathology of cardiovascular diseases
[59–62]. To further investigate the roles of these differen-
tially expressed circRNAs in the development of MIRI, we
performed GO and KEGG pathway analyses. Based on the
GO and KEGG enrichment analyses of these circRNAs,
our results suggested that the significantly enriched biologic
processes and molecular functions of the upregulated genes
after MIRI were associated with gene sets termed as follows:
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Figure 7: Construction of the mRNA-miRNA-lncRNA/circRNA network. (a) Network analysis of mRNA-miRNA-lncRNA. The blue nodes
represent mRNA. The purple nodes represent lncRNA. The red nodes represent miRNA. (b) Network analysis of mRNA-miRNA-circRNA.
The green nodes represent circRNA. The red nodes represent miRNA. The blue nodes represent mRNA. (c) Network analysis of lncRNA-
miRNA-circRNA. The green nodes represent circRNA. The red nodes represent miRNA. The purple nodes represent lncRNA.
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“MAPK signaling pathway” and “cGMP-PKG signaling
pathway”. It is well known that MAPK pathway is involved
in ischemia-reperfusion injury [63]. Previous studies have
shown that cGMP-PKG pathways are implicated in cardio-
vascular complications of diverse etiologies [64, 65]. These
data suggest that spinal circRNAs may be potential targets
for MIRI.

miRNAs have been shown to modulate the translational
activity of the genome and regulate protein expression and
function [66–68]. According to Wang et al. [69], miRNA-
493-5p promotes apoptosis and suppresses proliferation
and invasion in liver cancer cells by targeting VAMP2. Pre-
vious studies have pointed out a potential cardioprotective
role of phosphatidylserine in heart ischemia [70–73], sug-
gesting that the phosphatidylserine signaling pathway is
associated with MIRI. Schumacher et al. [74] indicated that
phosphatidylserine significantly reduced the infarct size by
30% and improved heart function by 25% in a chronic
model of acute myocardial infarction (AMI), suggesting that
phosphatidylserine supplementation may be a promising

novel strategy to reduce infarct size following AMI and to
prevent myocardial injury during myocardial infarction or
cardiac surgery. A large number of studies have confirmed
that chemokines [75–77], including C-X-C motif chemokine
receptor 3 (CXCR3) [78], are closely related to the ischemia–
reperfusion injury. In this study, we found that miRNAs in
the spinal cord participated in the molecular progression of
MIRI through the regulation of actin cytoskeleton, phospho-
lipase D, calcium, and MAPK signaling pathways.

It has been found that the lncRNA/circRNA-miRNA-
mRNA ceRNA network plays a role in multiple physiologi-
cal and pathological processes [66, 79–86]. Cheng et al.
[82] reported the comprehensive analysis of the circRNA-
lncRNA-miRNA-mRNA ceRNA network in the prognosis
of acute myeloid leukemia (AML), elucidated the post-
transcriptional regulatory mechanism of AML, and identi-
fied novel AML prognostic biomarkers, which has important
guiding significance for the clinical diagnosis, treatment, and
further scientific research of AML. Wang et al. [87] estab-
lished bronchopulmonary dysplasia (BPD)-related ceRNA
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regulatory network of circRNA/lncRNA-miRNA-mRNA in
the lung tissue of a mouse model, proving that it is signif-
icantly associated with the pathophysiological characteris-
tics of BPD. In this study, we analyzed the changes in
spinal lncRNA-miRNA-mRNA and circRNA-miRNA-
mRNA ceRNA networks in MIRI after cardiac sympathetic
denervation. Our findings offer a new direction for under-
standing the pathogenesis of MIRI, and suggest some effec-
tive targets in the spinal cord after cardiac sympathetic
denervation.

In conclusion, the expression characteristics of coding
genes, miRNAs, lncRNAs, and circRNAs in the upper tho-
racic spinal cord of MIRI rats were determined after cardiac
sympathetic denervation induced by 6-OHDA. The preven-
tive effect of cardiac sympathetic denervation on MIRI paves
the road for further studies on the sympathetic mechanisms
associated with MIRI, which is important to further explore
the pathogenesis of MIRI and potentially facilitate the dis-
covery of novel lncRNA/circRNA-miRNA-mRNA networks
for therapeutic targeting in the management of MIRI.
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