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Abstract

The topology of animal transport networks contributes substantially to how fast and to what

extent a disease can transmit between animal holdings. Therefore, public authorities in

many countries mandate livestock holdings to report all movements of animals. However,

the reported data often does not contain information about the exact sequence of transports,

making it impossible to assess the effect of truck sharing and truck contamination on dis-

ease transmission. The aim of this study was to analyze the topology of the Swiss pig trans-

port network by means of social network analysis and to assess the implications for disease

transmission between animal holdings. In particular, we studied how additional information

about transport sequences changes the topology of the contact network. The study is based

on the official animal movement database in Switzerland and a sample of transport data

from one transport company. The results show that the Swiss pig transport network is highly

fragmented, which mitigates the risk of a large-scale disease outbreak. By considering the

time sequence of transports, we found that even in the worst case, only 0.34% of all farm-

pairs were connected within one month. However, both network connectivity and individual

connectedness of farms increased if truck sharing and especially truck contamination were

considered. Therefore, the extent to which a disease may be transmitted between animal

holdings may be underestimated if we only consider data from the official animal movement

database. Our results highlight the need for a comprehensive analysis of contacts between

farms that includes indirect contacts due to truck sharing and contamination. As the nature

of animal transport networks is inherently temporal, we strongly suggest the use of temporal

network measures in order to evaluate individual and overall risk of disease transmission

through animal transportation.
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Introduction

Animal transports are widely seen as one of the main factors contributing to the transmission

of infectious diseases in animal populations [1]. This has led public authorities in many coun-

tries and supranational bodies such as the EU to collect animal movement data. In the last

decade, there has been a growing interest in analyzing such data using social network analysis

in order to better understand interrelationships between animal holdings (i.e., farms, slaugh-

terhouses, etc.) and assess their impact on disease transmission [2]. The first attempts at

modelling animal transport networks with social network analysis were static network models

[3,4]. The importance of dynamic (or temporal) network analysis has only recently been estab-

lished [5–7]. Animal transport networks are inherently temporal, as a link between two hold-

ings only exists at the time of the transport. For the analysis of the transmission of a disease,

this consideration is crucial, as links in temporal networks are not necessarily transitive. In

other words, a pathogen may only be passed from farm A to farm C via farm B if the corre-

sponding transports between those three farms are sequential in time.

Much of the recent literature on animal transport networks pays particular attention to

the overall connectivity of the network and/or to the individual connectivity or centrality of

nodes in the network [8–16]. Several researchers have used the overall connectivity of the net-

work as a measure of the potential epidemic size of infectious diseases [8]. The identification

of highly central nodes, so called hubs, is considered crucial for designing control and surveil-

lance programs [9] as they constitute so called “super-spreaders” [17]. More recent work has

increasingly focused on temporal network measures and has shown that static network mea-

sures may overestimate the potential epidemic size or underestimate the individual farm risk

[8,9,14,16].

For social network analysis to be most effective for disease control and surveillance, the

topology of the network needs to represent the direct and indirect contacts among animals,

with the highest accuracy possible. Disease transmission is not restricted to movements of

infected animals from one farm to another. A specific animal transport between two farms is

often part of a sequence of transports by the same truck, which leads to at least two other, indi-

rect mechanisms for disease transmission. First, animals from different farms may be trans-

ported together in the same truck even if they do not end up at the same arrival holding.

Second, a truck may be contaminated from a previous transport and upon loading animals at a

new farm, may indirectly transmit a pathogen to the new farm [18–20]. The necessity of ana-

lyzing and modelling the actual transport sequences has been asserted in the early stages of epi-

demiological network analysis [4]. However, the exact transport sequences are usually only

available from transport companies which record all load and unload operations to manage

efficiency. Most previous studies have been restricted to incomplete data, often collected by

public authorities, and have neglected considering indirect ways of disease transmission dur-

ing animal transports. The possibility of analyzing such data has been demonstrated in the

French pig industry [10,15], and in a regional study in Canada [13]. These studies show that

the aforementioned indirect ways of disease transmission connect holdings that may not be

connected if only direct contacts due to animal exchanges are considered. However, whether

their findings can be generalized to different production systems remains open, especially

when the structure of animal production networks differs considerably between countries.

In Switzerland, the pig production system differs greatly from other countries with large

and vertically integrated pork production systems. Swiss pig production is organized in a hier-

archical network, highly decentralized, and made up of many small, independent farms. One

of the particularities of the Swiss system is the so called "arbeitsteilige Ferkelproduktion" which

corresponds to a cyclical process comparable to sow pool systems in Scandinavian countries
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where sows are bred in a specialized breeding center, then moved to farrowing farms, after

which they return to a breeding center which might be different from the initial one. Riklin

[21] reports that a large proportion of Swiss fattening farms work with multiple piglet produc-

ers leading to a large number of contacts between pigs which has the potential to increase the

risk of disease transmission within the production chain. Moreover, Swiss regulations for

cleaning and disinfection of trucks (Art. 163, Tierschutzverordnung [22]) are not as strict as

European Union regulations. For example, it is not mandatory to disinfect the truck after a

transport. This lack of biosecurity measures increases the risk of transmission for several infec-

tious diseases that are transmitted by the fecal-oral route such as salmonella infections, swine

dysentery, etc. [18]. The atypical structure of the Swiss pig production system makes compari-

sons with transport networks in other countries difficult. To date, little has been published

about the importance of the structure of the Swiss pig production system for disease control

and surveillance. This may also be due to the fact that outbreaks of infectious diseases in Swit-

zerland are rare. One of the more recent outbreaks concerned porcine reproductive and respi-

ratory syndrome virus (PRRSV) and dates back to 2012 [23].

The Federal Food Safety and Veterinary Office (FSVO) records and stores data from pig

movements in the animal movement database (AMD) [24]. However, the exact transport

sequences are not recorded in these data and hence, the true contact network between Swiss

pig farms remains widely unknown. Nonetheless, it is possible to get a partial picture of indi-

rect disease transmission by considering data of transport companies. The main goal of this

paper was to assess the effect of additionally considering such transport data provided by a

Swiss transport company on network measures relevant for disease transmission. We first

described the Swiss pig transport network using data provided by the public authorities

(AMD) focusing on temporal network measures. Based on a sample of transport data from the

transport company, we then examined if and how the additional information about the

sequence of transports changed the connectivity of the network and the node centrality mea-

sures. Finally, we discussed the results and their implications for the Swiss pig industry.

Materials and methods

Data

This study is based on two data sets: (i) the animal movement database (AMD) and (ii) data

from one of the animal transport companies in Switzerland, which we will denote as TRP. Fig

1 provides a graphical representation of characteristics of the data in both data sets. AMD is

the national registry for movements of livestock in Switzerland. Since 2011 it is mandatory

for all holdings to report all incoming movements of pigs. The FSVO is the data owner while

Identitas AG (https://www.identitas.ch/) collects and stores the data. Pig movements in Swit-

zerland are reported at the batch level by the holding receiving the pigs. There is a wide range

of different holding types: farms, slaughterhouses, alpine pastures, trading companies, mar-

kets, veterinary clinics, and others. Every holding has a unique 7-digit identifier (tvdOrigin

and tvdArrival in Fig 1). Some farms may have two or more identifiers if they have holdings at

different locations. Apart from the departure and arrival holding, every movement is charac-

terized by the movement date (eventDate), the movement type (movementType, either slaugh-

ter or farm-to-farm), and the number of animals in the batch transported (noAnimals). For

every holding, we also know the holding type (typeO and typeD), the postal code (postcodeO

and postcodeD), the city (cityO and cityD), the canton (cantonO and cantonD), as well as the

exact geographic location (latO, longO, latD, and longD). The data also contained information

about when movement data was entered in the system (creationDate) and a unique identifier

for each movement (id).
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The TRP data are organized as tours (tourId) containing a certain number of individual

transports that are labelled with sequence numbers (sequenceNumber). A tour contains all the

transports operated by a specific truck during a specific period (in most cases 1–2 days).

Fig 1. Graphical representation of the raw data we collected from AMD (on the left) and TRP (on the right). The matching of movements is based on the attributes

tvdOrigin (integer) and tvdArrival (integer) in both data sets.

https://doi.org/10.1371/journal.pone.0217974.g001
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For every individual transport, identifiers of the starting and ending holdings (tvdOrigin

and tvdArrival), the exact loading (loadDatetime) and unloading time (dropDatetime, deliver-

yDate), the number of animals loaded and unloaded (amount), the type of animals transported

(species, e.g. piglets, pigs, sows, etc.), and whether or not the truck was cleaned before loading

the animals (cleanVehicleRequired) were recorded. The TRP data also contained an identifier

for the movement (id) and the batch of animals (batchId), the name of the transport section

operating the transport (poolTransportCompany), and whether or not the transport was oper-

ated by the customer (consumerDrives).

The period of observation for this study was from 2014 to 2017. The AMD data contained

observations from 732,754 transports and the TRP data contained observations from 109,299

transports.

Data preprocessing

Data preprocessing included removing duplicate entries, self-loops (i.e., movements where the

identifiers of the departure and arrival holding are identical), and observations where the

involved holdings could not be identified. The reasons for self-loops may have been either mis-

reported transports or transports between holdings of the same farm. After data preprocessing,

the AMD data contained information from 722,105 transports. Data preprocessing for the

TRP data was similar, but also required removing a small number of transports where loading

and unloading time were identical. After data editing, the TRP data contained 106,740 valid

entries. Of those entries, 91,613 (85.5%) were present in the AMD data set. In some cases, the

date of transport recorded in the TRP data was slightly different from the date in AMD, likely

due to misreporting in AMD by the arrival holding. We matched entries in the two data sets

based on the week of transport instead of the exact date of transport and found that 94,370

(88.4%) of the transports matched with entries in AMD.

Network analysis: AMD

In social network analysis terminology, holdings are called nodes or vertices and transports

between those holdings are called edges or links [25]. Edges can be either static or dynamic, in

which case the edge has a timestamp and is only active at a specific time. Edges can be directed

or undirected. In the case of animal transport networks, edges are typically directed.

We created directed temporal networks for every month of the observation period (48

monthly networks) from the AMD data. All edges in these networks were timestamped, i.e.

they were only active on the day of transport. The analysis of monthly networks has commonly

been justified by asserting that a month roughly corresponds to the “silent spread phase” of a

disease [8]. This period was chosen based on reports that numerous infectious diseases in pig

herds may remain undetected for 2–4 weeks [26,27]. Depending on the disease modeled, a dif-

ferent period would need to be chosen. For example, the incubation period of the foot-and-

mouth disease is typically shorter than a month [28]. However, as we did not intend to model

one specific disease in this study, monthly networks were used because they provide a gener-

ally accepted estimate of the transmission of a disease within a population before it is detected

by disease control authorities and control measures are taken. From an epidemiological point

of view, movements to slaughterhouses are considered “dead ends” [9], and we removed these

movements as have many previous studies [4,9,15–17].

Network measures that are relevant for disease transmission can be broadly classified into

measures of centrality and measures of cohesiveness [2]. Centrality measures are assessed at

the node level. Cohesiveness measures indicate how connected the whole network is. We com-

puted the following centrality measures:

The pig transport network in Switzerland
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• In- and out-degree: The in- and out-degree of a node i denotes the number of nodes that

are adjacent to, and adjacent from node i, respectively [25]. In our case, the in-degree of a

holding is the number of direct animal contacts originating from another holding. Analo-

gously, the out-degree of a holding is the number of direct outgoing contacts. Note that over

the period of a month a holding may have multiple contacts with other farms. However, for

the in- and out-degree of a holding, a contact with another holding was only counted once

because we wanted to measure the centrality of a node.

• Ingoing contact chain (ICC): The ICC was introduced in [9]. It measures the number of

holdings that are linked directly or indirectly to a holding through ingoing movements.

Importantly, the order of the movements must be taken into account. Note that by consider-

ing monthly networks the inter-event time between two consecutive transports is limited to

approximately 30 days.

• Outgoing contact chain (OCC): The OCC counts the number of direct or indirect contacts

through outgoing movements, taking into account the order of the movements. The OCC is

sometimes also called the “set of influence” of a holding [5].

Both ICC and OCC are considered temporal network measures. By taking the temporal

sequence of contacts into account, they constitute a more suitable measure of the importance

of a holding than conventional (static) measures such as betweenness centrality [25]. More-

over, ICC and OCC may be more suitable in a disease surveillance context than in- and out-

degree. For example, consider a holding (A) that only transports pigs to one other holding (B),

which has many direct contacts. The out-degree of holding A is one, however, the OCC may

be much higher and therefore better represents the risk that this farm may pose for the whole

network.

We used the following measures of cohesiveness:

• Connected components: A weakly connected component (WCC) is a subgraph in an undi-

rected network in which all nodes are linked directly or indirectly (through a path) to each

other. Analogously, a strongly connected component (SCC) is a subgraph in a directed net-

work in which all nodes are linked directly or indirectly to each other [25]. Previous research

has suggested using the size of the largest weakly and strongly connected component as the

upper and lower bound of potential epidemic size, respectively [8,29].

• Reachability: The reachability ratio is the temporal counterpart of the connected compo-

nents. The reachability ratio is defined as the fraction of node-pairs that are connected

through a time-respecting path [5,30].

We also considered one specific monthly network and studied whether the network was

scale-free and/or exhibited the small-world property. In scale-free networks, the occurrence of

nodes with a comparatively large degree is more common than in random networks. Those nodes

can be characterized as hubs and their presence has the effect of making scale-free networks very

robust against the random removal of nodes, i.e. they remain connected [31,32]. In scale-free net-

works, the degrees of nodes follow a so-called power law distribution. We estimated the parameters

of such a distribution and assessed the goodness of fit with a log-likelihood ratio test comparing

the power law distribution with the log-normal distribution [33,34]. Small-world networks were

first introduced by Watts and Strogatz [35] who characterized networks with a small average short-

est path length and a large clustering coefficient compared to random networks as small-world net-

works. A network with small-world properties facilitates the transmission of a disease. In order to

test whether the monthly network exhibits small-world properties, we compared its average short-

est path (ASP) length and the clustering coefficient (CC) of the largest connected component to
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the ASP length and the CC of 100 randomly generated networks with the same number of nodes

and edges as the monthly transport network [17].

Network analysis: TRP

We modeled the TRP data similarly to the way we modeled the AMD data. However, individ-

ual transports were organized as tours. In order to determine the indirect links due to shared

transports, we considered the exact loading and unloading times within a tour. The resulting

direct and indirect links between farms were modeled as directed temporal networks. Another

approach could have been to create a so called two-mode network [15,25] with nodes being

either a holding or a truck. However, many well established network measures are only avail-

able for one-mode networks and therefore, we chose to model all networks as one-mode net-

works. Fig 2 shows one example tour and how direct (b) and indirect edges (c) were extracted

from the transport data. Assuming that trucks can be contaminated and act as vectors for

transmitting a disease to other animal holdings [4,10,11,13,15,36], we extracted further indi-

rect links between farms (d). As a result, we produced three networks: one representing only

edges due to direct transports as reported in the AMD database, one that additionally repre-

sents indirect edges due to truck sharing and finally, one that, in addition, contains edges due

to the potential contamination of trucks. To assess whether and how the transport data affect

the measures of centrality and cohesiveness, we computed the measures described in the previ-

ous section for all three networks and compared the results.

Software

All analysis was conducted in Python 3.6. For the computation of most network measures, we

used the library NetworkX (version 1.11). To compute ICC and OCC we developed our own

code based on the libraries SciPy (0.19.1) and NumPy (1.15.0).

Results

Description of Swiss pig transport network

In order to characterize pig transports in Switzerland, we computed the most frequent types of

movements, the average number of pigs per transport, and Euclidean distances of transports.

Fig 2. Example of transport data. (a) Time path of the transport data of one tour operated by a single truck. The tour

starts at 6.00 a.m. at farm A where 70 pigs are loaded. It then continues to farm B where another 104 pigs are loaded. At

farm C, some of the pigs from farm B are unloaded. After that, the truck continues to farm D where the pigs from farm

A and the rest of the pigs from farm B are unloaded. The tour ends at 12.19 p.m. with a transport of 100 piglets from

farm E to farm F. (b) The network corresponding to the direct transports between farms neglecting the transport

sequence. (c) By taking the transport sequence into account, an additional edge between A and C is added because

animals from farm A may transmit a disease to C via animals from B. (d) By assuming that the truck can be

contaminated and transmit a disease even further, we must include another two edges between A and F and B and F.

https://doi.org/10.1371/journal.pone.0217974.g002

The pig transport network in Switzerland

PLOS ONE | https://doi.org/10.1371/journal.pone.0217974 May 31, 2019 7 / 20

https://doi.org/10.1371/journal.pone.0217974.g002
https://doi.org/10.1371/journal.pone.0217974


We also investigated inter-cantonal movement patterns, i.e. movements between cantons.

Cantons correspond to mostly sovereign political and administrative entities in Switzerland.

Based on AMD, the number of holdings in the network decreased from 11,690 in 2014 to

10,406 in 2017 (Table 1). The results show that there was a steady reduction of continuously

producing farms and slaughterhouses over the observation period. Continuously producing

farms (76% of all holdings) were by far the most frequent holding type in the network.

Table 1 also shows that the number of movements to slaughterhouses steadily decreased

over the period of observation while the number of movements to continuously producing

farms and other holding types remained relatively stable. A large proportion of movements

(72%) were movements to slaughterhouses. As mentioned above, such movements are consid-

ered “dead ends” [9] and were removed from the study leaving only 28% of the movements in

the Swiss pig transport network relevant for disease transmission.

The total number of movements to holdings other than slaughterhouses varied only a little,

however, there seems to be a seasonal pattern for movements to slaughterhouses (see Fig 3).

The greatest number of movements to slaughterhouses for all four years took place in the fall

(September–November). We observed a similar pattern for the total number of pigs moved

every month (S1 Fig).

A closer look at the AMD data for 2017 revealed that there were 86,648 movements that

took place within cantons and 90,204 movements crossing cantonal borders. After excluding

movements to slaughterhouses, 27,977 within-canton movements (1,044,599 pigs) and 21,623

between-canton movements (918,041 pigs) remained in the study.

Fig 4 shows pig flows between cantons in 2017 (excluding movements to slaughterhouses).

In order to emphasize significant inter-cantonal relationships, we only plotted flows of 5,000

or more pigs. This figure shows that canton Luzern (LU) played a major role in Swiss pig

trade, as the canton had significant trade relations with most other cantons. Important mutual

trade patterns also existed between Luzern and Aargau (AG), Luzern and Bern (BE), and

Thurgau (TG) and St. Gallen (SG). Fig 4 also shows that canton Fribourg (FR) received a large

amount of pigs (107,592 pigs) but at the same time only sent a comparatively small number of

pigs (24,442 pigs) to other cantons. Fribourg is home to one of the major slaughter plants in

Switzerland and thus the canton may have attracted many fattening farms, leading to the trade

pattern described above. The opposite is true for Bern where the number of pigs sent out of

Table 1. Number of holdings and number of movements in AMD over the observation period (2014–2017). ‘Others’ includes different holding types such as trading

companies, markets, and veterinary clinics.

Year

2014 2015 2016 2017

Number of holdings (total) 11,690 11,338 11,120 10,406

Continuously producing farms 8,923

(76.3%)

8,635

(76.2%)

8,426

(75.8%)

7,885

(75.8%)

Slaughterhouses 473

(4.0%)

458

(4.0%)

442

(4.0%)

421

(4.0%)

Others 2,294

(19.6%)

2,245

(19.8%)

2,252

(20.3%)

2,100

(20.2%)

Number of movements (total) 184,148 181,707 179,398 176,852

Movements to slaughterhouses 133,671

(72.6%)

131,479

(72.4%)

129,266

(72.1%)

127,252

(72.0%)

Movements to continuously producing farms 40,107

(21.8%)

40,224

(22.1%)

40,124

(22.4%)

39,779

(22.5%)

Others 10,370

(5.6%)

10,004

(5.5%)

10,008

(5.6%)

9,821

(5.6%)

https://doi.org/10.1371/journal.pone.0217974.t001
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the canton (152,337 pigs) was almost 2.5 times greater than the number of pigs received from

other cantons (62,133 pigs). A detailed description of the number of incoming and outgoing

pigs per canton as well as the numbers of the flows shown in Fig 4 are provided in the supple-

mentary material (S1 and S2 Tables). Note that Switzerland has no major trade patterns with

Fig 3. Number of movements per month. Movements to slaughterhouses are plotted with solid lines and movements to holdings other than

slaughterhouses are plotted with dashed lines.

https://doi.org/10.1371/journal.pone.0217974.g003

Fig 4. Significant flows of pigs between cantons in 2017. Only flows of 5,000 or more pigs are shown and transports

to slaughterhouses are excluded. The size of a node depends on the number of pigs arriving in this canton. St. Gallen

(SG) is the largest arrival canton with 131,776 pigs being transported to St. Gallen during the course of 2017. The

largest flow of pigs (45,403) occurred between Luzern (LU) and Aargau (AG). The abbreviations for cantons are given

in S1 Table.

https://doi.org/10.1371/journal.pone.0217974.g004

The pig transport network in Switzerland

PLOS ONE | https://doi.org/10.1371/journal.pone.0217974 May 31, 2019 9 / 20

https://doi.org/10.1371/journal.pone.0217974.g003
https://doi.org/10.1371/journal.pone.0217974.g004
https://doi.org/10.1371/journal.pone.0217974


neighboring countries except for with Liechtenstein. In 2017, Switzerland sent 2,229 pigs to

Liechtenstein and received 4,192 pigs from Liechtenstein.

The average number of animals per movement was 26 and the median was 15. This indi-

cates that the distribution of the number of animals per movement is right-skewed and that

there are outliers. For every transport, we calculated the Euclidean distance. On average, the

distance of a transport was 31 km. Ninety percent of all transports were over relatively short

distances (up to 76 km). The top 1% of transports covered distances of 131 km or more. The

maximum distance travelled was 265 km, which corresponds to a transport from a holding

near Geneva to a holding near Chur (Grisons).

The TRP network contained a total of 1,910 holdings. As with AMD, the number of hold-

ings and the number of movements decreased over the observation period (Table 2). Com-

pared with the results from AMD, the TRP data contained more movements between farms

and fewer movements to slaughterhouses. However, transports to slaughterhouses were still

the dominant type of movement.

As mentioned above, transports were organized as tours of trucks where every tour con-

tained a sequence of individual transports. Overall, there were 33,365 tours of which 6,590

tours contained only one transport of pigs. The average number of transports per tour was 3.2

(median: 3). Ninety percent of tours included 5 or more individual transports with the largest

tour containing 16 transports. Note that some tours included transports of other species that

were not reported to us (personal communication from the transport company). In most of

these transports, the trucks were required to be cleaned before loading a new batch of pigs. It

was common for tours to occur at night. In total, there were 3,015 tours that were spread over

two days. Most of these tours typically started in the evening of one day and ended in the early

morning of the next day. The average transport duration was 157 minutes while the median

transport duration was 131 minutes. On average, an individual transport contained 38 pigs

(median: 30 pigs). The largest transport contained 500 pigs. Both the average and the median

were considerably higher compared to AMD. One possible explanation is that most transports

in the TRP data were operated by a transport company whereas the transports reported in

AMD include many additional small-scale transports, for example, transports completed by

farmers themselves.

Table 2. Number of holdings and number of movements in TRP over the observation period (2014–2017). ‘Others’ includes different holding types such as trading

companies, markets, and veterinary clinics.

Year

2014 2015 2016 2017

Number of holdings (total) 1,626 1,565 1,511 1,469

Continuously producing farms 1,318

(81.1%)

1,255

(80.2%)

1,203

(79.6%)

1,174

(79.9%)

Slaughterhouses 27

(1.7%)

25

(1.6%)

26

(1.7%)

30

(2.0%)

Others 281

(17.3%)

285

(18.2%)

282

(18.7%)

265

(18.0%)

Number of movements (total) 27,401 26,971 26,435 25,933

Movements to slaughterhouses 17,048

(62.2%)

16,672

(61.8%)

16,304

(61.7%)

16,120

(62.2%)

Movements to continuously producing farms 7,927

(28.9%)

7,786

(28.9%)

7,719

(29.2%)

7,563

(29.2%)

Others 2,426

(8.9%)

2,513

(9.3%)

2,412

(9.1%)

2,250

(8.7%)

https://doi.org/10.1371/journal.pone.0217974.t002
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Centrality and cohesiveness in AMD data

The first set of analyses examined the network connectivity and centrality of nodes based on

AMD. As the focus of our analysis were monthly networks over a period of four years, we cre-

ated 48 monthly networks, each representing all movements for one month. The networks

were generated as directed multigraphs [25], i.e. networks with potentially multiple links

between two specific nodes, as there may be multiple transports on different days between two

farms in one month. Note that for computing in- and out-degree, the graphs were transformed

to digraphs in order to avoid counting links from or to the same farm multiple times.

On average, the monthly networks consisted of 5,518 nodes and 4,176 edges (3,508 edges in

the digraph). Because of removing slaughterhouses from the network, many nodes had no

connections to other nodes. There were on average 2,257 nodes with no neighbors in the

monthly networks. These nodes were either farms that only reported movements to slaughter-

houses in the specific month considered but were otherwise regular farms with in- and out-

going movements, or, they were (homebreeding) farrow-to-finish farms that only had move-

ments to slaughterhouses. On average, there were 1,248 farms in the monthly networks that

had no in-going movements but at least 1 out-going movement, and 1,568 farms that had only

in-going movements but no out-going movements to other farms. Consequently, there were

on average only 445 farms with both in- and out-going movements from or to other farms.

Table 3 reports the summary statistics for the maximum in- and out-degree and maximum

ICCs and OCCs. Maximum values were reported in order to represent a worst-case scenario

with regard to the transmission of a disease. Both the median and mean maximum in-degree

were 31, i.e. the farm with the most in-going contacts typically received pigs from 31 different

neighbors during the course of a month. Compared to the in-degree, the maximum out-degree

was typically lower and ranged between 14 and 22 contacts. By definition, the ICC and OCC

for a node must be at least as large as the in- and out-degree, respectively. The average maxi-

mum ICC exceeded the average maximum in-degree by 4 contacts. The OCC increased even

more compared to the average maximum out-degree: on average, the maximum OCC con-

tained 40 farms.

If we now turn to the results for the cohesiveness of the monthly networks, we can see that

the size of the largest weakly connected component ranged between 32.4% and 47.2% of all

nodes (Table 3). This means that even in the worst case less than half of all nodes were (weakly)

connected. The size of the largest strongly connected component was very small, containing

on average 14 nodes (0.3% of all nodes). The reachability ratio shows that typically only 0.02%

of all possible node-pairs were connected through time-respecting paths.

Table 3. Results for centrality and cohesiveness measures over all 48 monthly networks. The networks are based on the animal movement database (AMD).

Min. 25% Median Mean 75% Max.

Centrality

Max. in-degree 25 29 31 31 33 36

Max. out-degree 14 16 18 18 20 22

Max. ICC 29 33 34 35 37 45

Max. OCC 27 35 38 40 44 72

Cohesiveness

Size of WCC 1,784

(32.4%)

2,073

(36.4%)

2,138

(39.7%)

2,165

(39.4%)

2,259

(41.9%)

2,460

(47.2%)

Size of SCC 7

(0.1%)

13

(0.2%)

15

(0.3%)

14

(0.3%)

16

(0.3%)

21

(0.4%)

Reachability ratio 0.01% 0.01% 0.02% 0.02% 0.02% 0.02%

https://doi.org/10.1371/journal.pone.0217974.t003
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In order to show the implications for disease transmission between animal holdings more

specifically, we examined one monthly network in detail. As seen above, the activity in the

monthly transport networks was typically highest in the fall. Thus, we chose to analyze the

movements in October 2017. The results for other monthly networks are similar. The Oct

2017 network contained 5,836 nodes (without slaughterhouses) and 4,048 edges (3,362 edges

in the digraph) and was thus a rather sparse network with a density of 0.01%. Density refers to

the proportion of actual connections compared to the number of potential connections in the

network. Because we removed all slaughterhouses and all edges to slaughterhouses, the net-

work contained 2,781 so-called isolates, i.e. holdings with no connections to other holdings.

Fig 5 shows the network without isolates. From the graph, we can see that there is one large

(weakly) connected component (2,108 nodes) and many smaller connected components. Only

413 nodes have both a positive in-degree and a positive out-degree and thus are potential hubs

in the network.

Fig 6 shows the distribution of in-degrees and out-degrees of the nodes in the network.

Although the form of the distributions indicates the potential presence of a power law distribu-

tion of the degrees, the statistical analysis did not confirm this.

The average shortest path length in the largest connected component was 8.9 and the clus-

tering coefficient was 0.0036. In contrast, the 100 random network realizations exhibited a typ-

ical average shortest path length of 31.2 and an average clustering coefficient of 0.0001.

Therefore, the network can be characterized as a small-world network.

Based on ICC and OCC values, we identified 25 farms as being crucial for disease transmis-

sion (green nodes in Fig 5). These farms exhibit ICC and OCC values larger than 5 and thus

may act as hubs (Fig 7). A manual examination of movement patterns of those 25 farms

Fig 5. Graph of monthly network in October 2017. Isolated nodes are not shown. The green nodes denote the 25

hubs identified based on the size of ICC and OCC.

https://doi.org/10.1371/journal.pone.0217974.g005
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revealed that 15 farms were either farrowing farms (7) or farrowing farms with a nursery (8).

The other 10 farms were either piglet producers (3), breeding centers (3) or nursery units (2).

For two farms the type could not be identified.

Centrality and cohesiveness in TRP data

To assess the effect of shared transports and truck contamination on the topology of the con-

tact network, we compared three networks. The first network contained only edges based on

direct animal transports between farms (network 1). The second and third network contained

additional edges due to shared transports (network 2) and edges due to truck contamination

(network 3), respectively. On average, monthly networks for all three types of networks con-

tained 975 nodes. The number of edges, however, varied considerably. On average, the three

monthly networks consisted of 793, 912, and 1,648 edges, respectively. If we consider the

digraphs, the average number of edges was smaller: 689, 802, and 1,528 edges, respectively.

Table 4 presents the results of the analysis based on TRP. The results for network 1 show

that on average the centrality measures were lower than for the networks based on AMD. As

mentioned above, the TRP data were only a sample of the full transport network. Thus, the

centrality measures computed here could not take into account transports not contained in

TRP. The relative size of WCC and SCC and the reachability ratio were higher than in the case

of AMD. One possible explanation is that the farms in the TRP sample were more connected

than farms in AMD, as they were all customers of the same transport company.

Fig 6. Degree distribution of in-degree (blue crosses) and out-degree (red squares) on a log-log scale for the monthly network of

October 2017.

https://doi.org/10.1371/journal.pone.0217974.g006
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As seen in Table 4, the cohesiveness of the network increased slightly by considering addi-

tional indirect links due to truck sharing (network 2). For example, the average size of the larg-

est WCC increased from 49.6% to 56.4%. At the same time, all centrality measures were

between 2 and 7 nodes larger on average. By considering all links including additional links

due to truck contamination (network 3), we observed a significant increase in the connectivity

for the whole network. The size of the largest WCC, for example, contained 78.5% of all nodes

compared to 56.4% for network 2. Accordingly, the reachability ratio increased from 0.09% in

Fig 7. Scatterplot of OCC vs. ICC. The label assigned to every data point indicates the number of nodes (counts) with this combination of OCC and ICC

values. For the sake of visibility, some counts are plotted next to the data point. Hubs are highlighted in red.

https://doi.org/10.1371/journal.pone.0217974.g007
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network 1 to 0.24% in network 3. The consideration of links due to truck contamination also

had a strong effect on the centrality measures, especially on ICC and OCC. The average values

of the maximum ICC and OCC were 44 and 52 farms, respectively. In an absolute worst-case

scenario, a farm could potentially infect 70 other farms in this sample, which is almost twice as

many farms as in network 1.

Discussion

The main objective of our study was to assess the effect of the topology of the Swiss pig trans-

port network on the potential for disease transmission between animal holdings. The analysis

was based on (i) the official animal movement database in Switzerland, and (ii) a sample of

transport data from one animal transport company in Switzerland. The sample covered

Table 4. Results for centrality and cohesiveness measures over all 48 monthly networks. The networks are based on the data from one transport company (TRP).

Min. 25% Median Mean 75% Max.

Network 1 (direct)

Centrality

Max. in-degree 8 13 19 18 23 35

Max. out-degree 11 15 17 17 19 24

Max. ICC 9 16 21 22 25 46

Max. OCC 13 22 26 26 30 38

Cohesiveness

Size of WCC 331

(35.4%)

465

(47.1%)

483

(49.9%)

484

(49.6%)

521

(53.8%)

578

(58.5%)

Size of SCC 4

(0.4%)

5

(0.5%)

5

(0.5%)

6

(0.6%)

6

(0.7%)

8

(0.8%)

Reachability ratio 0.07% 0.08% 0.09% 0.09% 0.09% 0.11%

Network 2 (shared truck)

Centrality

Max. in-degree 9 15 19 20 24 37

Max. out-degree 15 19 21 22 24 31

Max. ICC 10 19 24 25 31 50

Max. OCC 20 30 32 33 37 42

Cohesiveness

Size of WCC 367

(40.2%)

529

(54.0%)

557

(57.3%)

551

(56.4%)

583

(59.6%)

659

(63.4%)

Size of SCC 4

(0.4%)

5

(0.5%)

5

(0.6%)

6

(0.6%)

7

(0.7%)

9

(0.9%)

Reachability ratio 0.08% 0.10% 0.10% 0.10% 0.11% 0.13%

Network 3 (contaminated truck)

Centrality

Max. in-degree 14 20 25 25 30 50

Max. out-degree 20 25 28 28 31 34

Max. ICC 24 36 43 44 49 81

Max. OCC 36 48 53 52 57 70

Cohesiveness

Size of WCC 675

(74.5%)

738

(76.7%)

765

(78.2%)

766

(78.5%)

799

(79.8%)

860

(84.0%)

Size of SCC 5

(0.5%)

7

(0.7%)

9

(0.9%)

9

(0.9%)

11

(1.2%)

17

(1.8%)

Reachability ratio 0.20% 0.22% 0.24% 0.24% 0.25% 0.34%

https://doi.org/10.1371/journal.pone.0217974.t004
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approximately 13% of the transports reported in AMD and the data comprised transports in

all major regions of Switzerland. The present study was designed primarily to compare the

topology of networks based on (i) to networks based on (ii). We examined the effect of the

structure of the Swiss pig industry, which differs from other pig industries in Europe because

of the high number of small holdings, the frequent trade of small batches of pigs and the use of

vehicles that are not always properly cleaned and disinfected. For both data sources, we

restricted our analysis to monthly networks. As explained earlier, movements to slaughter-

houses were not considered in the network analysis.

A detailed analysis of trade flows between cantons (44% of all farm-to-farm movements)

revealed the crucial role of the canton Luzern. It had significant trading patterns with most

other cantons, as it was the origin for nearly 30% of all pigs sent to other cantons, and received

13% of all pigs traded between cantons. For disease surveillance, this implies that the surveil-

lance of highly connected farms in Luzern is crucial. If an outbreak occurred in Luzern, a dis-

ease could quickly transmit to many other cantons of Switzerland if it was undetected. Disease

surveillance should also focus on farms in the canton Bern as this canton had the second largest

number of pigs sent to other cantons. Due to the geographical characteristics and the small size

of the country, the average Euclidean distance travelled was relatively small (31 km). In fact,

90% of all movements covered a distance of 76 km or less. This is similar to results found for

British pig movements [17], whereas French pig movements typically cover much longer dis-

tances [15]. In some cases (e.g. mountainous regions), the Euclidean distance may not be a

good measure for the actual distance travelled. However, as can be seen in Fig 4, Swiss pig trade

predominantly occurred in the Swiss Plateau, which denotes the region between Lake Geneva

and Lake Constance [37]. There is only little pig trade across the Swiss Alps and the Euclidean

distance may thus be a plausible estimate of the distance travelled for most transports. However,

as the analysis of the TRP data has shown, transports are often part of a tour where a truck first

loads animals from a few different farms before it arrives at the first unloading place. Hence, the

distance travelled might actually be larger in reality than the AMD data suggests. Importantly,

the analysis of the TRP data also showed that a tour often includes transports of species other

than pigs. Although a truck is usually required to be cleaned after the transport of another spe-

cies, this might pose an additional risk for cross-species transmission of diseases.

The AMD networks were very sparse, having a density of 0.01%. As a result of removing

the slaughterhouses, almost 41% of the holdings contained in the network were isolated hold-

ings with no connections to other farms. This indicates a high degree of fragmentation that

should prevent a disease from transmitting to large parts of the network [2]. On average, there

were only 445 holdings (8%) with in- and outgoing contacts to other farms. Theses holdings

are especially important for disease surveillance as they constitute the pool of potential hubs,

i.e. farms with a high in- and out-degree compared to the other farms [2]. Such farms may act

as “super-spreaders” [17] and should be specifically targeted for disease surveillance.

SCC and WCC have been proposed as estimates for the lower and upper limit of the out-

break size, respectively [2,8]. The comparison of these two measures with one possible tempo-

ral counterpart (reachability ratio) shows that the static measures (SCC and WCC)

overestimate the outbreak risk. In fact, only 0.02% of all possible node pairs in monthly net-

works were connected through a time-respecting path. This agrees with our observation that

the Swiss pig transport network is highly fragmented. To determine the maximum outbreak

size in a worst-case scenario, we propose to use the maximum OCC as has been suggested in

[16]. Thus, for the Swiss pig industry we expect a worst-case outbreak size of 70 to 80 holdings.

Interestingly, a Swedish study found considerably higher values for the maximum OCC (and

ICC) in monthly networks [9], which indicates a smaller degree of fragmentation of the Swed-

ish network. A possible explanation for this might be the pyramidal structure of the Swedish
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pig industry [9] which is fundamentally different from the highly decentralized Swiss pig

industry. Overall, our study strongly supports the findings of previous studies which advocate

for the use of temporal network measures, especially ICC and OCC in the context of disease

surveillance and control [8,9,14,16].

The analysis of one specific monthly network (October 2017) revealed several interesting

results. First, in contrast to other studies [15,17], we did not find evidence for a scale-free net-

work. Consequently, nodes with a large in- and out-degree compared to the average degree

(hubs) are not very common. In this study, we identified hubs based on ICC and OCC values

instead of in- and out-degree. As expected, we found relatively few farms fulfilling this crite-

rion (25 farms). These farms were identified as farrowing farms, piglet producers, breeding

centers, or nursery units. Interestingly, 10 hubs had an in-degree of 1, and 5 of them had an

ICC value that was greater than or equal to 15. It is important to note that most of the hubs

with a low in-degree and a large ICC were connected to other hubs thereby ‘inheriting’ part of

their connectedness from these hubs. Second, Fig 7 shows that there was a number of farms

with very high OCC values and zero ICC values. While these nodes do not count as hubs, they

are important for disease surveillance, as they constitute source nodes that can transmit a dis-

ease to many other holdings. Analogously, farms with high ICC values and zero OCC values

exhibit a high risk of being infected (super-receivers). These findings suggest targeting three

groups of farms in a disease surveillance system: 1) hubs, 2) high OCC-farms, and 3) high

ICC-farms. Finally, the network exhibited small-world properties. However, both the cluster-

ing coefficient and the average shortest path length did not take the temporal nature of the

transport network into account. Thus, we question the small-world property’s ability to

explain the transmission of a disease in this context. Further work is required to establish the

effect of small-world characteristics in temporal networks.

One of the main objectives of this study was to assess the effect of shared transports and

truck contamination on the topology of the contact network based on TRP. What is striking

about the results for the comparison of the three different networks is the large increase in con-

nectivity due to the additional consideration of truck contamination while the effect of adding

edges due to truck sharing was only moderate. This finding suggests special attention is needed

for the control of infectious diseases that are mainly transmitted by fecal-oral routes (e.g. Bra-

chyspira spp., Salmonella spp., etc.) and other infections that require close contact of infected

animals (e.g. Actinobacillus pleuropneumoniae, toxigenic Pasteurella multocida, etc.). How-

ever, in the case of infections that can also be airborne (e.g. swine influenza virus, porcine

reproductive and respiratory syndrome virus, etc.) this may be less relevant. Considering all

indirect edges due to truck sharing and contamination increased the size of the largest WCC

by 58.3%. Similarly, the reachability ratio was more than 2.5 times larger compared to the net-

work with only direct edges. These findings are consistent with previous studies that examine

the effect of truck sharing and contamination on the topology of the network [13,15]. There-

fore, we can surmise that the consideration of additional, indirect ways of disease transmission

will have a substantial effect on the topology of the network and may thus influence how

quickly and how far a disease can transmit. Since the TRP data are only a sample of transport

data, the ICC and OCC values may in reality be even larger.

Together these results provide important insights for the design of disease surveillance and

control strategies. The Swiss pig industry is more fragmented than pig production systems in

other countries, which makes large outbreaks of infectious diseases unlikely. Static network

measures suffer from some serious drawbacks. Most importantly, they tend to overestimate

the overall risk of disease transmission in a network. Addressing the problem with methods

from temporal network analysis allows us to compute more realistic individual and overall risk

measures. Finally, the comparison of networks based on AMD and TRP shows that the
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additional consideration of truck sharing and contamination as indirect ways of disease trans-

mission have a large effect on the topology of the network. Hence, conclusions based on con-

ventional animal movement data such as AMD may underestimate the actual risk of disease

transmission between animal holdings.
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9. Nöremark M, Håkansson N, Lewerin SS, Lindberg A, Jonsson A. Network analysis of cattle and pig

movements in Sweden: Measures relevant for disease control and risk based surveillance. Prev Vet

Med. 2011; 99(2–4):78–90. https://doi.org/10.1016/j.prevetmed.2010.12.009 PMID: 21288583

10. Rautureau S, Dufour B, Durand B. Structural vulnerability of the French swine industry trade network to

the spread of infectious diseases. Animal. 2012; 6(7):1152–62. https://doi.org/10.1017/

S1751731111002631 PMID: 23031477

11. Smith RP, Cook AJC, Christley RM. Descriptive and social network analysis of pig transport data

recorded by quality assured pig farms in the UK. Prev Vet Med. 2013; 108(2–3):167–77. https://doi.org/

10.1016/j.prevetmed.2012.08.011 PMID: 22959427

12. Schärrer S, Widgren S, Schwermer H, Lindberg A, Vidondo B, Zinsstag J, et al. Evaluation of farm-level

parameters derived from animal movements for use in risk-based surveillance programmes of cattle in

Switzerland. BMC Vet Res. 2015; 11(1):1–13.

13. Thakur KK, Revie CW, Hurnik D, Poljak Z, Sanchez J. Analysis of Swine Movement in Four Canadian

Regions: Network Structure and Implications for Disease Spread. Transbound Emerg Dis. 2016; 63(1):

e14–26. https://doi.org/10.1111/tbed.12225 PMID: 24739480
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