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Abstract
Whole exomes of patients with a genetic disorder are nowadays routinely sequenced but inter-

pretation of the identified genetic variants remains a major challenge. The increased availabil-

ity of population-based human genetic variation has given rise to measures of genetic tolerance

that have been used, for example, to predict disease-causing genes in neurodevelopmental dis-

orders. Here, we investigated whether combining variant information from homologous protein

domains can improve variant interpretation. For this purpose, we developed a framework that

maps population variation and known pathogenic mutations onto 2,750 “meta-domains.” These

meta-domains consist of 30,853 homologous Pfam protein domain instances that cover 36% of

all human protein coding sequences. We find that genetic tolerance is consistent across protein

domain homologues, and that patterns of genetic tolerance faithfully mimic patterns of evolu-

tionary conservation. Furthermore, for a significant fraction (68%) of the meta-domains high-

frequency population variation re-occurs at the same positions across domain homologues more

often than expected. In addition, we observe that the presence of pathogenicmissense variants at

an aligned homologous domain position is often paired with the absence of population variation

and vice versa. The use of thesemeta-domains can improve the interpretation of genetic variation.
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1 INTRODUCTION

Next-generation sequencing technologies now allow for the compre-

hensive identification of all genetic variation in an individual, and

exome and genome sequencing are increasingly being used in clini-

cal care to provide a diagnosis for patients with a genetic disorder

(Stark et al., 2016; Stavropoulos et al., 2016). The interpretation of

the large number of genetic variants present in the exome or genome

of a patient is now the major remaining challenge (Gilissen, Hoischen,

Brunner, &Veltman, 2012). Filtering strategies that reduce the number

of candidate disease-causing variants make use of information such as

the occurrence of variants in the normal and in the diseased popula-

tion, knowledge about the role of genes in disease, and the predicted

effect of specific mutations (Venselaar, Te Beek, Kuipers, Hekkelman,

&Vriend, 2010). Algorithms such as Polyphen-2 (Adzhubei et al., 2010)

and CADD (Kircher et al., 2014) are able to predict the pathogenic-

ity of individual variants, but leave room for improvement, especially
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within a clinical context (Masica & Karchin, 2016; Miosge et al., 2015;

Walters-Sen et al., 2015). Other methods have used population-wide

genetic variation fromhealthy individuals that is available in large pub-

lic databases such as the NHLBI Exome Sequencing Project (Fu et al.,

2012) and theExomeAggregationConsortium (ExAC) (Lek et al., 2016)

to constructmetrics that estimate the genetic tolerance of a gene. Var-

ious studies have shown that genetic intolerance of a gene is a strong

indicator for a role in severe human diseases such as intellectual dis-

ability and other neurodevelopmental disorders (Gilissen et al., 2014;

Petrovski, Wang, Heinzen, Allen, & Goldstein, 2013). Metrics such as

RVIS (Petrovski et al., 2013) and pLI (Lek et al., 2016) are now being

used in conjunction with variant pathogenicity prediction algorithms

to improve the interpretation of variants of unknown significance in

patients suffering from these disorders.

The continuous growth of catalogues of human genetic variation

has made it feasible to investigate genetic tolerance at a finer scale,

such as for individual exons of a gene or even domains of a protein. This
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was done, for example, byGussow, Petrovski,Wang, Allen, &Goldstein

(2016) who developed subRVIS and found that tolerance within a

gene varies, and that specific protein domain coding parts of a gene

are sometimes much more intolerant than the whole gene. More-

over, the authors found that intolerance to genetic variation within

genic sub-regions significantly correlates with reported pathogenic

mutations. These patterns of region-specific variation in genetic toler-

ance were also used by Ge et al. (2016) to detect missense-depleted

regions to confirm the pathogenicity of individual variants of unknown

significance.

Since its introduction, one of the applications of BLAST (Altschul,

Gish, Miller, Myers, & Lipman, 1990) was to identify homologous pro-

teins. Mutations at corresponding locations in these homologues were

found to result in similar effects on protein stability (Ashenberg, Gong,

& Bloom, 2013). Protein domains are especially interesting as they

have homologous relationships spanning many proteins. Because of

this, protein domains can alsohavemanyhomologues that occurwithin

the same species. An example of a framework that annotates protein

domains to proteins is Pfam (Finn et al., 2016). The Pfam database is

a large collection of protein domain families represented by curated

multiple sequence alignments (MSAs) and a hidden Markov model

(HMM). In recent work, Miller et al. (2015) combined mutation infor-

mation fromdifferent proteindomainhomologues to identifymutation

hotspots in cancer, andMelloni et al. (2016) used a similar approach to

identify cancer driver mutations;. We hypothesized that genetic toler-

ance found in the regions coding for protein domainsmaybe consistent

across otherwithin-human homologues of that domain and that there-

fore interpretation of variants in a protein domain can be improved by

aggregating population variation over homologous protein domains.

2 MATERIALS AND METHODS

2.1 Mapping of human genomic variation to Pfam

domains

We performed a Protein-Protein BLAST 2.2.31+ (Camacho et al.,

2009) for eachof the longest translations for all 18,651humanprotein-

coding genes in the GENCODE Basic set release 19 GRCh37.p13

(Harrow et al., 2012) to canonical and isoform human protein

sequences in UniProtKB/Swiss-Prot Release 2016_09 (Swiss-Prot)

(Boutet et al., 2016).We then selected the topBLAST resultwith 100%

identity to the query sequence and a BLAST E-value of 0.01 or less.

Pfam-A 30.0 (Finn et al., 2016) protein domains in the matched Swiss-

Prot sequences were annotated using InterProScan 5.20-59.0 (Finn

et al., 2017). ClustalW2 v2.1 (Larkin et al., 2007) was used to create

pair-wise alignments between the gene translations and Swiss-Prot

sequences. The resulting alignment was then used to map genomic

variation onto residues in Swiss-Prot protein sequences.

2.2 Datasets of population variation and

disease-causingmissense variants

Population variation was obtained from the ExAC v0.3.1 dataset (Lek

et al., 2016) by selecting all synonymous and missense variants with

the PASS filter criteria. For the creation of meta-domains, we consid-

eredmissense variants fromExACwith an allele frequency> 0.1%. For

validationpurposes,wealsoused twoadditional sets of ExACmissense

variants having>0.5% and>0.05% allele frequency.

We selected a set of disease-causing missense variants from the

Human Gene Mutation Database (HGMD) 2016.2 (Stenson et al.,

2014) thathavedisease-causing (DM) status,whichwere subsequently

filtered by removing all variants that are identical to PASS variants in

ExAC with >0.1% allele frequency. This filtering reduced the original

set ofHGMDDMmissense variants by0.17%. In addition,weusedmis-

sense variants fromClinVar (downloaded forGRCh37on2017-06-15),

with disease-causing (Pathogenic) status, as an additional validation to

HGMD DM variants. The filtering of identical PASS variants in ExAC

with>0.1% allele frequency, that was used for theHGMDDMset, was

applied to this set as well.

2.3 Aggregation of genetic variation onto

meta-domains

In order to aggregate genetic information over protein domain homo-

logues, we considered each Pfam identifier found in more than one

gene as a within-human homologue. In this study, when we mention

homologous protein domains, or domain homologues,we refer toPfam

protein domains that are homologous in the protein-coding regions of

the human genome. For each domain found this way, we retrieved the

PfamHMM and the domain protein sequence.We used all the domain

sequences that had the same Pfam identifier, together with the Pfam

HMM, to generate a MSA using the HMMER 3.1b2 tool (Finn et al.,

2015).Weused thisMSA to combine genetic variants found in homolo-

gous protein domains thatwere aligned to the samePfamdomain posi-

tions. Variations on Swiss-Prot residues in insertions with respect to

the Pfam domain MSA were ignored. The percentage of homologous

domains aligned to a position (MSA coverage) was determined based

on the number of gaps with respect to the Pfam domain.

2.4 GeneOntology Biological Process enrichment

analysis in protein domains

Gene Ontology Biological Process (GOBP) enrichment analysis was

performed using the R package dcGOR 1.0.6 (Fang, 2014).

2.5 Computing genetic tolerance via themissense

over synonymous ratio

We use the non-synonymous over synonymous ratio, or dN∕dS score,
to quantify genetic tolerance in genes and domains. In our setting, this

score is based on the single nucleotidemissense and synonymous vari-

ants (SNVs) from ExAC in a protein-coding region (missenseobs and

synonymousobs). This score was corrected for the sequence com-

position of the protein coding region based on the total possible

missense and synonymous SNVs (missensebg and synonymousbg):

dN∕ dS =
missenseobs∕missensebg

synonymousobs∕synonymousbg
.
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2.6 Consistency of genetic tolerance across protein

domain homologues

We calculated the median absolute deviation: MAD(x) =
median( | dN∕dS(xi) −median(dN∕dS(x)) | ) to measure whether

genetic tolerance scores are consistent across homologous domains.

For each domain occurrence “xi” of a homologous domain group

“x” we calculate the difference of dN∕dS score to the median. The

median of all these differences is then computed as the MAD. The

minimal and optimal value of the MAD score is zero, meaning that

no score deviates from the median. To test whether the MAD score

per homologous domain group is significantly different from another

randomly selected group of homologues, we permuted the MAD

scores for each homologous domain group using the dN∕dS score of

each member in that group and comparing it to the median dN∕dS of
another homologous domain group that we selected via the numpy

function random.permutation in Python. This permutation test was

repeated 10,000 times.

2.7 Evolutionary conservation and population

variability

Wemeasured sequence conservation via the relative entropy per posi-

tion (Sander & Schneider, 1991) in a multiple sequence alignment

(MSA) to compute the evolutionary conservation and population vari-

ability: relative_entropy (j) =
−
∑20

R fRj lnfRj
ln20

. Here, “j" is an aligned posi-

tion, “R" is the amino acid residue type, “fRj " is the frequency of how

often a residue of type “R" occurs at position “j." The relative entropy

ranges from 0.0 to 1.0 for conserved to variable. We used the Pfam-

A full alignment for each Pfam domain to compute evolutionary con-

servation. We used our mappings to assess population variability by

extracting missense and synonymous variants and their respective

allele frequencies from ExAC to compute the “fRj " variable. To achieve

a sufficiently highMSA resolution and certainty of correct entropy we

only considered positions for computing the relative entropy that had

at least 25 sequences with 80%MSA coverage.

2.8 Quantifying patterns ofmissense variants in

meta-domains

We created a metric to quantify how often a consensus position in a

meta-domain contains identical missense variants (i.e., two or more

homologous domains wherein the aligned residues both are identical

in reference and alternative amino acid residues). We call this metric

the characteristic missense variant score: CMVS =
Lx∑
j

Cx[j]
Mx[j]

. Here “Lx”

is the size of meta-domain “x,” “j” is an aligned domain position, “Mx[j]”
are the number of missense variants found in all domain homologues

aligned to position “j” and “Cx[j]” are the number of missense variants

in “Mx[j]” that are of identical change in amino acid (i.e., that have iden-

tical reference residues and change to the same alternate residue). The

NCMVS = CMVS
Lx

normalizes the CMVS with respect to the domain

size.

We assigned values of significance to patterns of missense vari-

ants observed in meta-domains by comparing these to permuted

meta-domains resulting from Monte Carlo experiments. In these

experiments,we shuffledmissense variants in each domain occurrence

“xi.” To perform this shuffling, we first estimated the probability of a

missense variant to occur in “xi” via
Mxi
Lxi

ifMxi > 0, else 1
Lxi

, where “Lxi ”

are the number of aligned residues and “Mxi ” are the number of mis-

sense variants found in domain “xi.” Then we estimated the probabil-

ity for any missense variant to occur on an aligned position “j" by con-

sidering the codon of that position with respect to the codon table:
# possiblemissense(xi[j])

9
. Finally, we distributed missense variants on the

domain occurrence by combining these two probabilities and assess-

ing each possible missense variant. The distribution of missense vari-

ants was subsequently used to reconstruct a permuted meta-domain

over 1,000 experiments for eachmeta-domain.

The patterns of missense variants across homologues were then

tested for significance in two different ways. First, we computed per

aligned position the ratio of missense variants observed in contrast

to the number of domain occurrences aligned. We checked if a posi-

tion is significantly enriched for either the reference allele or the mis-

sense variant allele as compared with the same position in the per-

muted meta-domains. We report the meta-domains for which more

than 75%of the positions are significantly different from the permuted

meta-domains. Secondly, we tested whether the entire meta-domain

is significantly enriched for identical variants via NCMVS as compared

with the permuted meta-domain. In both cases, we made our compar-

isons with theWelch's t-test and used Bonferroni correction for multi-

ple testing.

3 RESULTS

In total 16,684 GENCODE genes were mapped to Swiss-Prot pro-

tein sequences and annotated with protein domains from Pfam (Meth-

ods). We found 5,250 Pfam domains spanning 33,638 domain occur-

rences in these genes, of which 30,853 made up 2,750 within-human

Pfamdomainhomologues (Supp. Table S1).We found961Pfamdomain

homologues to occur in exactly two different genes and, on average,

a within-human homologous protein domain occurs in at least six dif-

ferent human genes. The most prevalent domains were the “KRAB

domain” (PF01352), “Zinc finger, C2H2 type” (PF00096) and “Protein

kinase domain” (PF00069), each being present inmore than300differ-

enthumangenes. Pfamproteindomains coveredapproximately41%of

coding sequences of the 16,684 genes. In total 1,493,414 synonymous,

2,892,092missense variants fromExAC, 58,968DMmissense variants

from HGMD, and 14,016 Pathogenic missense variants from ClinVar

are present in the coding regions of our set of genes. 71% of disease-

causing missense variants from HGMD and 72% pathogenic missense

variants fromClinVar occur in Pfam domain regions (Supp. Table S2).

3.1 Tolerance to genetic variation of protein

domains

Regions that code for protein domains are sometimes much less toler-

ant than thewhole coding regionof a gene (Gussowet al., 2016). There-

fore, we first wanted to test how similar tolerance patterns in protein
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domains are to their respective genes. We used the population-based

variation from ExAC to compute the ratio of missense over synony-

mous variants (dN∕dS). This, we used as ameasure of genetic tolerance

scores for all genes and Pfam domains (Supp. Data S1 and S2; Meth-

ods). We compared the tolerance measured in genes of different gene

sets that are known to have a particular pattern of genetic tolerance

(Gilissen et al., 2014), to the tolerance of the regions with protein

domains in these genes. We found that protein domains in genes

known as intolerant, such as housekeeping genes (Zhu, He, Song,

Wang, & Yu, 2008) and genes involved in neurodevelopmental disor-

ders (Lelieveld et al., 2016), are indeed intolerant too (Welch's t-test

P= 4.33e−61 and P= 5.24e−57, respectively; Supp. Tables S3 and S4).
Conversely,we found that domains in genes that are known tobe toler-

ant to protein truncating variation and variation in general (MacArthur

et al., 2012) are also tolerant to missense variation (Welch's t-test

P = 7.42e−23; Supp. Tables S3 and S4; Figure 1a and b). Thus, we find

that protein domains have a similar trend of tolerance as their genes.

After establishing that genetic tolerance of a domain mimics that

of its respective gene we wondered whether dN/dS scores are consis-

tent across domain homologues.Weused theMADcomputed over the

homologues of a domain to test for the consistency of genetic toler-

ance (Supp. Data S3;Methods). We find that 2,741 out of 2,750 (99%)

aggregated homologues show a consistent pattern of dN/dS scores as

compared to whatmay be expected by chance (Welch's t-test P< 0.05,

Bonferroni corrected; Methods; Supp. Table S5; Figure 1c). The most

consistently intolerant domain was the “SRF-type transcription fac-

tor (DNA-binding and dimerisation domain)” (PF00319) whereas the

“Keratin, high-sulphur matrix protein” (PF04579) is the most consis-

tently tolerant domain (Supp. Tables S6 and S7). These results show

that domains have tolerance patterns that are consistent over homo-

logues, and thus that genetic variation in one protein domain is there-

fore not fully independent from the variation measured in the homo-

logues of that domain. This potentially allows us to aggregate variant

information across protein domain homologues.

Interestingly, enrichment analysis for GOBP on the top 5% of most

intolerant domains (n = 134) found that these are strongly enriched

for biological processes such as chromatin condensation, chromo-

some organization, and DNA packaging (P = 5.90e−08, P = 7.10e−05,
P = 1.10e−05, respectively; Supp. Data S4). This connection to chro-

matin remodeling has also been observed among dominant genes

for neurodevelopmental disorders (Gilissen, Hoischen, Brunner, &

Veltman, 2011; Hendrich & Bickmore, 2001; Spielmann & Mundlos,

2016).

3.2 Population variability across domain

homologuesmimics evolutionary conservation

Although many methods have made use of population-based genetic

variation to assess genetic tolerance, it has remained unclear to what

extent population variability complements information from evolu-

tionary conservation.Within-humanprotein domain homologues offer

the unique opportunity to answer this question. We compared the

consistency of population-based genetic variation with evolutionary

conservation across homologous domain positions by investigating

81 Pfam domains that have at least 50 homologous instances in our

set of human protein-coding genes, twice of what we need to ensure

high-quality alignments (Methods). In total, for 6,536 positions of these

81 domains, we measured relative entropies based on population

and evolutionary variation in 14,059 human domain instances. We

observe a high degree of correlation between these two groups (Pear-

son = 0.97, P value < 1e−308; Methods; Figure 2a). We validated

this result further by splitting the population-based entropies evenly

into two separate groups, each consisting of 25 or more homologous

instances. This way we can test for any noise in the computation of

within-human conservation. Again, the relative entropies results in

an almost perfect correlation (Pearson = 0.96, P value < 1e−308;
Figure 2b). These results show that variation in the human population

measured across homologous protein domains faithfully mimics evo-

lutionary conservation, thereby providing support for our proposed

approach to aggregate genetic variation across domain homologues.

To establish whether population variation adds additional infor-

mation for variant interpretation compared with evolutionary con-

servation, we assessed how disease-causing and population-based

missense variants are distributed with respect to evolutionary

conservation. We expected to find that positions containing disease-

causing variants are conserved in general, whereas positions with

genetic missense variants common in the human population are

expected to be variable. Therefore, we investigated 17,195 positions

in 1,079 Pfam domains with 31,732 disease-causing missense vari-

ants from HGMD. Contrary to what we expected, more than 54%

of the positions with a disease-causing missense variant were found

to be evolutionary variable with a relative entropy of 0.5 or higher

(Figure 3a). The local maxima, observed between 0.0 and 0.1 relative

entropy in Figure 3a, was expected to degrade gradually for higher

levels of entropy. As this is a measurement on protein domains, we

hypothesize that this local maxima is caused by mutations that affect

active site residues. In line with our expectations, when we performed

the same analysis for positionswithmissense variants that have>0.1%

allele frequency in ExAC, we found that 77% of these positions are

highly variable (Figure 3b). These results highlight that evolutionary

conservation is not the perfect indicator for pathogenicmutations, and

that population-based genetic tolerance scoresmay function as a com-

plementary approach in variant interpretation.

3.3 Creation ofmeta-domains by aggregating

genetic variation over domain homologues

Based on our results that genetic variation is consistent across human

protein domain homologues, and that population-based genetic varia-

tion correlates faithfully with evolutionary conservation, we hypoth-

esized that genetic variation can be aggregated across homologous

domains to provide a more detailed map of genetic variation. Hence,

we projected disease-causing and population-based missense varia-

tion found in human protein domains onto Pfam domain consensus

positions giving rise to a “meta-domain” (Methods; Figure 4). In total,

we successfully projected 20,404 population-based missense vari-

ants with >0.1 % allele frequency from ExAC, 35,069 disease-causing

missense mutations from HGMD, and 8,569 pathogenic missense
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F IGURE 1 Tolerance in genes, domains, and domain homologues.A: Tolerance to normal genetic variation asmeasured via the dN/dS ratio (Meth-
ods). A higher dN/dS ratio means that the gene is more tolerant to genetic variation and vice versa. From left to right, data are presented for all
16,684 genes (blue), 398 genes involved in neurodevelopmental disorders (green) (Lelieveld et al., 2016), 361 housekeeping genes (red) (Zhu et al.,
2008), and 157 loss-of-function tolerant genes (purple) (MacArthur et al., 2012). All groups are significantly different (Supp. Table S3). B: As (A)
with the exception that the dN/dS ratio is now computed only for domain regions. All 33,638 domains (blue), 1,302 domains in genes involved in
neurodevelopmental disorders (green), 811 domains in housekeeping genes (red), and 358 domains present in loss-of-function tolerant genes (pur-
ple). All groups are significantly different (Supp. Table S4).C: The consistency of dN/dS scores across homologous domains computed via theMADof
the dN/dS (Methods). The lower theMAD score the more consistent is the dN/dS ratio. There are 2,750 Pfam domains that have homologues in our
set of genes with a total of 30,853 occurrences (blue). Of the Pfam domains, 383 have a homologue occurring in a gene involved in neurodevelop-
mental disorders (green), 223 have a homologue occurring in a housekeeping gene (red), and 178 have a homologue occurring in a loss-of-function
tolerant gene (purple). The permuted domains (yellow) consists of 27,500,000 permutatedMAD scores that resulted by computing theMAD score
using the median dN/dS of another Pfam domain (Methods). All groups have been found significantly different from the permuted domain group
(Supp. Table S5). The impact of different domain sizes on theMAD score is minimal (Supp. Figures S5 and S6)
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F IGURE 2 Evolutionary conservation andwithin-human conservation in Pfamdomains. For 81domains that have 50ormore homologueswithin
the human genome, we computed the relative entropy to measure the conservation of amino acid residues per position in these domains for both
evolutionary conservation based on Pfam and within-human conservation based on ExAC (Methods). In both plots, the x-axis and y-axis represent
the relative entropy for a single position in a domain that ranges from 0.0 to 1.0; conserved to variable.A: On the y-axis evolutionary conservation
is represented by the relative entropy per position based on Pfam. The x-axis shows variabilitymeasured solely in the human genome, based on rel-
ative entropy computed from ExAC. These twomeasurements show almost perfect correlation. (Pearson correlation coefficient= Pearson= 0.97,
P value < 1e−308). B: A validation of the results presented in Awhere we split the relative entropy measured solely in the human genome in two,
hereby comparing the conservation solely between human protein domains. Again we observe an almost perfect correlation (Pearson correlation
coefficient= 0.96, P value< 1e−308)

F IGURE 3 Number of missense variants per position in a meta-domain in perspective of conservation. Plotted here is the binned distribution of
positions that contain one or moremissense variant of interest with respect to the evolutionary conservation of the position where these variants
occur. The x-axes are denoted by “Relative entropy (Pfam)” and the y-axes aremarked as the overall percentage of these positions. The figure shows
that disease-causing missense variants also affect very variable sites. A: 17,195 different positions spanning 1,079 Pfam domains. On these posi-
tions, 31,732 disease-causing missense variants fromHGMDwere found in 22,651 domain occurrences in the human genome. Of these positions,
54% have relative entropy 0.5 or higher.B: 13,571 different positions spanning 1,965 Pfam domains. On these positions, 17,258missense variants
with an allele frequency above 0.1% in ExACwere found in 27,767 domain occurrences. 77% of these positions have relative entropy 0.5 or higher

mutations from ClinVar (Supp. Data S5;Methods). We tested whether

there was any overlap between the pathogenic and population-

based missense variants on aligned positions by comparing HGMD

DM with ExAC and found a negative correlation (Pearson = −0.51,
P value < 1e−308; Supp. Figure S1) indicating that disease-causing

missense variants at aggregated domain positions often are paired

with the absence high-frequency population missense variants and

vice versa. This suggests that the information annotated to the meta-

domains may be used to enhance variant interpretation.

To further confirm that aggregation of variants to Pfamdomain con-

sensus positions is meaningful, we perform two separate analyses. We

first performed Monte Carlo experiments to test whether missense

variants re-occur at the same position in domain homologues more

often than could be expected by chance. We find that high-frequency

population missense variants in 68% of the meta-domains re-occur at

the majority of the aligned positions, and that this is significantly dif-

ferent from what may be expected by chance (Bonferroni corrected

P < 0.05 Welch's t-test; Supp. Data S6 and S7; Methods). Similarly, we

find thatHGMDDMandClinVar Pathogenicmissense variants, in 65%

and 62% of the meta-domains respectively, re-occur at the majority

of the aligned positions (Bonferroni corrected P < 0.05Welch's t-test;

Supp. Data S6 and S7). This analysis shows that the re-occurrence of
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F IGURE 4 Meta-domain construction in a schematic representa-
tion. Genetic information is aggregated into a meta-domain based on
domain homology. A: In this specific example, there are three human
proteins (indicated by the gray bars) with four domains that are found
to have the same Pfam domain identifier and therefore belong to the
same homologous domain group (indicated by A, B, C, and D). Red ver-
tical lines in these domains indicatemissense variants. There are other
domains found in these proteins, but these are not further used in
this specific example. B: The homologous domains together with their
respective missense variants are extracted from the proteins and are
aligned according to the Pfam domain. Based on the alignment, the
missense variants are then aggregated into a meta-domain. Some of
thesemissense variantswere aligned to the sameposition, in themeta-
domain this is expressed with a higher blue column

missense variants found at aligned positions over all domain homo-

logues follows a non-random pattern.

In our second analysis, again we performMonte Carlo experiments

and compute for each meta-domain our NCMVS metric to quantify

how many missense variants, which re-occur at the same position,

are also of identical change in amino acid (Methods). This way we find

that high-frequency population missense variants in 21% of the meta-

domains have significantlymore variants of identical change at aligned

positions across homologues as compared to what may be expected

by chance. The pathogenic missense variants from HGMD DM and

ClinVar Pathogenic datasets show a similar signal, with 23% and 18%

respectively, of themeta-domains having anenrichedNCMVS (Bonfer-

roni correction P < 0.05 Welch's t-test; Supp. Data S7; Methods). This

second analysis shows that the change in amino acid of missense vari-

ants found over all domain homologues is for a large set of domains

more often identical than what may be expected by chance.

The results of these two analyses find that missense variation in

domains follow a non-random pattern. Such a non-random pattern in

pathogenic variants suggests that specific positions in domains are

more likely to have a pathogenic effect via missense variants as com-

pared to other positions. Conversely, finding a non-random pattern

for re-occurring high-frequencypopulationmissense variants provides

insight into positions that are genetically tolerant. These findings sup-

port our hypothesis that variant information can be aggregated across

homologous domains, and that aggregation may help to interpret vari-

ants of unknown significance.

3.4 Investigating ameta-domain in detail

To illustrate how these meta-domains can straightforwardly be used

to improve variant interpretation we investigated onemeta-domain in

detail; the “EGF-like domain” (PF00008). This domain has 244 homol-

ogous occurrences in 60 different human genes (Figure 5). The “EGF-

like domain” has the second highest NCMVS in the context of HGMD

DM missense variants, and the 13th highest based on high-frequency

population variants (Supp. Data S7). This suggests that the majority

of variants often re-occur at aligned positions across the 244 homo-

logues as identical changes in amino acids. Based on what is known

from EGF-like domains, any changes to the conserved cysteines will

cause loss of a stabilizing disulfide bond that are necessary for the

structure of the domain (Wouters et al., 2005). As expected, we find

that the highly conserved cysteines are indeed enriched for disease-

causing variants across the 244 homologues. Furthermore, all of the

conserved cysteines are depleted for population-based missense vari-

ants, with the exception of consensus position six, confirming the

importance of these residues. For consensus position six we observe

that population variation is present in only one homologue. This spe-

cific variant in NOTCH4 (p.Cys815Gly, rs150079294) has an allele fre-

quency 0.1632% in ExAC. dbSNP suggests that this variant is benign

based on a single study (Chassaing et al., 2016; Sherry et al., 2001),

whereasour results further support thenotion that this variant is prob-

lematic for this domain because of almost complete absence of com-

mon variation across the homologues. Even more interesting are the

positions that are not evolutionary conserved (>0.6 relative entropy),

but nevertheless depleted of population-based missense variation. In

this “EGF-like domain” example, we find one such position at 21. In

support of our hypothesis, we find multiple disease-causing missense

mutations in different homologous domains at this position. We find

that these disease-causing mutations have been previously linked to

CADASIL (OMIM#125310, p.Tyr337Cys, p.Tyr1021Cys, p.Tyr1069Cys

in NOTCH3 (Q9UM47). CADASIL is an adult-onset autosomal domi-

nant hereditary stroke disorder (Joutel et al., 1996). Other mutations

aligned to this consensus position are p.Tyr690Asp in JAG1 (P78604)

associated with Biliary atresia extrahepatic (OMIM %210500), a dis-

order in infants that is fatal within the first two years of life when

untreated (Bates, Bucuvalas, Alonso, & Ryckman, 1998; Leyva-Vega

et al., 2010), and p.Arg628Cys in CRB2 (Q5IJ48) associated with

Nephrotic syndrome steroid resistant (OMIM #616220), a childhood

onset renal disorder (Ebarasi et al., 2015).

These results illustrate howmeta-domains canbe straightforwardly

used to improve the interpretation of genetic variants of unknown sig-

nificance. We have made our mapping of genomic positions to meta-

domain identifiers and consensus positions available for the wider

genetic community tomake use of in Supp. Data S8.

4 DISCUSSION

Here, we combined two distinct concepts into a novel method for vari-

ant interpretation. Firstly, we used the observation that mutations at

aligned positions in homologous proteins commonly lead to the same
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F IGURE 5 Anexample of theEGF-like domain, represented as ameta-domain. The “EGF-like domain” (PF00008) occurring in 60different human
genes found to be significantly enriched for identical disease-causing missense variants across 244 homologues. x-axis shows the amino acid posi-
tions of this domain. The green bars in the top panel indicate howmany missense variants with >0.1% allele frequency from ExAC are found over
the 244 homologous domains. The black bars indicate the number ofmissense variants that are of identical chance in amino acid (i.e., having identi-
cal reference and alternate residues). The middle panel denotes the PfamHMM sequence logo generated via the Skylign tool (Wheeler, Clements,
& Finn, 2014) where the height of each stack of residues indicates the relative entropy for that position. The thin red vertical lines in the sequence
logo denote regions prone to contain deletions and the orange lines are regions prone to insertions based on the PfamHMM. In the bottom panel,
red bars indicate the number of a disease-causing variant found across the 244 homologous domains. Black bars again indicate identicalmutations.
A comparison with ClinVar wasmade as well, albeit the dataset is much sparser as compared to HGMD (Supp. Figure S7)

or similar effects on those proteins’ structure and function. Secondly,

large datasets of population scale exome data have made it possible to

determine the degree of intolerance to genetic variation for individual

genes in order to identify potential disease genes. We combined these

two concepts by aggregating population variation across homologous

protein domain positions and thereby achieving single base resolu-

tion for genetic intolerance. As genetic data accumulates in the coming

years, our method will become more and more accurate in predictions

of intolerance at the single base pair level (Supp. Figures S2 and S3).

To quantify genetic tolerance in genes, protein domains and domain

homologues (Figure 1) we made use of the dN/dS score rather than

other well-established tolerance scores such as pLI (Lek et al., 2016),

RVIS (Petrovski et al., 2013), and subRVIS (Gussow et al., 2016). The

dN/dS metric was originally intended for detecting selective evolution-

ary pressure in protein-coding regions and genomes (Li, Wu, & Luo,

1985; Yang & Bielawski, 2000; Yang et al., 2000), and has previously

been used by us and others to measure genetic tolerance and predict

disease genes (Ge, Kwok, & Shieh, 2015, 2016; Gilissen et al., 2014).

Our choice for this scorewasmotivated by the fact that thementioned

tolerance scores typically capture a more general notion of tolerance

to genetic variation and are not designed tomeasure tolerance for any

specific genic region of interest.

Contrary to our expectations we found that 54% of disease-causing

missense variants are evolutionary variable. There are some expla-

nations why we find this result: Firstly, we did not take into account

whether disease-causing variants asserted their effect in a dominant

or a recessive fashion. We know that mutations in dominant disease

genes are in general more conserved than mutations in recessive

genes. Secondly, we know that not all disease-causing variants have

the same severity in terms of fitness. For example, mutations causing

infertility will be much more selected against than mutations causing

genetic deafness. Thirdly, a large percentage of HGMD DM variants

used to be present in recent population databases and may therefore

be incorrect (Cassa, Tong, & Jordan, 2013). Although in the version we

used this number was significantly reduced, some may still be present

(Abouelhoda, Faquih, El-Kalioby, &Alkuraya, 2016; Pinard et al., 2016).

Finally, our comparison does not account for unobserved (potentially

lethal) variants, as many of these variants are likely to have never been

observed, nor ever will be.

In our meta-domains, we tested whether high-frequency missense

variants with an allele frequency > 0.1% in ExAC are repeatedly

enriched or depleted on Pfam domain consensus positions. This strict

cut-off of 0.1% may cause us to miss variants with allele frequen-

cies smaller than 0.1% at corresponding positions in homologues. We
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choose this cut-off in order to exclude the possibility of artifacts in the

ExAC database, and for increasing the likelihood that variation is truly

benign. Setting a stricter threshold such as 0.5% decreases the num-

ber of ExAC missense variants in meta-domains by 56%. Allowing for

a less stringent cut-off will add a substantial amount of genetic vari-

ation to our model that would improve our sensitivity, but likely at the

cost of specificity (Supp. Figure S4 and Supp.Data S9).Weexpect there

is still much to be gained from these “rare” variants found in popula-

tion cohorts. Furthermore, we note that by aggregating genetic varia-

tion, the specific context such as haplotype information or interactions

with other proteins may be lost. An aggregation may only encapsu-

late general biological ormolecular functions attributed to the domain.

Nonetheless, we believe these meta-domains can be used to better

interpret variants of unknown significance simply based on our pre-

calculated meta-domains (Supp. Data S5 and S8), but also by incorpo-

rating these results in existingmethods for variant effect prediction.
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