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DNA methylation as a pharmacodynamic
marker of glucocorticoid response and
glioma survival

J. K. Wiencke 1 , Annette M. Molinaro 1, Gayathri Warrier 1, Terri Rice1,
Jennifer Clarke 1,2, Jennie W. Taylor 1,2, Margaret Wrensch1, Helen Hansen 1,
Lucie McCoy 1, Emily Tang 3, Stan J. Tamaki4, Courtney M. Tamaki4,
Emily Nissen 5, Paige Bracci3, Lucas A. Salas 6, Devin C. Koestler5,
Brock C. Christensen6,7,8, Ze Zhang 6 & Karl T. Kelsey 9,10

Assessing individual responses to glucocorticoid drug therapies that com-
promise immune status and affect survival outcomes in neuro-oncology is a
great challenge. Here we introduce a blood-based neutrophil dexamethasone
methylation index (NDMI) that provides a measure of the epigenetic response
of subjects to dexamethasone. This marker outperforms conventional
approaches based on leukocyte composition as a marker of glucocorticoid
response. TheNDMI is associatedwith lowCD4T cells and the accumulationof
monocytic myeloid-derived suppressor cells and also serves as prognostic
factor in glioma survival. In a non-glioma population, the NDMI increases with
a history of prednisone use. Therefore, it may also be informative in other
conditions where glucocorticoids are employed. We conclude that DNA
methylation remodeling within the peripheral immune compartment is a rich
source of clinically relevant markers of glucocorticoid response.

Cortisol and synthetic glucocorticoid analogs activate intracellular
glucocorticoid receptors (GR) and modulate many physiologic pro-
cesses. Processes affected include carbohydrate and lipidmetabolism,
stress, and immune responses1. Because of their potent effects on
immune cells, glucocorticoids have long been the most widely pre-
scribed class of anti-inflammatory and immunosuppressive drugs2.
However, glucocorticoid-treated patients may exhibit resistance or
experience a wide range of adverse side effects. Our understanding of
these risks is incomplete3,4. To account for individual variability, bio-
markers have been developed that integrate variations in glucocorti-
coid exposure and response5. Several well-established safety concerns

of glucocorticoids have been addressed with markers bridged to
clinical outcomes, namely: adrenal suppression, insulin resistance, and
accelerated bone turnover6–9. In the management of brain tumor
patients, the synthetic glucocorticoid dexamethasone (DEX) is a
mainstay for control of peritumoral edema, helping to alleviate
symptoms due to high intracranial pressure or presence of tumor/
edema in eloquent areas of brain10. No randomized controlled trials
have specifically addressed DEX. However, its’ use in glioma patients
has been associated with poor survival11–13 and compromised response
to immunotherapy14–16, There are no established markers to assess
these risks, although altered blood leukocyte composition has been
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used to mark glucocorticoid-related immunosuppression17–19. Deple-
tion of circulating lymphocyte numbers20–23 and expansion of neu-
trophils and immunosuppressive myeloid cell populations24,25,
including monocytic myeloid-derived suppressor cells (mMDSC)26,27,
have been documented in DEX exposed brain tumor patients.
Although blood leukocyte compositions are sensitive to glucocorti-
coid exposures, they lack specificity, as tumor inflammation and che-
moradiation also directly affect them28. In our search to uncover more
specific markers of glucocorticoid response, we turned to recent epi-
genetic studies showing that cell-specific chromatinmodifications play
a pivotal role in determining the genomic effects of
glucocorticoids29,30. Cell-specific actions of glucocorticoids have been
linked to highly accessible chromatin domains located preferentially
within distal enhancer elements that are intrinsic to cell lineage31.
Glucocorticoid alterations of DNAmethylationmay be integral to their
genomic effects32,33. Because DNA methylation is a chemically stable
endpoint and easy to access in peripheral blood, it is an attractive
potential marker for glucocorticoid pathway activation. Previous stu-
dies of DNA methylation and glucocorticoids focused on a limited
number of genes and cytosine guanine dinucleotide (CpG) loci in the
context of neurodevelopmental and stress-related outcomes34,35. Fur-
thermore, prior research did not take advantage of the cell-selective
nature of glucocorticoid-mediated genomic effects. Comparative gene
expression studies showed that, among different hematopoietic cell
types, neutrophils exhibited the most pronounced transcriptional
response to glucocorticoid treatments36. In severe COVID-19 subjects
DEX induced profound transcriptional remodeling and induction of
immunosuppressive neutrophil states37.

In this work, we explore DNA methylation as pharmacodynamic
markersofDEXexposure in adult gliomapatientswhohad and hadnot
been given the drug as part of their routine care. We employ a bioin-
formatic approach to discover and assess DEX-related neutrophil-
specific DNA methylation as a marker of in vivo glucocorticoid expo-
sure and response, the neutrophil dexamethasone methylation index
(NDMI). Our results indicate that blood DNA methylation can accu-
rately discriminate DEX exposed and non-exposed subjects and that a
methylation marker targeting blood neutrophils performs better than
a marker based on altered blood leukocyte composition in char-
acterizing individual glucocorticoid response. We also explore the
association of NDMI scores with blood counts of CD4 T cells and
mMDSC and show that neutrophil-specific methylation markers of
DEX exposure serve as prognostic factors in brain tumor survival.

Results
Neutrophil-specific and non-cell-specific DNA methylation
induced by DEX
Clinical and demographic characteristics of our study groups and
study design are presented (Fig. 1a; Supplementary Table 1). After
modeling all cell types using CellDMC, we identified 2621 CpG probes
that displayed statistically significant (p <0.01) interactions with neu-
trophil proportions and one CpG that indicated significant interaction
(p < 0.01) with B-cell proportions (Figs. 1b, 2a, Supplementary Data
File 1). The predominant effect of DEX was hypomethylation. Another
subset of 17,733 loci was affected by DEX but not in a cell-specific
fashion (i.e., non-cell-specific methylation).

Genomic and functional features of neutrophilic DEX respon-
sive loci
To test whether neutrophil-specific CpGs follow pre-established and
lineage-specific DNA methylation patterns, we explored the methyla-
tion levels of DEX-responsive loci in isolated non-exposed neutrophils
and other immune cell types. DEX-related neutrophil loci displayed
intermediate levels of methylation. These loci were partially deme-
thylated in unexposed neutrophils and other myeloid cells (basophils,
eosinophils, monocytes), whereas, in lymphocytic cell types (CD4 T,

CD8 T, NK cell), they were hypermethylated (Fig. 2b). Interestingly,
some B-cell loci were partially demethylated, which appeared related
to their naïve and memory differentiation status. The average methy-
lation beta values of DEX loci in neutrophils weremarkedly lower than
lymphoid cells. Similarly, other myeloid cells (eosinophils, basophils,
and monocytes) demonstrated lower beta values than lympho-
cytes (Fig. 2c).

Mapping the genomic locations of neutrophil-specific loci
revealed overlap atGR binding sites and occurred preferentially within
introns, enhancers, and in a non-CpG island context (Fig. 3a). Gene
ontology (GO) analyses indicate enrichment among 100 genes for
neutrophil activation and granule biology (Fig. 3b). Comparing these
enriched GO-associated genes with published 11 RNA co-expression
modules (EM1-11) in human bone marrow myelopoiesis38 revealed a
close correspondence of 21 differentially methylated genes with one
co-expression module (designated EM6 Fig. 3c) that was maximally
transcribed at the metamyelocyte and band stages (Fig. 3d).

Machine learning approach to DEX predictors using leukocyte
composition and DNA methylation
DEX associated alterations in blood leukocyte composition in the
training dataset followed expectations based on historical experience
with glucocorticoids: increases in neutrophil proportions and
decreases in lymphocytes were observed in DEX exposed subjects
(Supplementary Table 3). Although absolute monocyte counts were
marginally increased, monocyte proportions were not significantly
higher in DEX exposed subjects. Elastic net regularizedmodelswerefit
using all six cell proportions and the ratios of neutrophil/lymphocytes,
CD4/CD8 T cells, and lymphocytes/monocytes for DEX exposed and
non-exposed subjects. The resulting blood leukocyte composition
index contains five parameters (neutrophil, monocyte, NK and CD4
T-cell proportions, and neutrophil/lymphocyte ratio), along with their
regression coefficients. Elastic netmodels were also constructed using
the 2621 neutrophil-specific and 17,733 non-cell-specific methylation
loci. The elastic net model fit to the 2621 neutrophil-specific DEX
associated loci resulted in 28 CpGs with non-zero coefficients. A clas-
sifier, termed the neutrophil dexamethasone methylation index
(NDMI), was created based on these 28 CpGs and is defined as follows:

p = Probability of being a Dex User =
1

1 + e�NDMI
ð1Þ

NDMI = β0 + ðβ1 * cg00052684ð Þ
+ ðβ2 * cg01994208ð Þ + � � � � � � + ðβ28 * cg27094376ð Þ ð2Þ

The NDMI contains well-known glucocorticoid targets of deme-
thylation suchasFKBP5 andZBTB16 andotherswith lesswell-described
roles inglucocorticoid response (Supplementary Table4). Entering the
28 sites into the eFORGE program revealed a significant over-
representation of the enhancer chromatin mark H3K1me3 in primary
humanmonocytes but not in T or B cells or other hematopoietic cells;
neutrophils are not represented in the eFORGE reference database
(Supplementary Fig. 1). NDMI loci were often sites (16/28) for tran-
scription factor binding, including Ikaros (IKZF1, IKZF2), MYC, and
MAX, which can form multi-protein repressive complexes (Supple-
mentary Table 7, Supplementary Data File 2). In contrast to the larger
set of neutrophil genes identified in GO analysis, the 16 genes repre-
sented in the NDMI do not overlap with the EM6 bone marrow co-
expression module and instead display maximal transcription during
the earliest and late stages of neutrophil maturation (Fig. 3e). The
predictor based on 61 non-cell-specific CpGs is termed the non-cell-
specific predictor. The components of each predictor are summarized
(Supplementary Table 5).
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Sources of variation in NDMI scores include age, a history of
prednisone use and baseline NDMI status
We estimated potential technical error in NDMI measurements using
replicate methylation measures from 17 subjects (coefficient of varia-
tion <18% see Supplementary Table 7). We found age to be positively
associated with NDMI scores of the demographic factors. The current
use of glucocorticoid medications was associated with higher NDMI

scores (Supplementary Table 8, Supplementary Fig. 2). Oral pre-
dnisone users had higher NDMI scores than non-users (P = 0.003) or
subjects using inhaled glucocorticoids (P =0.03). NDMI scores of
inhaled glucocorticoid users were not statistically significantly differ-
ent from non-glucocorticoid users. Medical conditions recorded
among the 18 non-glioma controls receiving oral prednisone included
rheumatoid arthritis, solid organ transplants, kidney disease, lupus,

Immune cell deconvolution
Elastic net regression

Presurgery training set
N = 135 IPS glioma cases

DEX exposed IPS cases
N = 59

DEX nonexposed IPS cases
N = 76

Test set
N = 552 AGS cases/controls

DEX exposed AGS cases
N = 99

DEX nonexposed AGS controls
N = 453

Survival evaluation set
N = 429 AGS cases

DEX exposed AGS cases
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DEX nonexposed AGS cases
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Epigenome-wide association studies
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scleroderma, multiple sclerosis, uveitis, hepatitis, and connective tis-
suedisorder. The changes in immune cell proportion in controls taking
prednisone were similar to those observed among glioma patients
treated with DEX, Supplementary Table 9. Among the DEX exposed
glioma subjects in the training data, cumulative and average daily mg
DEX exposure was associated with variations in the NDMI;
dose–response plots suggested a non-linear and saturating relation-
ship between NDMI score and DEX dose (Fig. 4a, b). Several DEX users
had lower scores overlapping non-exposed cases. These outliers
included 7 DEX users with low cumulative doses and recent (within
30 days) but not current DEX exposure, suggesting a time-dependent
change inNDMI following cessation ofDEX treatment. In a longitudinal
analysis of subjects who completed DEX treatments before the blood
draw, we observed four subjects with no exposure for seven or more
days before the blood draw had NDMI scores identical to their pre-
treatment scores (Supplementary Fig. 3). In another longitudinal
cohort of 31 DEX naïve subjects subsequently treated with DEX fol-
lowing surgery, the NDMI scores increased during DEX exposure (i.e.,

at blood draw) and were inversely correlated with each subject’s
baseline NDMI scores, P =0.008 (Supplementary Fig. 4). Because low
neutrophil proportions may affect NDMI performance, we simulated
the effects of different neutrophil proportions on the probability of
detecting DEX exposures (Supplementary Fig. 5). Variation of immune
proportions among samples and the sample size of exposed and non-
exposed subjects were found to be essential factors affecting NDMI
performance. Critical values of less than ~20–30% neutrophils could
influence the performance of the NDMI as an indicator of DEX expo-
sure. Among 457 glioma subjects in our study, only 2.3% had <40%
neutrophil proportions.

DEX treatments modify the regression of NDMI scores on neu-
trophil proportions
A fundamental premise of the CellDMC program is that differential
methylation occurring within neutrophils will alter the regression of
methylation on neutrophil proportions in DEX exposed subjects. We
estimated regressionparameters forNDMIandneutrophil proportions

Fig. 1 | Study design and results. a There were four phases to the design. First, in
Biomarker Discovery two pipelines (EWAS/CellDMC (see b) and immune cell
deconvolution) were applied to a cohort of 135 immune profile study (IPS) glioma
cases of which 59 were DEX exposed and 76 were not. Second, three different
elastic net regression models (DEX Exposure Predictors) were built using different
CpGs (Non-cell-specific (1stmodel) andNeutrophil specific (NDMI: 2ndmodel)) and
5 immune parameters (3rd model) on the same 135 IPS glioma cases. Third, the
three models were evaluated by an independent cohort of 552 Adult Glioma Study

(AGS) cases and controls. Fourth, the NDMImodel was evaluated as a predictor for
survival in 429 AGS glioma cases of which 172 were exposed to DEX and 257 were
not. b Overview of CpGs selected from EWAS/CellDMC pipeline in Biomarker Dis-
covery (1st phase of a). Nominally significant loci (p <0.05) were identified and
entered into the CellDMC program resulting in loci with significant interaction
terms (FDR <0.05). Two subsets of loci were identified non-cell specific and Neu-
trophil specific (1st and 2nd models in a). Source data are provided as a Source
Data file.
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Fig. 2 | DEX-related neutrophil-specific DNA methylation. a Volcano plot
showing the output of CellDMC analysis of 2621 DEX associated CpG loci with
nominally significant (FDR <0.05) interactions with neutrophil proportions. Plot-
ted are the average difference in methylation beta value (delta beta) between DEX
exposed and DEX non-exposed subjects (x-axis) and the p value for the interaction
ofmethylation and neutrophil proportion (y-axis). Hypomethylated loci have lower
methylation beta values in exposed versus non-exposed (left side of volcano plot).
The plot is truncated at |delta beta| > 0.1. CpGs associated with genes included in
theNDMI score are highlighted.bHeatmapofmethylationbeta values of 2621DEX
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from highest to lowest beta value. Source data are provided as a Source Data file.
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in training (N = 135) and an extended case/control dataset (N = 602). In
both, the ANOVA linear regression interaction terms of NDMI and DEX
exposure were highly statistically significant (P <0.0001). DEX treat-
ments increased the slope gradient of NDMI regressed on neutrophil
proportions among DEX exposed subjects (Fig. 4c, d).

NDMI is a highly accurate predictor of DEX exposure in an
independent dataset
Weassessed the quality of our predictivemodels in an independent set
of DEX exposed cases and non-glioma controls (Fig. 5a). Receiver
operating characteristic (ROC) analyses in the test population indi-
cated high sensitivity and specificity of the NDMI score as a binary
predictor of current DEX exposure (Fig. 5b). ROC performance was
highest for the NDMI score (0.91; 95% CI 0.871, 0.95) although leuko-
cyte composition performed well (AUC 0.71; 95% CI 0.649, 0.77). The
non-cell-specific methylation predictor appeared superior to the leu-
kocyte composition model (AUC 0.84; 95% CI 0.793, 0.896). We also
built a version of the NDMI using only presurgery glioblastoma (GBM)
(N = 71) subjects. The performance of the GBM only NDMI (AUC 0.88;
95% CI 0.83, 0.92) was greater than the leukocyte composition model
but less than the NDMI created using all grades of glioma.

NDMI scores associated with depressed CD4 T cell counts and
increased mMDSC levels
Depressed CD4 T cell counts signal immunosuppression; among the
135 training set subjects, 47 (34.8%) had CD4 counts <500 cells/μl and
16 (11.8%) had counts <200 cells/μl (Table 1). Current DEX use was
recorded in 39 (83%) and 15 (94%) of these subjects, respectively.
NDMI, total white cell count, and their interaction were significantly
associated with CD4 T-cell levels in whole blood and explained

substantial variation in CD4 counts among glioma subjects (r2 = 0.64;
p <0.001) (Table 2). CD4 counts were positively associated with total
white cells, whereas NDMI scores were inversely associated. In these
models, DEX exposure variables were not statistically significant,
although daily DEX dose was inversely associated with CD4 counts in
univariate tests (r2 = 0.21; p =0.004). A subset of subjects’ bloods was
run in parallel using flow cytometry (FCM) and methylation deconvo-
lution. Bland-Altman’s analysis of these paired data showed DNA
methylation deconvolution to be highly accurate in estimating CD4 T
cell concentrations (Supplementary Fig 6).

We estimated blood mMDSC levels both as proportions of
monocytes and as concentrations in 38 consecutive glioma volunteers
using FCM (Fig. 6). Subjects taking DEX had greater proportions
(p = 0.002) and concentrations (p =0.005) of CD14+HLA-DRneg/low

mMDSCs compared to non-exposed subjects. We further subdivided
themMDSCpopulationbyCD16 expression and found significantDEX-
related increases in CD14+HLA-DRneg/lowCD16− cells/μl (p = 0.005).
NDMI scores were positively correlated with total mMDSCs propor-
tions (r2 = 0.30; p =0.003) and concentrations (r2 = 0.33; p = 0.001) as
well as CD16− mMDSC populations (proportions r2 = 0.31; p = 0.002;
concentrations r2 = 0.34; p < 0.0001). The most robust model pre-
dicting mMDSC concentrations includedmonocyte counts. NDMI and
monocyte counts together were positively associated with mMDSC
levels in whole blood and together explained 76% of the variation in
mMDSC levels and 77% of the variation of CD16− mMDSCs (p <0.001).
Average daily DEX exposure, although univariately associated with
mMDSCs (r2 = 0.24; p =0.04), was not significant in models containing
monocytes and NDMI. Neither cumulative mg of DEX nor duration of
use were significantly associated with variations in mMDSC
levels (P > 0.05).
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for 1360 neutrophil-specific loci associated genes. ME6 displayed the highest
overlapping percent (58%) with 29 out of 50 overlapping with neutrophil-specific
GO terms. d Plot ofmaximal expression of 21 overlapping differentiallymethylated

neutrophil genes during myelopoiesis; these genes include CASP10, ALDDH3B1,
GAS7, NLRC4,APMAP, OLFM4, EHD4, S100A8, ACAD8, ANKRD22, CNKSR3, FCER1G,
UGP2, CLEC12A, OLR1, LRRC57, MAFG, PAPSS2, CD177, LTBR4, LIMS1. e Plot of max-
imal expression of 16 genes contained in the NDMI algorithm (see Supplementary
Table 4) showing maximal expression in promyelocyte and PMN stages of myelo-
poiesis. PMpromyelocyte,MMmetamyelocyte, BNbandneutrophil, SN segmented
neutrophil, PMN polymorphonuclear neutrophil. Source data are provided as a
Source Data file.
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Elevated NDMI scores in isolated DEX exposed monocytes,
mMDSCs and neutrophils
To provide a reference for comparing NDMI scores in different
immune subsets we compared DEX exposed cells and 12 different DEX
naïve cell subtypes. InDEXnaïve cellsweobserved significantly greater
NDMI scores among myeloid-derived cells compared to lymphoid
cells; Fig. 6d. In vivo DEX exposedmonocytes andmMDSCs contained
elevated NDMI scores compared to non-exposed monocytes
(p = 0.001) and compared to paired DEX exposedmonocytes from the
same individuals (p =0.03). Monocytes from DEX exposed subjects
had higher NDMI scores compared to non-exposed monocytes
(p = 0.002) (Fig. 6e). To test whether isolated neutrophils exposed
in vivo to DEX contain DNA methylation changes consistent with the
CellDMCcomputationalmethod,we isolated cells from5DEX exposed
glioma patients. The purity of these neutrophil isolates was estimated
to be 99.9% (range 99.3–100%) using an extensive methylation
deconvolution method39. DEX exposed isolated neutrophils exhibited
NDMIscoresmarkedlyhigher thanunexposed cells andhighest among
all isolated cells examined (Fig. 6e). We compared the NDMI scores of

isolated neutrophils exposed to DEX to the respective whole-blood
NDMI scores from the same individuals; in each of the subjects the
neutrophil NDMI score was significantly greater than the whole-blood
score (paired t test p =0.01; Supplementary Table 10). Further, of the
2621 neutrophil-specific DEX associated CpG sites identified in the
CellDMC analysis, 1903 (72.6%) exhibited the same direction of asso-
ciation in isolated cells and 823 probes were nominally statistically
significant (p <0.05) between exposed and non-exposed neutrophils.
Of the 823 CpG, 683 exhibited the same direction of association (83%)
as the CellDMC analysis. Of the 28 CpGs in the NDMI algorithm 9 (32%)
exhibited a nominally statistically significant p value (p <0.05) and a
consistent direction of association as compared with the CellDMC
analysis.

NDMI score is a prognostic marker of glioma survival
To evaluate the NDMI score as a prognostic marker in glioma, we
entered patients’ NDMI scores into a survival elastic net model that
included conventional risk factors of age, gender, tumor classification,
tumor location, surgery and chemoradiation treatments, and DEX use
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at blooddrawaswell as neutrophil andother immune cell proportions.
NDMI score, but not DEX use at blood draw or neutrophil proportion,
remained a significant predictor of survival time in a final model that
included age, surgery, tumor location, WHO subtype, body mass

index, CD4 T cell proportion, and an interaction between WHO sub-
type and NDMI score (Table 3). Figure 7 shows the Kaplan–Meier
survival curves for NDMI score split at the median in the test set’s
isocitrate dehydrogenase (IDH) wildtype GBM and IDH-wildtype
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Table 1 | Immune parameters for 38 Immune Profiles Study glioma patients and their neutrophil dexamethasone methylation
index (NDMI) stratified by dexamethasone use

Variables Dexamethasone at Blood Draw P valuea

Yes (n = 19) No (n = 19)

Mean Median StDev Range Mean Median StDev Range

Average daily DEX doseb (mg/day) 8.85 8 5.21 (2, 16) NA NA NA NA NA

Age at Surgery (yrs) 54.8 57 17.43 (21, 79) 47.84 49 13.28 (28, 72) 0.18

NDMI Score 2.36 2.7 1.55 (0.02, 5.37) −1.73 −1.72 1.14 (−3.84, 0.51) <0.0001

Absolute B cells (cells/µl) 310.4 279.8 215.7 (47.5, 846.1) 281.4 272.2 123.9 (70.2, 545.6) 0.62

Absolute CD4 (cells/µl) 517.6 440.5 443.8 (46.8, 1744.8) 930.5 848.7 466.9 (275.4, 1825.9) 0.008

Absolute CD8 (cells/µl) 374 398.3 223.1 (43.6, 818.1) 468.1 447 230.1 (130.1, 1032.2) 0.21

Absolute Monocytes (cells/µl) 536.7 524.8 357.2 (96.5, 1238.2) 489.2 474.8 140.2 (288.9, 754.6) 0.59

Absolute NK Cells (cells/µl) 246.8 222 129.5 (114.5, 671.6) 393.6 365.7 204.3 (146.4, 871.3) 0.01

Absolute Neutrophils (cells/µl) 8651.2 7475.3 4527 (1332.3, 17802) 4180 3335.6 2369.1 (1472.4, 9402) 0.0007

mMDSC CD16− (cells/µl)c 95.9 72.3 84.7 (2.63, 249.9) 24.5 17.2 28.8 (0, 123.5) 0.002

mMDSC CD16+ (cells/µl)c 28.6 15.5 31.1 (0.53, 94.4) 13.1 1.8 27.3 (0, 98.5) 0.11

mMDSC as a % of Monocytesc 22.1 20 15.4 (1.48, 52.2) 8.7 7 8.3 (0, 28.8) 0.002

mMDSC counts (cells/µl)c 124.4 101.2 112.1 (3.16, 339.5) 37.7 22.2 55.3 (0, 221.9) 0.005

Categorical variables Number % Number % P valuea

Gender

Male 14 0.74 14 74% 1

Female 5 0.26 5 26%

Tumor Grade

Grade 4 17 0.895 7 36.80% 0.003

Grade 3 1 5.30% 4 21.10%

Grade 2 1 5.30% 8 42.10%
aT-test for continuous variables, chi-squared for categorical variables
bEstimated by dividing the cumulative mg of DEX reported by the number of days on DEX
cMeasured by FCM other immune parameters estimated by methylation deconvolution
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astrocytoma patients, in each subtype survival times were statistically
significantly different. Survival among patients with oligoden-
drogliomas was not significantly different by NDMI status. In a subset
of 74 gliomasubjectsweevaluatedbloodNDMI, immune cell estimates
and clinical variables inmultivariate Cox proportional hazards survival
models with extent of surgical resection with and without pre-
operative tumor volume (Supplementary Tables 11, 12). Importantly,
in both models, the NDMI score remained statistically significant as a
predictor of survival. In both models, volumetric measurements were
significant aswere age andWHO tumor classification. DEXuse at blood
draw was not statistically significant in either model (Supplementary
Tables 11, 12).

Discussion
The present work shows that the DNA methylation-based NDMI mea-
sured in whole blood is a robust marker of DEX response that out-
performs an approach that is based on the drug’s effects on immune
cell proportions. Thus, the NDMI could be a potentially useful tool for
evaluating glucocorticoid treatments in neuro-oncology. Though fur-
ther study is needed to demonstrate the full value of this approach,
several areas of translational application are anticipated. The NDMI is
an objective measure of glucocorticoid response that does not rely on
medication logs and associated assumptions about patient adherence.
The NDMI appears to capture individual variability in DEX response, as
indicated by two measures of immunosuppression (low CD4 and ele-
vated mMDSC counts). The prevalence of both these cell types was
best predicted by NDMI scores and not by either daily or cumulative
drug doses.

These results provide another datapoint that adds to his-
torical observations11–13, which have raised concerns about the

widespread use of glucocorticoids. Early in diagnostic workup,
even the suspicion of GBM can trigger the administration of
high-dose DEX in routine clinical practice, regardless of neuro-
logical symptoms, tumor size, or extent of cerebral edema.
Some of these exposures may be unnecessary and may lead to
worsening outcomes. There is a lack of data and consensus in
the field concerning optimal glucocorticoid dosing and sche-
dules to guide clinical decision making. An ongoing trial
(NCT04266977) is the first of its kind to formally test whether
restrictive use of DEX in suspected GBM subjects is an accep-
table and safe alternative to current practice, though in symp-
tomatic subjects, DEX may be unavoidable. In these instances,
our observation of increased survival risk associated with the
NDMI score reinforces the need to titrate to the lowest dose
possible14. In this regard, the NDMI response may provide a
benchmark for calibrating the dose given to an individual
patient with the dual goals of providing adequate clinical effi-
cacy and minimizing toxicity, in particular if there is a need to
re-start steroids during treatment. Such a precision approach
has the potential to significantly reduce steroid-related mor-
bidity in the GBM patient population.

Given the convincing evidence that DEX compromises
immunotherapies14–16 the most important potential translational value
of the NDMI score could be as a biomarker of response in immu-
notherapy trials. As an objective measure of extent of steroid expo-
sure, the NDMI score could be utilized as a stratification factor in such
trials to minimize confounding from steroid interference with thera-
pies. Beyond these applications we observed that the NDMI score, but
not DEX use, was a significant predictor of survival in IDH-wildtype
GBM and astrocytoma, though not in oligodendroglioma. Thus, the

Table 2 | Neutrophil dexamethasone methylation index (NDMI) scores predict CD4 T and mMDSC cell counts in Immune
Profiles Study glioma patients with presurgery samplesa

Model 1 (CD4 T cell) Parameter estimates (dependent variable = absolute CD4 counts)

Predictor Estimate Std Error t Ratio P value

Intercept −58.27 75.84 −0.77 0.44

NDMI Score −158.78 11.21 −14.17 <0.0001

Total WBC Count 0.10 0.009 11.62 <0.0001

Interaction (NDMI*Total WBC) −0.01 0.002 −5.69 <0.0001

Summary of Fit

R2 = 0.64, Adj R2 = 0.63
Observations = 135
F-Ratio = 76.23 (p < 0.001)

Model 2 (mMDSC) Parameter estimates (dependent variable =mMDSCs)

Predictor Estimate Std Error t Ratio P value

Intercept −37.78 14.30 −2.64 0.013

NDMI Score 14.79 2.80 5.28 <0.0001

Absolute_Monocytes 0.20 0.025 8.09 <0.0001

Summary of Fit

R2 = 0.76, Adj R2 = 0.74
Observations = 36b

F-Ratio = 52.56 (p <0.001)

Model 3 (CD16− mMDSC) Parameter estimates (dependent variable =CD16− mMDSCs)

Predictor Estimate Std Error t Ratio P value

Intercept −26.88 10.50 −2.56 0.015

NDMI Score 11.99 2.06 5.83 <0.0001

Absolute_Monocytes 0.15 0.018 8.09 <0.0001

Summary of Fit

R2 = 0.77, Adj R2 = 0.76
Observations = 36b

F-Ratio = 56.17 (p < 0.001)
aModel 1 included all 135 IPS presurgery samples, Models 2 and 3 included 36 presurgery samples with FCM
bTwo outliers were removed from the model
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NDMI scoremay be amore relevant prognostic factor in future studies
of IDH-wildtype GBM.

Given the widespread availability of DNA methylation arrays and
the open access Web-based tool that we have created, the NDMI
approach is within reach for researchers wishing to assess clinical
correlates with this measure. The small volumes of blood samples
(0.5mL) required, and the lack of any labor-intensive special proces-
sing needed for DNAmethylation-based analysesmake it an accessible
technique for archival samples, and greatly enhances the value of
samples in clinical biobanks. Finally, our observation of elevated NDMI
scores among prednisone users in non-glioma controls highlights the
applicability of this method to assessment of glucocorticoid use in a
range of clinical indications beyond neuro-oncology (e.g., rheumatoid
arthritis, lupus, multiple sclerosis, solid organ transplantation). We
also note that, consistent with the low systemic absorption associated

with inhaled glucocorticoids40, we did not observe altered NDMI
scores in controls reporting inhaled glucocorticoid use. This is con-
sistent with a recent study in pediatric asthma41 that failed to find
consistent alterations in DNA methylation among users of inhaled
glucocorticoids.

The acute effects of DEX and other glucocorticoids on peripheral
blood myeloid and lymphoid cells are well described and reflect the
intimate linkage of the glucocorticoid pathway with hematopoiesis
and immune regulation42,43. We add to this knowledge that blood
neutrophils dominate the leukocyte methylomic profile of DEX expo-
sure. This result is reminiscent of earlier studies of glucocorticoid-
induced gene transcription showing that the numbers of
glucocorticoid-responsive genes were highest in hematopoietic com-
pared to nonhematopoietic cells and that neutrophils had the stron-
gest transcriptional response of all cell types studied36. Moreover, a
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heightened response to glucocorticoids by neutrophils is striking
given their terminally differentiated state and short lifespan as well as
their limited transcriptomic capacity compared with other

leukocytes44. We found that DEX-responsive methylation in neu-
trophils was enriched in distal regulatory elements and glucocorticoid
receptor binding sites. Consistent with previous work, we also showed
that DEX-related differential methylation occurs at preexisting acces-
sible chromatin locations as evidenced by their partially demethylated
status in unexposed cells and occurring in a lineage-specific fashion.
Among lymphocytes, the samesiteswere typically denselymethylated.
A robust association of differentially methylated genes encoding
granule proteins and neutrophil activation functions was found in
gene ontology analysis. Twenty-one of the neutrophil enriched genes
overlapped with a previously described co-expression module in
human bone marrow whose peak transcriptional expression occurs
during the metamyelocyte and band neutrophil stages of myelopoi-
esis. In contrast, the group of 16 genes that comprise the NDMI pre-
dictor were distinct in that they did not belong to the same co-
expression group and instead showed peak expression in the pro-
myelocytic and PMN stages of myelopoiesis. Taken together, these
results indicate functional heterogeneity among genes targeted by
DEX differential methylation.

Isolated neutrophils from DEX exposed subjects displayed
the highest NDMI scores of all isolated cells and in each case the
scores were elevated above paired whole-blood values from the
same donors. These observations are consistent with our bioin-
formatic predictions. However, despite the lack of statistically
significant interactions of methylation values and monocyte
proportions, our methylation and FCM studies of mMDSCs also
point to DEX-mediated epigenetic modification in subpopulations
of CD14+ monocytes. We confirmed previously reported increased
levels of mMDSCs among current DEX users and further those
variations in mMDSCs were significantly correlated with indivi-
dual NDMI scores. We also provide evidence that the monocyte
count in conjunction with the NDMI score may improve our
understanding of individual variations in mMDSCs. CD16−

mMDSCs also demonstrated consistent associations with DEX
exposure. Earlier studies reported that CD16− mMDSC popula-
tions display superior immune-suppressive activity compared
with CD16+ fractions45. Significantly, of the three DEX exposure

Table 3 | Neutrophil dexamethasone methylation index
(NDMI) is a prognostic factor in glioma survival: Cox multi-
variatemodel of NDMI and glioma survival in 429 UCSF Adult
Glioma Study patients

Variable Hazard ratio 95% CI P value**

NDMI score 1.43 1.29–1.59 8.5 × 10−12

Age (yrs, continuous) 1.04 1.03–1.05 2 × 10−16

World Health Organization 2016 classification

IDH-WT GBM 1.89 1.44–2.51 6.8 × 10−6

IDH-MT astrocytoma 0.33 0.06–1.95 0.2

Oligodendroglioma 0.18 0.10–0.33 2.3 × 10−8

IDH-WT astrocytoma (baseline) 1.0 NA NA

Interaction of NDMI scorewithWorldHealthOrganization 2016 classification

IDH-WT GBM 0.85 0.76–0.94 2 × 10−3

IDH-MT astrocytoma 0.56 0.31–1.03 0.06

Oligodendroglioma 0.74 0.59–0.92 7.7 × 10−3

IDH-WT astrocytoma (baselinea) 1.0 NA NA

Surgery (biopsy versus resection) 0.52 0.37–0.73 1.5 × 10−4

CD4 T cells (proportions) 1.04 1.01–1.07 2 × 10−3

BMI (basal metabolic index) 1.05 1.02–1.07 1.2 × 10−4

Race (white vs. non-white) 1.47 1.07–2.03 0.02

Tumor location

Occipital lobe 3.34 1.73–6.47 3.4 × 10−4

Overlapping sites 1.56 1.14–2.14 5.8 × 10−3

Parietal lobe 0.65 0.45–0.95 0.03

Frontal/cerebrum/temporal/other
(baseline)

1.0 NA NA

**P values were calculated using the Wald Test
aIDH-WT Astrocytoma chosen as comparator baseline for the model
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measures, only the average daily dose was associated with
mMDSC concentrations. In models that contained monocytes and
NDMI, daily DEX dose became insignificant, suggesting that the
NDMI score captures individual variation in the epigenetic
response to DEX treatments. Furthermore, the NDMI scores of
isolated mMDSC and paired CD14+ HLA-DR+ monocytes from DEX
exposed subjects were elevated compared to non-exposed
monocytes. Based on these observations, we hypothesize that
DEX influences both the neutrophil and monocyte cell methy-
lomes, perhaps reflecting the shared DNA methylation landscape
of DEX-responsive regions in both lineages. We have confirmed
previously reported deficits in circulating CD4 T cell levels among
glioma subjects prior to chemoradiation; 11.8% of our training
population demonstrated <200 CD4 T cells/μl. A model incor-
porating an interaction between the NDMI, and total white cell
count provided the strongest predictor of variations in CD4
levels. DEX exposure or clinicopathological variables did not
improve model performance. Thus, although excess mMDSCs and
low CD4 T cells often occur together in cancer patients, our data
suggest that different features of the immune profile in con-
junction with the NDMI can be useful to describe variation in
these two important immunological parameters.

The currentworkhas several limitations. First, our survival studies
were not a randomized controlled study and in the biomarker devel-
opment phase detailed longitudinal studies were not available to
estimate the kinetics of change inDNAmethylation during initiation of
drug therapyor the recovery time following cessation. Our anectodical
observations indicate that NDMI score can return to pre-therapy levels
following ~7 days. Second, while the empirical associations of DNA
methylation with DEX treatments are robust, a mechanistic under-
standing of these effects is lacking. At the tissue level, it is unknown
whether DEX-related changes in DNA methylation arise through
redistribution of preexisting subpopulations of cells in the bone mar-
row or marginated pools or instead reflect CpG level modification
within stem/progenitor cells during myelopoiesis. At the molecular
level, glucocorticoid ligand-triggered demethylation of single CpGs at
de novo sites are rapid and replication independent, suggesting an
active enzymatic mechanism32. In rodent embryonic neural stem cells,
Tet3, a member of the ten-eleven translocation family of methylcyto-
sine dioxygenases, was implicated in mediating the effects of DEX on
CpGmethylation33. Whether similar mechanisms apply in adult human
myelopoiesis is unknown. Finally, our studies have not assessed gene
expression in DEX exposed cells. Recent studies in severe COVID-19
have shown that in vivo DEX exposures induce dramatic changes in
peripheral blood neutrophil states leading to immunosuppressive cell
subtypes not observed in unexposed subjects37. The relationship of
different transcriptional states with DNA methylation could provide a
mechanistic link betweenDEX exposures, immune profiles, and glioma
survival. In conclusion, we find that alterations in DNA methylation of
peripheral whole blood are sensitive indicators of DEX response and
are potential pharmacodynamic markers of individual sensitivity to
epigenetic modification that are bridged to glioma survival, elevated
immunosuppressive myeloid cells and depletion of critical T cell
populations.

Methods
Patient and control samples
These glioma studies were approved by the Institutional Review Board
of the University of California, San Francisco, Human Research Pro-
tection Program in the Office of Ethics and Compliance under UCSF
Federal wide Assurance 00000068 and met all relevant ethical reg-
ulations. Informed consent was obtained from all study participants.
The study design utilized a training dataset to develop predictors of
DEX exposure and a test dataset to evaluate their performance Fig. 1a.
The training dataset included 135 glioma subjects (59 exposed to DEX,

76 not exposed to DEX) sampled before surgery, radiation, or temo-
zolomide treatments. To discover DEX-responsive CpG sites, we car-
ried out an EWAS and then applied those results to the CellDMC
program, a method to detect DNA methylation within a specific cell
type, Fig. 1b. CellDMC is a linear modeling program that tests each
locus associated with DEX to interact with the relative abundance of 6
leukocyte cell types.46 Separate models were evaluated for each CpG
probe and its interaction with CD4 T, CD8 T, B-cell, NK, monocyte, or
neutrophil proportions. The training datasetwas drawn from theUCSF
Immune Profiles Study (IPS), a prospective neuro-oncology clinic-
based collection of blood samples, imaging, and other clinical data
from adult glioma patients. Presurgery blood samples were typically
taken the day before surgery; none were obtained during or after
exposure to anesthesia. Blood samples were transferred the same day
as drawn for determining total cell counts of specific immune cell
types, further processing, and FCM study. At time of blood draws, we
also collected a presurgery questionnaire to document daily/cumula-
tive DEX exposure. Additional post-surgery blood samples were col-
lected on some subjects to explore changes in immune parameters
following resection. The test dataset (n = 99 glioma cases, n = 454
controls) and the survival evaluation set (n = 429 glioma cases) were
drawn from the San Francisco Adult Glioma Study (AGS). AGS was a
case-control study of glioma patients newly diagnosed between 1991
and 2012 whowere residents of the San Francisco Bay Area or patients
of the UCSF Neuro-oncology clinic and age and gender-matched
controls without any history of glioma recruited through randomdigit
dialing or from the UCSF blood draw lab47. Medical history and current
medications were available for all the controls. Patients were selected
who had both archival blood and tumor marker data47. AGS partici-
pants represent newly diagnosed glioma patients; no recurrent or
secondary GBM cases are included. In both IPS and AGS cohorts, we
classified cases according to the WHO 2016 classification scheme that
delineates IDH-mutant and wildtype grade IV GBM, grades II and III
astrocytoma, and IDH-mutant 1p/19q co-deleted oligodendrogliomas.
In the AGS, blood samples were collected from patients a median of
100 days after they were histologically diagnosed. Clinical information
was collected on patient treatments, including temozolomide che-
motherapy, radiation therapy, the extent of surgery, and steroid use at
the time of blood sampling. Information on current medication use at
blood draw (including any steroid use and names of the types of
steroid drugs taken) was obtained from an in-person blood draw
questionnaire which collected information on treatments and medi-
cations taken at the time of blood draw; medication logs for DEX
dosages were not available.

DNA methylation array
Frozen (−80 °C) anticoagulated whole blood or isolated cells were
processed, DNA isolated, and bisulfite converted48. All samples and
array experiments were performed blinded to clinicopathologic vari-
ables. Approximately 200–500ng ofDNAwas applied to Illumina DNA
methylation EPIC 850K beach chip arrays. Preprocessing and quality
control of fluorescence data were accomplished using the minfi Bio-
conductor package49. CpG loci having a sizable fraction (>25%) of
detection p values above a predetermined threshold were filtered
(detection P > 10E−5)50. A “noob” background correction method was
used to account for background fluorescence and dye bias51. Beta-
mixture quantile normalization (BMIQ) was performed to correct
probe design bias52. The presence of technical sources of variability
induced by plate or BeadChip was examined using principal compo-
nents analysis (PCA), the top K principal components53 were examined
in terms of their association with plate and BeadChip. If plate or
BeadChipwere found to be significantly associated with any of the top
K principal components, we applied ComBat method54 for normal-
ization using the sva Bioconductor package. The final dataset con-
tained 830,277 probes.
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Immunomethylomic assay
Using the preprocessed and normalized methylation data, we applied
an optimized reference-based cell mixture deconvolution55. This
immunomethylomic method provides the proportions of 6 major cell
types (CD4 T, CD8 T, B-cell, NK, monocytes, neutrophils) and the
neutrophil/lymphocyte, CD4/CD8, and lymphocyte/monocyte ratios.
DNA methylation-based immune profiles are highly accurate and
reproducible48,55,56 (Supplementary Table 7, Supplementary Fig. 6). The
cell fractionsweremultiplied by the sample totalwhite cell countwhen
these data were available (IPS samples) to estimate absolute cell
counts. Historical AGS cases did not have concurrent cell count data.
To characterize the purity of isolated neutrophils and explore the
NDMI scores within different immune cells, we employed an expanded
deconvolution technique that captures 12 different cell types39.

Elastic net regression and creation of three DEX exposure
predictors
We built three predictors of DEX exposure using elastic net regression
procedures on the following data: (i) blood leukocyte composition, (ii)
neutrophil-specific methylation, and iii) non-cell-specific methylation.
Developing these markers required blood leukocyte composition,
which we derived from a validated DNA methylation deconvolution
method48,55,56. We then created a leukocyte composition index as input
for DEX exposure prediction (i) we utilized 6 cell proportions and
ratios of neutrophil/lymphocyte, CD4/CD8 T cell, and lymphocyte/
monocytes. To discover in vivo DEX-responsive CpGs in the training
dataset for predictors (ii) and (iii), we performed an epigenome-wide
association study (EWAS) using the “lmfit” function in the limma
package57 comparing methylation beta values for patients on DEX at
the time of blood draw and patients not taking DEX at the time of
blood draw. The EWAS yielded a list of probes nominally significantly
differentially methylated p <0.05 with an absolute delta beta value
(≥0.10). CpGs identified in EWAS were further analyzed the CellDMC46

function of the EpiDISH package using R with the default threshold
parameters (FDR ≤0.05)58. Neutrophil-specific CpG loci (N = 2621) and
non-cell-specific CpG loci (N = 17,733) were identified and used to
develop the methylation DEX-responsive predictors. Elastic net
regression was used to build the DEX exposure classifiers using (i)
leukocyte composition, the (ii) neutrophil-specific, and (iii) non-cell-
specific CpGs identified from CellDMC46. The R glmnet was used to
build the elastic net models and cross-validation to identify the opti-
mum lambda value59. Each of the three predictors was tested using an
external dataset consisting of 99 DEX+ glioma samples and 453 DEX−

control samples. An ROC curve was built to compare the predictive
capability of the three models on the same test set60.

Genomic features of DEX-responsive CpG methylation
Odds ratio and p values are calculated to test for NR3C1 binding site
enrichment in differentially methylated neutrophil-specific CpGs
(n = 2621) using the totalmeasured asbackground (EWASn = 830,277).
Genomic information for transcription factor NR3C1 binding site is
extracted from the ENCODE database “Transcription Factor ChIP-seq
Clusters”, version wgEncodeRegTfbsClusteredV3. The Illumina
HumanMethylationEPIC annotation file and the UCSC Genome Brow-
ser UCSC_hg19_refGene file were used to test neutrophil-specific CpGs
(n = 2621) for genomic context enrichment among all tested CpGs
(n = 830,277). The relation to CpG islands and enhancerswas identified
from the Illumina HumanMethylationEPIC annotation file for each
probe. To define the genomic regions as promoters, introns, exons, or
intergenic for each probe, the annotateWithGeneParts function from
the R-package genomation and the UCSC_hg19_refGene file were used
to map the regions to all CpG loci on the Illumina HumanMethylatio-
nEPIC array. If a probe mapped to more than a single genomic region,
theprobewas assignedpreferentiallywith theorder promoters, exons,
introns, and intergenic. Fisher’s exact tests of 2 × 2 tables were

conducted to calculate odds ratios (ORs), p values, and95% confidence
interval for CpG island, enhancers, and genomic regions enrichment of
neutrophil-specific CpGs compared to all other DEX differentially
methylated loci. eFORGE 2.0 was used to assign histone chromatin
marks to differentially methylated probes61 in the 28 CpG NDMI.

FCM detection of blood mMDSC and CD4 T cells
MDSCs are a heterogeneous population of immature myeloid
cells, and the definition of these subsets has not yet reached a
consensus. We defined mMDSC immunophenotype consistent
with commonly employed markers62,63, substituting the myeloid
marker CD64 for CD33. Relative and absolute quantities of total
(CD14+CD64+CD11b+HLA-DRneg/low) and CD16 negative
(CD14+CD64+CD11b+HLA-DRneg/lowCD16−) mMDSC populations
were estimated. FCM was performed by the UCSF clinical immu-
nology core using established clinical protocols and analytic-
specific reagents. Blood samples (3 ml EDTA preserved whole
blood) were collected, and total white blood cell (WBC) counts
were recorded. Following red blood cell lysis, cells were mixed
with a monoclonal antibody mixture including CD45, CD64, CD16,
CD11b, HLA-DR (Supplementary Table 2) in a single tube, incu-
bated in the dark for 20min, washed, and fixed with 0.1% for-
maldehyde prior to acquisition on the Navios EX Flow Cytometer
(Beckman Coulter Life Sciences). Data were analyzed using Kaluza
Analysis Software 2.1 (Beckman Coulter Life Sciences). Forward
and side scatter were employed to discriminate the non-doublet,
non-debris, CD45+ leukocyte population and cells counted (Sup-
plementary Fig. 8). Further CD64+CD14+ gating identified the
monocyte population. The HLA-DR neg/low gate in the monocyte
population was set in each sample according to the HLA-DR neg/low

granulocyte population in the same tube. These HLA-DR neg/low

monocytes were further gated for CD16+/− expression. The pro-
portion of each cell type present in the sample was then calcu-
lated based on the number of CD45+ leukocytes. The mMDSC
proportion of CD45+ leukocytes counted in the acquisition tube
was calculated. Total WBC counts were then used to calculate the
final cell/μl concentrations of mMDSCs in the blood. Antibodies
were used to stain CD45, CD3, and CD4 to identify the CD4 T cells.
Within the CD45 population, the low side scatter intensity CD3+

cluster identified the CD3+ population. These CD3+ cells were
further gated for CD4+/− expression. The CD4 T-cell proportion of
CD45+ leukocytes counted in the acquisition tube was calculated.
Total WBC counts were then used to calculate the final cell/μl
concentrations of CD4 T cells in the blood. Linear regression
models were constructed with NDMI and other factors as pre-
dictors to explore CD4 T cell and mMDSC parameters as out-
comes. Examination of residuals led to dropping two outliers
from mMDSC models; these subjects were of advanced age (i.e.,
72, 75 yrs.) and were sampled soon after receiving high DEX doses
(i.e., 16 mg/day).

FACS isolation of mMDSCs, monocytes and neutrophils
Fresh anticoagulated blood was processed within 24 h. For mMDSCs
and monocytes: blood mononuclear cells were isolated with 1.077
Histopaque gradients, stained with a cocktail of fluorescently labeled
antibodies (CD3, CD56, CD19, CD14, CD11b, CD16, HLA-DR, CD33, and
CD15 (Supplementary Table 6) treated with PE/Cyanine7 Streptavidin
and resuspendedat 1:5000dilutionof SYTOXTMGreen.Cellswere then
run directly on a BD FACSAriaTM Fusion cell sorter. Forward scatter hi
CD3−, CD19−, CD11b+, CD33+, CD14+, and CD15− cells were gated and
plotted for HLA-DR expression. CD3 HLA-DR− neg cells and CD19 HLA-
DR+ positive B cells were used to set the sorting gate for mMDSC cells
lacking HLA-DR expression (i.e., HLA-DRneg/low). HLA-DRhigh cells (normal
monocytes) were collected from the same individuals. For neutrophil
isolations, a Histopaque two-step gradient (1.119 layeredwith 1.077)was
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used. Granulocytes were collected on the 1.119 layer above the red
blood cells and below monocytes and lymphocytes; residual red cells
were lysed with ammonium chloride. Cells were FcBlocked and stained
with CD3, CD56, CD123, and CD49d in a negative depletion channel.
Neutrophils were then sorted as CD19−, CD33−, and CD66b+ cells (Sup-
plementary Table 13). Gated cells were plotted against FSC and SSC to
select cells with high forward and side scatter characteristic of granu-
locytes. All isolated cell pellets were stored at −80 °C until DNA
methylation analysis. The purity of isolates was checked using a high-
definition immune cell methylation deconvolution method39.

Survival analysis
Overall survival is defined as the time from the initial diagnosis to
death or last follow-up. Those patients without a date of death were
censored at the date of the last follow-up. Multivariate survivalmodels
were initially built via regularized cox regression55 using the glmnet
package in R. Cross-validation was performed to identify the optimum
lambda value50. Subsequently, forward/backward stepwise feature
selection was employed, and interactions were investigated. Covari-
ates with p values < 0.05 were retained. For each of the three most
common WHO 2016 subtypes (IDH-wildtype GBM, IDH-wildtype
astrocytoma, and oligodendroglioma), the 1st and 3rd quartile of
NDMI scores were estimated, and plots of the corresponding
Kaplan–Meier curves were drawn.

Simulation study of NDMI performance and neutrophil
proportions
We conducted a series of simulation studies to assess the statistical
power for detecting a difference in the mean value of the NDMI
between DEX exposed and non-exposed individuals (Supplementary
Fig. 7). Specifically, our interest centered on determining the nature
by which varying fractions of neutrophils in the whole-blood samples
used as the basis for calculating NDMI impacts the statistical power
for detecting a difference in the mean value of the NDMI between
DEX exposed and non-exposed individuals. To achieve this goal, we
simulated whole-blood DNA methylation data for DEX exposed and
non-exposed individuals, varying the fraction of neutrophils across
the study samples from 20% to 80% in increments of 5%. For each
simulated dataset, the NDMI was calculated for each sample and used
to test the null hypothesis of no difference in the mean NDMI
between DEX exposed and non-exposed individuals. For a fixed
fraction of neutrophils across the study samples (e.g., 20%), the
above process was repeated one-thousand times, and statistical
power was calculated as the proportion of times the null hypothesis
was correctly rejected.

To simulate in-silico whole-blood methylation data for DEX
exposed andnon-exposed individuals,wefirst used apublicly available
dataset consisting of cell-specific DNAmethylation data profiled using
the Illumina HumanMethylationEPIC array for various isolated leuko-
cyte subtypes, including: CD4 T cells, CD8T cells, B cells, natural killer
cells, monocytes, and neutrophils55 GEO: GSE110554) to estimate the
cell-specific means and standard deviations of the 28 CpGs that com-
prise theNDMI. The cell-specificmeans and standarddeviations for the
28 NDMI CpGs were then used to calculate the two shape parameters
of the beta-distribution using methods of moments estimation. Using
the beta-distribution shape parameters, we next generated cell-
specific methylation data, Xð0Þ = Xð0Þ

1 ,Xð0Þ
2 , . . . ,Xð0Þ

n0

� �
, for n0 non-

exposed individuals by randomly sampling methylation beta values
for the 28 NDMI CpGs using the previously estimated shape para-
meters. Here, Xð0Þ

j is the cell-specific methylation data for individual j,
and is a 28 × 6 matrix whose rows represent the 28 NDMI CpGs and
whose columns are the 6 leukocyte subtypes. The same process was
performed for generating cell-specificmethylation for n1 DEX exposed
individuals, Xð1Þ = Xð1Þ

1 ,Xð1Þ
2 , . . . ,Xð1Þ

n1

� �
, except that the beta values

simulated for neutrophils across the 28NDMICpGswere generated by

imposing a difference in mean methylation consistent with that cal-
culated in a separate dataset consisting of monocyte-specific methy-
lation data in n = 6 non-exposed individuals and n = 3 DEX exposed
individuals. Using the cell-specific methylation data for the n0 non-
exposed and n1 DEX exposed individuals, we next generated cell pro-
portions for each of the samples W = ðw1,w2, . . . ,wNÞ by simulating
data from a Dirichlet distribution with total concentration parameter
(α0) equal to 18, 73, and 127. Here, wj is a 1 × 6 vector representing the
cell proportions for subject j and N = n0 + n1 is the total number of
samples, which ranged from N = 20 to N = 80 in increments of 20. The
total concentration parameter is related to the variability in the cellular
landscape across samples wherein larger values are associated with
less variability in the cellular landscape across samples and conversely,
smaller values, more variability in the cellular landscape across sam-
ples (Supplementary Fig. 7). The rationale for the choice of the total
concentration parameters is described elsewhere64. In simulating cell
proportions for each of the samples, the Dirichlet parameter for neu-
trophils was varied such that the mean fraction of neutrophils ranged
from 0.20 to 0.80 in increments of 0.05. Having generated the cell-
specific methylation data ðX 0ð Þ,X 1ð ÞÞ and cell proportions W, we next
computedwhole-bloodmethylation signatures for eachof the samples
Y = ðY1,Y2, . . . ,YNÞ by taking the matrix product of the cell-specific
methylation data for a given sample and their simulated cell propor-
tion:

non� exposed : Yj = Xð0Þ
j wT

j ð3Þ

Dex� exposed : Yk = Xð1Þ
k wT

k ð4Þ

Where j = 1, 2,…,n0 and k = 1, 2,…,n1. Using the whole-blood methyla-
tion signatures,Y = (Y1,Y2,…,YN) we next calculated theNDMI for each
of the N samples and performed a two-sample t test to test the null
hypothesis of no difference in the mean NDMI between DEX exposed
and non-exposed individuals assuming a type 1-error rate of 5%. For a
fixed proportion of neutrophils in whole blood, overall sample size N
and the Dirichlet concentration parameter, the process described
abovewas repeated 1000 times and statistical powerwas calculated as
the proportion of times the null hypothesis was correctly rejected.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Methylation and phenotype data used in this paper are available
through dbGaP controlled access. Methylation and phenotype data
from the Adult Glioma Study are available through dbGaP Study
Accession phs001497.v2.p1. Methylation and phenotype data from the
Immune Profiles Study are available through dbGaP Study Accession
phs002998.v1.p1. Please note that we do not have IRB approval to
release individual level data for 15 out of 457AGS controls (fromSeries
1), so these controls are not included in the source files. The remaining
data are available within the Article, Supplementary Informa-
tion. Source data are provided with this paper.

Code availability
The online application we developed using the R Shiny application to
calculate neutrophil dexamethasonemethylation index (NDMI) scores
can be found at the following URL: https://btcdb.shinyapps.io/ndmi/
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