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Photobleaching step analysis for robust 
determination of protein complex 
stoichiometries

ABSTRACT The counting of discrete photobleaching steps in fluorescence microscopy is ide-
ally suited to study protein complex stoichiometry in situ. The counting range of photo-
bleaching step analysis has been significantly improved with more-sophisticated algorithms 
for step detection, albeit at an increasing computational cost and with the necessity for high-
quality data. Here, we address concerns regarding robustness, automation, and experimental 
validation, optimizing both data acquisition and analysis. To make full use of the potential of 
photobleaching step analysis, we evaluate various labeling strategies with respect to their 
molecular brightness, photostability, and photoblinking. The developed analysis algorithm 
focuses on automation and computational efficiency. Moreover, we validate the developed 
methods with experimental data acquired on DNA origami labeled with defined fluorophore 
numbers, demonstrating counting of up to 35 fluorophores. Finally, we show the power of 
the combination of optimized trace acquisition and automated data analysis by counting la-
beled nucleoporin 107 in nuclear pore complexes of intact U2OS cells. The successful in situ 
application promotes this framework as a new resource enabling cell biologists to robustly 
determine the stoichiometries of molecular assemblies at the single-molecule level in an au-
tomated manner.

INTRODUCTION
The fundamental functions of living cells are carried out by protein 
assemblies at the molecular level. Precise quantitative knowledge 
on the composition of these protein complexes in the cellular envi-
ronment is crucial to deepen our understanding of their cellular 
functions (Matthews, 2012). In many cases these protein assemblies 
contain not only a variety of different components, but also several 
copies of each component (Ahnert et al., 2015).

To investigate the stoichiometry of a particular protein of interest 
in a molecular assembly, fluorescence microscopy offers several ad-
vantages. It is highly specific, live-cell compatible, and single-mole-
cule sensitive and therefore capable of resolving heterogeneities 
within ensembles in situ. In the past two decades, different fluores-
cence-based molecular counting methods have been developed 
(Gruβmayer et al., 2019). Among them are methods relying on bright-
ness calibration (Wu and Pollard, 2005), counting of photobleaching 
steps (Ulbrich and Isacoff, 2007), single-molecule localization micros-
copy (Lee et al., 2012; Puchner et al., 2013; Rollins et al., 2015; 
Jungmann et al., 2016), and photon antibunching (Ta et al., 2010; 
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Grußmayer and Herten, 2017). To date, photobleaching step analysis 
(PBSA) and brightness estimation are most widely used in biological 
applications of molecular counting, due to their simplicity in data ac-
quisition and the relatively straightforward interpretation (Arant and 
Ulbrich, 2014). PBSA has the advantage that counting of fluorophores 
requires no calibration and that it is relatively robust to variations in 
molecular brightness. Importantly, any molecular counting approach 
based on fluorescence microscopy requires additional calibration of 
the degree of labeling, that is, the number of fluorophores attached 
per target to relate measured fluorophore numbers to the underlying 
number of target proteins (Gruβmayer et al., 2019; Hummert et al., 
2021).

While the idea of counting photobleaching steps is straightfor-
ward, numerous approaches exist for data analysis. Often the num-
ber of steps is classified by visual inspection (Ulbrich and Isacoff, 
2007; Engel et al., 2009; Dixon et al., 2015), which is not only time-
consuming but also highly subjective. The exclusion of traces that 
cannot reliably be classified upon visual inspection will inevitably 
lead to a biased estimate, because traces with a higher number of 
fluorophores tend to exhibit a higher complexity. More reliable is 
the determination of the unitary step height by pairwise frequency 
analysis (Leake et al., 2006). Thereby, however, differences in step 
height over the field of view will broaden the measured emitter 
number distribution. Chung–Kennedy (Das et al., 2007) or median 
rank (Dixon et al., 2015) filters are often applied to photobleaching 
traces to improve step detection. Measuring ensemble photo-
bleaching against density allows fast determination of mean fluoro-
phore numbers but lacks single-complex resolution (Liesche et al., 
2015). Recently, molecular counting via photobleaching has at-
tracted renewed attention due to the development of novel analysis 
modalities based on Bayesian statistics (Tsekouras et al., 2016; Garry 
et al., 2020) and machine learning (Xu et al., 2019).

However, these novel methods are demanding in terms of data 
quality, which in turn leads to new requirements regarding fluoro-
phore properties. In the trade-off between signal-to-noise ratio 
(SNR) of the individual bleaching steps and the rate of photobleach-
ing, bright and stable fluorophores are advantageous. Thus, buffer 
systems (Aitken et al., 2008; Vogelsang et al., 2008) to increase pho-
tostability and reduce complex photophysical behavior could help 
to improve data quality. This motivates an investigation into which 
labeling approaches and buffer systems are most suited to generate 
data compatible with automated and robust photobleaching step 
analysis at an increased counting range. Additionally, Bayesian 
methods are computationally costly and therefore limit the number 
of photobleaching traces that can be processed in a given experi-
ment. Therefore, we see the necessity for an approach to bridge the 
gap between simple methods such as visual inspection and the 
novel Bayesian methods. Finally, the experimental validation with 
standard samples is often not the focus of theoretical methods de-
velopment although calibration samples are readily available 
(Schmied et al., 2014; Thevathasan et al., 2019).

Here, we address these hurdles to make photobleaching step 
analysis a more robust and thoroughly validated tool in the biophys-
ics toolbox. We describe a comprehensive framework for PBSA that 
provides guidelines for the choice of fluorescent label and acquisi-
tion conditions as well as a new photobleaching trace analysis algo-
rithm. The quickPBSA package was developed with a focus on auto-
mation and speed, providing the high throughput necessary to 
meet the demands for in situ protein counting. We then validate the 
method with molecular counting experiments on DNA origami car-
rying defined label numbers. Finally, we show that quickPBSA, in 
conjunction with optimized trace data acquisition, is well suited to 

characterize protein structures in cells by determining the copy 
number of nucleoporin 107 (NUP107) in the nuclear pore complex 
(NPC).

RESULTS
The reliability of automated photobleaching trace evaluation 
strongly depends on the quality of the input data, that is, individual 
photobleaching traces. Historically, PBSA has mostly been per-
formed using fluorescent proteins as labels (Arant and Ulbrich, 
2014). However, fluorescent proteins tend to be less photostable 
than small organic fluorophores and are known to exhibit complex 
photophysics, complicating trace interpretation (Ha and Tinnefeld, 
2012). To identify fluorophores suited for generating photobleach-
ing traces with high SNR, we therefore compared the fluorescent 
proteins EGFP, mCherry, and mNeonGreen, as well as the organic 
fluorophores tetramethylrhodamine (TMR) and silicon rhodamine 
(SiR) conjugated to the self-labeling protein tags SNAP-tag and 
HaloTag with respect to their photostability, brightness, and pro-
pensity for photoinduced blinking. In addition, we tested to which 
degree photostabilizing buffers composed of reducing and oxidiz-
ing systems (ROXSs) and an oxygen scavenger could be used to 
increase photostability, suppress photoblinking, and thereby im-
prove trace quality.

Both the molecular brightness of a fluorescent label and its pho-
tostability contribute to the overall photon budget and thereby di-
rectly influence the SNR. Because the molecular brightness is a well-
studied property of fluorophores, it can be readily compared across 
different fluorophores based on reported values in the literature 
(Supplemental Table S1). For organic fluorophores conjugated to 
protein tags, a strong influence of the tag on the fluorophore was 
observed and has to be taken into account when comparing the 
brightness of different fluorophores after conjugation to protein 
tags (Erdmann et al., 2019). In contrast, the photostability of a fluo-
rophore can strongly depend on its environment and on the applied 
measurement conditions. For this reason, we performed systematic 
photobleaching measurements under comparable conditions with 
the selected fluorophores. For this, we expressed each label as fu-
sion protein in U2OS or COS-7 cell lines (Supplemental Figure S1) 
and imaged them after chemical fixation. We determined the pho-
tostability of each fluorophore in phosphate-buffered saline (PBS; 
pH 7.4) and three photostabilizing buffers, each containing methyl 
viologen and ascorbic acid as ROXS and an oxygen scavenger sys-
tem consisting of either glucose oxidase and catalase (GodCat) (Ha-
rada et al., 1990), protocatechuate-3,4-dioxygenase (PCD) (Aitken 
et al., 2008), or sodium sulfite (NaSO3) (Hartwich et al., 2018).

Upon high-intensity illumination, we observed biexponential in-
tensity decay patterns for all tested fluorophores (Supplemental 
Figure S2). Such behavior has been reported before for both or-
ganic fluorophore and fluorescent proteins (Song et al., 1995; 
Bakker and Swain, 2019). We therefore decided to use the time to 
reach half maximum (t1/2 ) as a model-independent metric to com-
pare conditions and fluorophores. Across all tested conditions, t1/2 
varied considerably, covering three orders of magnitude (0.5–200 s). 
Overall, fluorescent proteins were less photostable than organic 
fluorophores and far-red organic fluorophores exhibited the highest 
photostability. Differences between fluorophores were less pro-
nounced in conventional buffers without photostabilizing additives. 
Addition of ROXS and oxygen scavengers resulted in strongly in-
creased photostability for organic fluorophores, particularly for the 
red-absorbing fluorophores ATTO 647N and SiR (Figure 1a). For 
ATTO 647N, photostability was improved twofold with ROXS buffer 
supplemented with NaSO3 as oxygen scavenger. Replacing NaSO3 
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with the enzymatic oxygen scavengers GodCat or PCD resulted in 
further improvements of ∼10- and 20-fold, respectively. Similar 
trends were observed for both TMR and SiR conjugated to SNAP-
tag or HaloTag. Here, SiR conjugated to SNAP-tag in ROXS PCD 
showed the highest stability, with a t1/2 of 120 s (20-fold improve-
ment over PBS) and a 60-fold improvement over EGFP, but still 50% 
lower stability compared with ATTO 647N in the same buffer. In 
contrast, a decrease in photostability for EGFP and mCherry in the 
methyl viologen and ascorbic acid–based ROXS buffer was ob-
served for all three oxygen scavenging systems, possibly due to pH 
changes of the buffers during imaging (Swoboda et al., 2012). Inter-
estingly, no such decrease in photostability was observed for 
mNeonGreen, which could be due to improved stability of the pro-
tein structure of mNeonGreen (Shaner et al., 2013).

In addition to the increased photostability of organic fluoro-
phores, ROXS buffers were also reported to reduce emission inten-
sity fluctuations on the millisecond to second timescale, also 
known as photoblinking, which complicates trace interpretation in 
PBSA (Vogelsang et al., 2008). For a quantitative characterization 
of photoblinking, we performed on- and off-rate measurements for 
a selection of fluorophores and buffer conditions using an image 
correlation approach that robustly determines photoblinking rates 
across a range of blinking regimes without requiring traces of indi-
vidual fluorophores (Sehayek et al., 2019). For these measure-
ments, we recorded image series on chemically fixed cells with the 
labels EGFP, SNAP-tag, or HaloTag localized at the plasma mem-
brane. These image series were then used to compute the tempo-
ral autocorrelation function (ACF), which we fitted with a three-
state fluorophore model (Supplemental Figure S3). Of note, such a 
three-state fluorophore model does not necessarily reflect the un-
derlying photophysical processes for the evaluated fluorophores, 

but rather serves to facilitate a quantitative comparison of fluoro-
phores and conditions. The degree of photoblinking observed in 
this assay varied strongly between the tested fluorophores and 
was apparent both by visual inspection of intensity traces from in-
dividual fluorophores (Figure 1, c–f) and in the corresponding 
ACFs (Supplemental Figure S4). Fitting the ACFs obtained from 
image correlation then allowed us to determine on- and off-rates 
for photoblinking across the different conditions (Supplemental 
Figure S5).

In PBS, the on-time (ton, 1/koff) and the equilibrium constant K 
(kon/koff) of EGFP and TMR or SiR conjugated to SNAP-tag were 
comparable (Figure 1b). In contrast, fluorophores conjugated to 
HaloTag exhibited a much lower degree of photoblinking, evi-
denced by higher K and ton even without addition of ROXS or oxy-
gen removal. For EGFP, the strong decrease in photostability de-
scribed above prevented a photoblinking analysis in ROXS PCD. For 
TMR and SiR conjugated to both tags, we observed an increased 
on-fraction K upon switching to ROXS PCD buffer. Interestingly, the 
effect on the on-time was less consistent. While fluorophores conju-
gated to SNAP-tag showed increased ton in ROXS PCD as com-
pared with PBS, fluorophores conjugated to HaloTag exhibited 
lower ton after ROXS addition and oxygen removal. In the case of 
TMR, this resulted in very similar photoblinking behaviors in ROXS 
PCD for both tags. For SiR, conjugation to HaloTag resulted in ∼3× 
larger K and ton in ROXS PCD compared with SNAP-tag in the same 
buffer. It was recently reported that fluorophores conjugated to 
HaloTag are tightly associated to the protein surface, while fluoro-
phores conjugated to SNAP-tag protrude away from the protein 
surface (Wilhelm et al., 2021). We speculate that this could result in 
differences in accessibility for soluble factor, which could explain the 
different propensity for photoblinking and the different effect of 

FIGURE 1: Fluorophore and image acquisition buffer selection for PBSA. (a) Comparison of photostability and 
molecular brightness for different fluorescent proteins and organic fluorophores conjugated to protein tags. Symbols 
indicate mean t1/2 and molecular brightness under indicated conditions. Color coding according to excitation 
wavelength used in this study: blue: 488 nm, green: 561 nm, red: 640 nm. t1/2 was normalized to 1 kW/cm2 excitation 
power density. The molecular brightness of fluorophores was corrected for mismatches between excitation wavelength 
and absorption maximum (Supplemental Table S1). The full data set is shown in Supplemental Figure S2. (b) Comparison 
of mean equilibrium constant K (kon/koff) between fluorescent and nonfluorescent states and mean on-time ton obtained 
from image correlation experiments for the indicated conditions. Color coding as in a. See Supplemental Figure S5 for 
full set of rate values. (c–f) Representative single-fluorophore intensity traces for the indicated fluorophores and buffer 
recorded via TIRF microscopy of surface immobilized ATTO 647N (c) or plasma membrane–localized EGFP and labeled 
HaloTag constructs in chemically fixed HeLa cells (d–f).
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ROXS components. Based on these observations, the trace quality 
and counting range of PBSA-based quantification can be improved 
by using self-labeling protein tags in combination with longer-wave-
length organic fluorophores and ROXS buffers supplemented with 
enzymatic oxygen scavenger systems.

Turning from the data acquisition to the data analysis, we set 
out to develop a routine capable of estimating fluorophore num-
ber distributions directly from the experimental data (i.e., image 
stacks) with minimal user input. To that end, apart from the novel 
quickPBSA algorithm for trace interpretation, the framework in-
cludes modules for automated trace extraction from raw time-
lapse image stacks and filtering. The underlying principle of the 
framework is to perform a preliminary step detection for each 
trace and then refine the results iteratively. The final refinement 
step makes use of a Bayesian posterior from Pressé and coworkers 
(Tsekouras et al., 2016), thus incorporating prior knowledge about 
the photobleaching process. In contrast to the previously pub-
lished approach, the Bayesian posterior is not used to detect step 
positions but only to determine step significance and find simul-
taneous bleaching events. The full data analysis workflow is made 
up of four major parts (Figure 2a), which are described in the 
following.

Trace extraction
The first step is the identification of regions of interest (ROIs) and the 
automated extraction of photobleaching traces from image stacks. 
Here, the ROIs can be provided as pixel coordinates (for instance, 
generated by a localization algorithm) or via a segmentation mask 
image (for instance, generated by thresholding). As the photo-
bleaching trace is extracted from the ROI, a ring-shaped region with 
variable offset from the ROI is used to extract a background bleach-
ing trace (Supplemental Figure S6). Other ROIs are automatically 

excluded from the background region. Especially for measurements 
in cells, we found that background bleaching due to autofluores-
cence and out-of-focus fluorescence occurred on similar timescales 
as that of the fluorophore bleaching. Therefore, background sub-
traction proved to be essential to recover traces with discernible 
photobleaching steps. Additionally, background subtraction also 
facilitates identifying and excluding ROIs that are not fully bleached 
at the end of the measurement.

Preliminary step detection
After trace extraction, a preliminary step detection is performed on 
all extracted traces. This is accomplished by successively placing 
steps and evaluating each added step using the Schwarz Informa-
tion Criterion (SIC) as first demonstrated by Kalafut and Visscher 
(2008, see supplementary text). In our implementation of this algo-
rithm, a user-defined threshold to ignore minor changes in the mean 
intensity reduces the detection of spurious steps, rendering the pre-
liminary step detection more robust.

Filtering
Traces are excluded based on the result of the preliminary step 
detection. The model selection in the quickPBSA algorithm criti-
cally depends on the correct detection of the last and the penulti-
mate bleaching steps in each trace because the period where only 
one fluorophore is active is used to retrieve the properties of an 
individual fluorophore. Therefore, traces that are not fully bleached 
at the end of an acquisition or where the last step potentially cor-
responds to a double bleaching event need to be excluded. As-
suming that the last two steps are correctly identified in most 
traces from the image stack, the distribution of single-fluorophore 
signal means across all traces can be used to filter out traces. Us-
ing this information from the entire image stack, we exclude traces 

FIGURE 2: Framework concept and quickPBSA algorithm. (a) The four parts of the framework as detailed in the text. 
(b) Flowchart of the quickPBSA step refinement algorithm. (c) Example to illustrate how a simulated trace propagates 
through the algorithm, starting from the result of the preliminary step detection. Note that step IV is skipped for the 
example trace because steps were removed in step III.
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where the single-fluorophore or background signal are out of 
bounds.

quickPBSA algorithm
Ultimately, the result is refined by evaluating the entire trace ac-
cording to the full marginal posterior from Pressé and coworkers 
(Tsekouras et al., 2016). This posterior incorporates the possibility 
of simultaneous bleaching events as well as a penalty for too many 
bleaching events and thus is a far more content-aware evaluation 
of step placement than the information criterion used in the 
preliminary step detection. The quickPBSA algorithm iteratively 
minimizes the negative logarithm of the posterior (–log(P), see 
supplemetary text, Table S2), starting from the result of the pre-
liminary step placement with all steps considered to be single 
events. Figure 2b shows a flowchart of the iterative optimization 
procedure, together with a simulated trace showing how the algo-
rithm removes steps and optimizes step heights from the prelimi-
nary result. The iterative procedure is as follows:

I. Find candidate positions for simultaneous steps. In the first itera-
tion (double steps) these are all positions. For more fluorophores 
bleaching simultaneously, only the locations from the last itera-
tion are considered. For example, triple steps are considered 
only where double steps yielded an improvement. If there are 
candidate positions, proceed with II, otherwise go to III.

II. Try all possible combinations with step heights up to the current 
occupancy. The result of this process is accepted and considered 
the new optimum if a lower value of –log(P) is found at any point. 
Step heights from 1 to the maximum step height are considered, 
so that, for instance, [2,2,2] can be replaced by [1,3,2]. Return to 
step I to find new candidate positions.

III. Remove the least significant step found during preliminary step 
detection. The final two steps in a trace are always kept in place 
because they are required for posterior calculation. If there are 
only three steps left, proceed with step IV, else reset all steps to 
single occupancy and return to step I.

IV. If no steps could be removed to yield an improved posterior, that 
is, the current optimum contains the same number of steps as 
the preliminary result, the algorithm proceeds to add single-flu-
orophore steps. This is accomplished by calculating –log(P) for 

additional positive or negative steps at all positions before the 
penultimate step. Repeat step IV until the last two added steps 
yielded no improved posterior or a specified maximum number 
of added steps is reached.

V. Return the step/event combination with the minimal value for –
log(P) found at any point in I–IV.

In the quickPBSA algorithm, the evaluation of simultaneous step 
arrangements is computationally most expensive. Especially for 
traces with many steps in the preliminary result, the number of pos-
sible combinations is excessive. We therefore implemented several 
strategies to reduce the computational cost at this point, as detailed 
in the documentation of the software package.

We benchmarked the quickPBSA trace analysis algorithm using 
semisynthetic data generated from experimental data. For this, we 
acquired experimental data from an in vitro sample with few fluoro-
phores per diffraction-limited spot, namely immobilized DNA oligo-
nucleotides labeled with four ATTO 647N fluorophores. We se-
lected traces where the quickPBSA result could be confirmed by 
visual inspection, obtaining a set of traces with known ground truth. 
We then generated increasingly complex semisynthetic traces with 
known ground truth by combining several of these traces (Figure 
3a). Using this approach, benchmarking traces with fluorophore 
numbers up to 40 were generated and used to evaluate the accu-
racy of the quickPBSA trace analysis.

For each fluorophore number, ∼100 semisynthetic traces with 
3000 time points per trace were included in the analysis (Supple-
mental Figure S7). To compare the performance of the algorithm 
with that of a state-of-the-art Bayesian algorithm, we analyzed the 
benchmarking data set with the algorithm previously published by 
Pressé and coworkers (Tsekouras et al., 2016), hereafter called 
Pressé 2016. Figure 3b shows the results of the benchmark data set 
after the filtering step (Preliminary Only), including the quickPBSA 
refinement algorithm, and from the Pressé 2016 algorithm. For the 
benchmarking data set, the result of the preliminary step detection 
starts to deviate systematically from the ground truth for fluoro-
phore numbers beyond 20, most likely due to missed bleaching 
events, which occurred in close temporal succession. The results 
after quickPBSA step refinement and from the Pressé 2016 algo-
rithm, on the other hand, show a slight overestimation. But in both 

FIGURE 3: Benchmark with semisynthetic traces. (a) Semisynthetic traces for benchmarking are generated by 
combining manually classified traces. (b) Deviation from ground truth for semisynthetic traces analyzed without 
quickPBSA step refinement, including step refinement, and with the algorithm from Pressé and coworkers (Tsekouras 
et al., 2016). (c) Runtime per trace for the three algorithms. Mean (line) and SD (shaded region) are shown.
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algorithms the mean estimated fluorophore number never deviates 
by more than one fluorophore from the expected value. Addition-
ally, the overestimation is likely caused by the selection of ground 
truth traces, because a simple ruler method shows an even larger 
overestimation for the benchmarking data set (Supplemental Figure 
S7). Overall, the results from the quickPBSA algorithm and Pressé 
2016 are very similar. A two-sample t test shows that the means 
obtained from the two algorithms never differ significantly (p > 0.01; 
Supplemental Figure S7).

We also used the semisynthetic traces to benchmark the runtime 
of the analyses in dependence on the number of fluorophores 
(Figure 3c). We observed that for up to 20 fluorophores, the quick-
PBSA total runtime was dominated by the preliminary step detec-
tion. For higher fluorophore numbers, the runtime increases due to 
the quickPBSA refinement and increases further for higher fluoro-
phore numbers. Nonetheless, the mean runtime remained below 
10 s per trace (3000 data points) for the entire benchmarking data 
set containing traces with up to 40 fluorophores. In contrast, the 
runtime of the Pressé 2016 algorithm is more than 30 min per trace 
for the entire benchmarking data set. Thus, using the quickPBSA 
algorithm, we were able to analyze the data set with comparable 
results and a greater than100-fold lower computation time. The 
mean analysis times for all data sets included in this publication are 
below 3 min per trace even for complex experimental traces with up 
to 15,000 data points (Table 1).

To fully validate the developed framework with experimental 
data, we used DNA origami carrying a well-defined number of fluo-
rophores. DNA origami with 9, 20, and 35 binding sites for labeling 
strands carrying a single ATTO 647N fluorophore (R09, R20, and 
R35) were sparsely immobilized on coverslips to ensure that sto-
chastically overlapping origami structures did not significantly influ-
ence the measurement (Figure 4a). The labeling efficiency specified 
by Gattaquant for the DNA origami is 70%, which we independently 
validated for the R20 origami using counting by photon statistics 
(Grußmayer and Herten, 2017) (Supplemental Figure S8). Photo-
bleaching traces from individual DNA origami structures were then 
extracted using the trace extraction module described above, using 
the software thunderSTORM (Ovesný et al., 2014) for ROI localiza-
tion and removing origami with close nearest neighbors (Supple-
mental Figure S6). Because the extracted traces exhibited only weak 
background bleaching, the background subtraction step for this 
sample mainly removed a constant offset caused by excitation 
bleed-through and readout noise (Figure 4a, center).

Processing the background-corrected traces using the full quick-
PBSA algorithm resulted in good agreement between intensity and 
predicted fluorophore numbers over time (Figure 4a). The obtained 
fluorophore number distributions were symmetrical, indicating no 
systematic deviation and an unbiased measurement error (Figure 
4b). The means obtained from fitting a normal distribution to the 

quickPBSA fluorophore number estimates agreed with the expected 
values for a labeling efficiency of 70%. In contrast, the means of 
distributions obtained without quickPBSA refinement (preliminary 
only), while similar for origami with nine binding sites, exhibited a 
significant underestimation for origami with 20 and 35 binding sites 
(Figure 4c). This underestimation for larger fluorophore numbers is 
in line with the benchmarking results with semisynthetic traces.

A full comparison of all parameters from the fits and a compari-
son to the mean and SD of a binomial distribution with the known 
number of binding sites and the expected labeling efficiency are 
shown in Table 1. We observed that the measured distributions 
broadened with increasing fluorophore number, stronger than 
would be expected from the binomial distribution of label numbers 
alone. For instance, while broadening of the measured data was 
negligible for R09 origami, the SD increased by a factor of 3 for R20 
origami (Table 1). This suggests that experimental data contain ad-
ditional sources of uncertainty that are not fully reproduced using 
semisynthetic data and therefore highlights the importance of ad-
ditional benchmarking with standardized samples.

To validate that the quickPBSA algorithm performed robustly 
upon variation of experimental parameters, we performed addi-
tional measurements with the R09 origami samples on a different 
wide-field microscope setup with homogeneous illumination power 
and a sCMOS instead of an emCCD camera for detection. As in the 
first experiment with the R09 origami, the expected mean and width 
of the fluorophore number distribution were well reproduced (Figure 
4d; Table 1). A large field of view is advantageous for the acquisition 
of photobleaching data because the overall measurement time is 
decreased and the potential impact of degrading buffer perfor-
mance can be minimized.

We further explored the sensitivity of the quickPBSA algorithm to 
fluorophore properties by measuring a fluorophore number distri-
bution for origami with nine binding sites labeled with ATTO 565 
(Y09). Here, the measured distribution showed a peak at 7.9 fluoro-
phores, significantly above the expected mean fluorophore number 
of 6.3 (Figure 4e; Table 1). A likely explanation for this deviation is 
that ATTO 565 exhibited two distinct brightness states as frequently 
observed in individual photobleaching traces (Supplemental Figure 
S9). If the last photobleaching step occurs from a lower brightness 
state in a significant number of traces, the mean signal of a single 
fluorophore is underestimated for these traces, leading to an over-
estimation of the total number of fluorophores. This again highlights 
how important label selection is in photobleaching experiments, 
even for organic fluorophores. Additionally, taking the complex 
photochemical behavior into account can extend the counting 
range of photobleaching analysis even further (Bryan et al., 2020).

While DNA origami samples are ideally suited for determining 
the accessible counting range of a novel method, the application to 
biological targets within the complex cellular environment is subject 

Sample Mean Mean expected SD SD expected Sample size Runtime/trace (s)

R09 6.7 (0.1) 6.3 1.9 (0.1) 1.4 197;13;1 25

R20 14.2 (0.2) 14 6.1 (0.2) 2.1 636;43;2 53

R35 22.6 (0.5) 24.5 8.6 (0.5) 2.7 499;25;2 168

R09* 6.0 (0.1) 6.3 2.2 (0.1) 1.4 1667;5;1 19

Y09 7.9 (0.1) 6.3 1.6 (0.1) 1.4 853;12;1 88

SEs in parentheses as extracted from least-squares fitting. The expected values are calculated assuming a 70% labeling efficiency. 
*Measurement on alternative microscope setup with sCMOS detector. Sample size: number of traces; measurements; independent experiments.

TABLE 1: Mean and SDs extracted from Gaussian modeling of measured emitter number distributions from DNA origami experiments.
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to additional challenges that are not captured in simplified in vitro 
experiments. Background (auto)fluorescence, density of structures, 
and biological variation cannot readily be controlled in a biological 
sample and will impact data quality. To assess how the quickPBSA 
framework coped with a more complex in situ sample, we decided 
to determine the number of NUP107 protein copies contained in 
individual NPCs. To minimize the influence of protein expression 
and labeling efficiency, we used a genome-edited U2OS cell 
line expressing NUP107-SNAP from its native genomic context 
(Li et al., 2018). Labeling of SNAP-tag conjugated NUP107 was 
performed with the corresponding SiR substrate BG-SiR. From epi-
fluorescence images of chemically fixed and labeled cells, it is im-
mediately evident that fluorescent background is much more pro-
nounced in situ than in the origami experiments described above 
(Figure 5a). Additionally, the high density of NPCs resulted in re-
gions where it was no longer possible to identify individual NPCs. As 
for the in vitro samples, individual NPCs were localized with thun-
derSTORM (Ovesný et al., 2014). The trace extraction routine in the 
quickPBSA framework automatically excludes NPCs based on local-
ization parameters such as width of the fitted Gaussian or nearest-
neighbor distance. Thus, only sufficiently isolated and diffraction-
limited structures are considered for further analysis (Supplemental 
Figures S6 and S10). Despite this prefiltering, raw traces from indi-
vidual ROIs did not exhibit clear bleaching steps and the decay in 
the background region occurred on a similar timescale as the fluo-
rescence signal of the ROI (Figure 5b). Background fluorescence can 
therefore be mainly attributed to out-of-focus fluorescence rather 
than autofluorescence. After subtraction of the background signal, 
photobleaching steps could be observed toward the end of photo-
bleaching traces (Figure 5b). Despite the substantially lower SNR 

compared with the previously successfully evaluated traces re-
corded using ATTO 647N as fluorophore, we subjected the ex-
tracted traces to analysis with the quickPBSA algorithm (Figure 5, b 
and c). The resulting fluorophore number distribution cumulated 
across 32 cells from two independent experiments (Supplemental 
Figure S10) was well described by a normal distribution with a mean 
of 20.7 ± 0.2 fluorophores per NPC and a SD of 8.5 ± 0.2 (Figure 5d). 
The mean fluorophore number per NPC per cell was 21.6 ± 1.7, in-
dicating that quickPBSA yielded robust estimates across the entire 
population of cells (Figure 5e). The width of the cumulated distribu-
tion is comparable to that of the distribution obtained from R35 
DNA origami, indicating that background subtraction and spot pre-
filtering successfully reduced the complexity of obtained traces and 
did not result in reduced precision. NUP107 has been reported pre-
viously to be present in NPCs at 32 copies per pore (Bui et al., 2013; 
Ori et al., 2013). Based on the mean fluorophore number of 20.7 ± 
0.2 per NPC, this translates into a labeling efficiency of ∼65% for 
SNAP-tag labeling with BG-SiR, which is in excellent agreement with 
recent reports (Thevathasan et al., 2019). This indicates that quick-
PBSA is able to correctly measure fluorophore numbers even for 
less-bright fluorophore labels in the complex environment of a eu-
karyotic cell and with precision comparable to that of localization 
microscopy–based methods (Thevathasan et al., 2019).

DISCUSSION
The presented framework for photobleaching step analysis offers a 
robust, fast, and well-validated approach for molecular counting in 
situ. The evaluation of various fluorophores along with different buf-
fer conditions with respect to the precision of photobleaching step 
analysis may serve as a practical guide for robust counting of 

FIGURE 4: Validation with DNA origami samples. (a) Representative image and traces from the origami experiment 
with 20 binding sites for ATTO 647N. Scale bar: 10 µm. (b) Fluorophore number distributions for origami with 9, 20, 
and 35 binding sites. The histograms are modeled with a Gaussian to extract means and SDs (results and sample sizes in 
Table 1). Vertical dashed lines and areas shaded in gray indicate the expected mean and SD obtained from binomial 
distributions. (c) Fit results from b compared with the expected mean of the label number distribution, which is a 
binomial distribution with a labeling efficiency of 70%. Error bars and shaded region show the SD. The quickPBSA result 
differs significantly from the result without quickPBSA refinement for 20 and 35 binding sites (two sample t test, 
***: p < 0.001, n.s.: not significant). (d) Measured label number distribution of origami with nine binding sites for 
ATTO 647N on a different microscope setup with a larger field of view and sCMOS detector. (e) Measured label number 
distribution for origami with nine binding sites for ATTO 565.
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proteins and other biomolecules. Additionally, it may serve as a 
blueprint for extended screening of other fluorescent labels and ex-
perimental conditions. The high photostability and low degree of 
photoblinking of organic fluorophores imaged in ROXS buffer with 
enzymatic oxygen removal enabled the generation of high-quality 
input data for automated trace interpretation. Despite the lower 
brightness compared with HaloTag, the high photostability of SiR 
conjugated to SNAP-tag in ROXS PCD buffer was found to be suit-
able for PBSA protein counting. Clearly, fluorophore characteristics 
strongly depend on the specific environment, as is especially evi-
dent by the influence of protein tags on photoblinking of TMR and 
SiR and the effect of SNAP-tag conjugation on SiR brightness. 
Therefore, evaluating fluorophore properties should always be con-
sidered when using alternative labeling approaches. Fluorophores 
with improved molecular brightness and photostability (Grimm 
et al., 2015; Scott et al., 2018), as well as recently reported self-
healing fluorophores (van der Velde et al., 2018; Henrikus et al., 
2021), might allow the extension of the accessible counting range of 
photobleaching step analysis. Approaches to improve the SNR dur-
ing image acquisition such as confocalized detection or single-plane 
illumination could help to improve trace quality and thereby further 
extend the accessible counting range of quickPBSA (Mi et al., 2015).

On the analysis side, we found it beneficial to make use of infor-
mation from the entire field of view during trace selection, combining 
features from pairwise frequency methods with features from Bayes-

ian approaches. In this spirit, the methodology for trace analysis is a 
combination and extension of two previous approaches to photo-
bleaching step analysis. The combined method has only a few user-
defined parameters, simplifying automation and improving robust-
ness. The high degree of automation together with the more than 
100-fold improved computational efficiency of the combined method 
provides the significantly increased throughput required for biologi-
cal applications. We believe that the developed method of testing 
algorithms with semisynthetic data will be highly useful not only for 
benchmarking other PBSA algorithms but also to generate training 
data for machine learning–based approaches (Xu et al., 2019).

Using ATTO 647N-labeled structures with a known stoichiometry 
in vitro, we showed that quickPBSA yields highly accurate (<10% 
deviation across all samples) estimates of mean fluorophore num-
bers for structures containing up to 35 fluorophores. We further-
more demonstrated the robustness of the quickPBSA workflow by 
successfully analyzing data acquired on different experimental set-
ups. We also demonstrated that the complex photochemical behav-
ior of fluorophores can skew fluorophore number estimates, high-
lighting the importance of careful fluorophore characterization 
before experiments.

To show that quickPBSA performs well in biological applications, 
we determine the number of NUP107 protein copies in NPCs of 
U2OS cells. At this point, the background subtraction and trace filter-
ing modules of quickPBSA proved to be crucial for obtaining traces 

FIGURE 5: Protein counting of NUP107 in U2OS cells. (a) Representative image of U2OS cell stably expressing 
NUP107-SNAP-tag labeled with BG-SiR. Scale bar: 5 µm. (b) Traces extracted from the segmented ROI and background 
regions and evaluated difference trace from example trace b. (c) Evaluated background-corrected trace extracted from 
ROI c (scaled to overlap). (d) Measured fluorophore number distribution and Gaussian model fit (black line, mean 20.7 ± 
0.2, SD 8.5 ± 0.2). Four thousand traces from 32 cells, two independent experiments. (e) Mean fluorophore number per 
NPC per cell. Bars show mean ± SD across cells (21.6 ± 1.7).
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from complex samples. Factoring in the expected labeling efficiency 
for SNAP-tag labeling, the previously reported number of 32 protein 
copies was well reproduced. This constitutes, to our knowledge, the 
highest stoichiometry successfully measured with photobleaching 
step analysis in a biological sample so far and demonstrates the ro-
bustness of the outlined approach in biological samples.

Future developments of alternative algorithms for PBSA to fur-
ther improve the precision of fluorophore counting, such as novel 
Bayesian approaches (Bryan et al., 2020), will be of high interest for 
moving beyond measuring mean complex stoichiometries and to-
ward characterizing stoichiometry distributions across ensembles of 
individual complexes. At this point, however, advances in data anal-
ysis will need to go hand in hand with the development of novel 
labeling schemes with improved labeling efficiency to reduce the 
variation in fluorophore numbers caused merely by incomplete la-
beling of target proteins.

Overall, the combination of improved data acquisition and the 
novel analysis routines contained in the quickPBSA framework pro-
vide a reliable way to determine protein stoichiometries in cellulo 
and will enable the use of automated PBSA as a routine tool for cell 
biology in future applications.

MATERIALS AND METHODS
Request a protocol through Bio-protocol.

Preparation of DNA in vitro samples
Custom brightness DNA origami with 9, 20, or 35 nominal binding 
sites labeled with ATTO 647N or ATTO 565 at approximate labeling 
efficiencies of 70% (Gattaquant DNA Nanotechnologies, Germany) 
were dissolved in 0.5 × TBE (Tris-borate-ethylenediaminetetraacetic 
acid) buffer supplemented with 11 mM MgCl2 and stored at –20°C 
until use. DNA oligonucleotides labeled with 4 ATTO 647N (tet-
raATTO 647N) as previously described (Liesche et al., 2015) 
(biomers.net, Germany) were dissolved in PBS (10 mM phosphate 
buffer, 2.7 mM KCl, 137 mM NaCl, pH 7.4; Sigma Aldrich, Germany) 
and stored at –20°C until use. Both DNA origami and DNA oligo-
nucleotides were immobilized in eight-well LabTek (Nunc/Thermo 
Fisher, USA) chambered coverslips via biotin–streptavidin linkage as 
previously described (Grußmayer and Herten, 2017). Prepared sam-
ples were kept in PBS (DNA oligonucleotides) or PBS supplemented 
with 20 mM MgCl2 (DNA origami) unless stated otherwise.

Cell culture
COS-7, U2OS, and HeLa cells (all American Type Culture Collec-
tion) were cultured in DMEM supplemented with GlutaMax and 1 
mM sodium pyruvate (all Life Technologies Technologies, USA). 
Cells were grown at 37°C, 5% CO2 in a humidified atmosphere 
and routinely subcultured every 3 d or upon reaching 80% conflu-
ency. Cultures were kept in culture for up to 30 passages and were 
not routinely tested for mycoplasma contamination. For wide-field 
imaging, cells were seeded into eight-well LabTek chambered cov-
erslips. Before the cells were seeded, LabTek coverslips were 
cleaned with 0.1 M hydrofluoric acid for 2 × 30 s and extensively 
washed with PBS. Transfection of COS-7 cells was performed with 
TransIT-X2 transfection reagent (Mirus Bio, USA) according to the 
manufacturer’s instructions 24 h after cell seeding and at least 22 h 
before fixation. Fixation of cells was performed with 3.7% (wt/vol) 
prewarmed paraformaldehyde (PFA; EM grade; Electron Micros-
copy Sciences, USA) freshly diluted in PBS for 20 min at room tem-
perature. All samples were washed repeatedly with PBS after fixa-
tion and imaged directly after or kept in PBS at 4°C until being 
imaged.

Preparation of cells expressing SNAP-tag or HaloTag
HeLa cells stably expressing Escherichia coli glutamine synthetase 
GlnA-HaloTag (Finan et al., 2015) were a gift of Florian Salopiata 
(DKFZ Heidelberg). U2OS cells stably expressing NUP107-SNAP-
tag were a gift of Jan Ellenberg (EMBL Heidelberg) (Otsuka and El-
lenberg, 2017). Both cell lines were labeled with corresponding tag 
substrates directly before fixation. GlnA-HaloTag–expressing cells 
were labeled with TMR HaloTag ligand (HTL-TMR; Promega, USA) 
or SiR HaloTag ligand (SiR-HTL; Spirochrome, Switzerland) at 
100 nM in growth medium for 120 min at 37°C. NUP107-SNAP-tag–
expressing cells were labeled with benzylguanine-functionalized 
TMR (BG-TMR; NEB, USA) or SiR (BG-SiR; Spirochrome) at 200 nM 
in growth medium for 120 min at 37°C. After labeling, cells were 
washed repeatedly with growth medium and fixed as described 
above.

Imaging buffers
Samples were imaged either in PBS or in buffers containing different 
ROXSs. ROXS buffers were prepared from a base solution (50 mM 
phosphate buffer, 13.5 mM KCl, 0.685 M NaCl, and 10 mM MgCl2, 
12.5% [vol/vol] glycerol, pH 7.4; all Sigma-Aldrich) that was degassed 
by flowing argon through the buffers for at least 20 min before mix-
ing or addition of buffers to samples. Paraquat dichloride (1 mM) and 
1 mM ascorbic acid were added as reducing/oxidizing agents. Oxy-
gen was depleted from the buffer by the addition of 10 mM NaSO3, 
50 nM PCD (>3 U/mg), and 2.5 mM protocatechuic acid (ROXS PCD) 
or 0.66 M d-glucose, 5000 U catalase, and 40–80 U glucose oxidase 
(ROXS GodCat). The ROXS GodCat buffer was additionally supple-
mented with 1 mM Tris(2-carboxyethyl)phosphine. All buffer compo-
nents were obtained from Sigma Aldrich (Germany).

Wide-field fluorescence microscopy
If not stated otherwise, single-molecule fluorescence microscopy 
was performed on a custom-built inverted microscope (Nikon 
Eclipse Ti; Nikon, Japan) with epifluorescence and total internal re-
flection fluorescence (TIRF) illumination. The microscope setup in-
cluded an autofocus system (PFS2) and a 100× 1.49 NA oil immer-
sion objective (Apo TIRF; both Nikon). Images were recorded using 
a back-illuminated emCCD camera (iXon Ultra 897; Andor, UK) at 
96 nm pixel size in the sample plane. A fiber-coupled multilaser en-
gine (MLE-LFA; TOPTICA Photonics, Germany) equipped with 488, 
561, and 640 nm laser lines was used for illumination. The excitation 
light was filtered by a quadband notch filter. A quadband dichroic 
mirror separated the emission and excitation beam paths. Emitted 
signal was further filtered using 525/50, 605/70, and 690/70 nm 
bandpass filters (all AHF Analysetechnik, Germany) mounted in a 
motorized filter wheel (FW102C; Thorlabs, USA) placed before the 
camera. All microscope components were controlled using 
µManager (Edelstein et al., 2014). Exposure times and electron-mul-
tiplying gain and illumination intensities were optimized for each 
sample individually to ensure maximum signals at the start of mea-
surements while avoiding saturation of individual pixels.

Wide-field fluorescence microscopy with extended field of 
view and homogeneous illumination
Single-molecule trace acquisition with improved throughput was 
performed on a custom-built wide-field fluorescence microscope 
built around an inverted Axiovert 200 stand (Zeiss, Germany). A 
647 nm fiber laser with Gaussian-shaped emission profile (MPB 
Communications, Canada) was expanded to 6.0 mm and converted 
into a flattop beam using a beamshaper (πShaper AdlOptica Optical 
Systems GmbH, Germany) and further expanded to a diameter of 

https://en.bio-protocol.org/cjrap.aspx?eid=10.1091/mbc.e20-09-0568


10 | J. Hummert, K. Yserentant, et al. Molecular Biology of the Cell

47 mm. The expanded beam was then guided into the microscope 
stand and focused on the back focal plane of a 100× 1.49 NA oil 
immersion objective (Apo TIRF; Nikon, Japan) objective. The 
variation in irradiance was below 15% across the entire illuminated 
area. Emitted signal was collected through the same objective, 
separated from excitation light using a quad-band dichroic filter 
(R405/488/561/635; Semrock, USA), and further filtered using a 
405/488/532/635 nm notch filter (Semrock) and a 700/50 nm band-
pass filter (Chroma, USA). Images were projected onto a back-illumi-
nated sCMOS camera with a 130 × 130 µm field of view (Prime95B; 
Photometrics, UK). Samples were placed on a motorized stage 
(MS2000) and kept in focus using an autofocus system (CRISP; both 
Applied Scientific Instrumentation, USA). Camera and laser were 
synchronized using an Arduino Mega microcontroller board. All mi-
croscope components were controlled using µManager.

Fluorophore stability measurements
The photostability of different fluorophores and the influence of 
ROXS buffers on the blinking and photostability of fluorophores 
were evaluated by recording time-lapse data from samples labeled 
with the corresponding fluorophore upon high-intensity excitation. 
The stability of ATTO 647N was evaluated using DNA oligonucle-
otides labeled with ATTO 647N immobilized as described above. 
TMR and SiR substrates for SNAP-tag and HaloTag were evaluated 
in fixed cells using cell lines expressing NUP107-SNAP-tag or GlnA-
HaloTag as described above. The stability of EGFP, mCherry, and 
mNeonGreen was evaluated in COS-7 cells transiently expressing 
H2A-EGFP-HaloTag (kind gift of Richard Wombacher, Max-Planck 
Institute for Medical Research, Heidelberg, Germany), TOMM20-
mCherry-HaloTag (Werther et al., 2020), or TOMM20-mNeonGreen 
(Allele Biotechnology, USA) fixed 24 h after transfection. For each 
fluorophore, the stability in PBS, pH 7.4, and the NaSO3, ROXS 
PCD, and ROXS GodCat buffer systems was tested with buffer com-
positions as described above. Before imaging, samples were 
washed once with PBS, pH 7.4, and sample chambers were filled 
with the respective buffer and sealed with Parafilm to minimize gas 
exchange during experiments.

Bleaching curves were acquired on an epifluorescence setup for 
all buffer–fluorophore combinations described above. EGFP- and 
mNeonGreen-labeled structures were bleached at 0.58 kW/cm2 av-
erage irradiance, mCherry- and TMR-labeled samples were 
bleached at 0.84 kW/cm2 average irradiance, and ATTO 647N- and 
SiR-labeled samples were bleached at 2.42 kW/cm2 average irradi-
ance. Image series were acquired with constant illumination until 
samples were fully bleached and the signal reached a plateau.

All data were background corrected by subtracting a constant 
offset from acquired image series to account for camera offset and 
excitation light bleedthrough. Offsets were manually determined for 
each sample and were found to be well reproducible within one 
condition, but variable across conditions. Bleach curves were then 
extracted from image series by extracting the frame-wise average 
intensity within a masked region. Masks were obtained from a 
Gaussian-filtered average projection of the first 10 images in the 
series and local thresholding following the Bernsen method. Mask 
segmentation and intensity extraction were performed using cus-
tom-written code in Fiji/ImageJ. Bleach curves were normalized to 
the maximum intensity in the respective trace, and the raw half 
bleach time (t1/2,raw), defined as the time at which the intensity 
traces had decayed to <50% of the maximum intensity, was ex-
tracted using custom-written Matlab code. To facilitate comparison 
between fluorophores excited at different wavelengths, t1/2,raw were 
normalized against the applied illumination power density (IPD) to 

obtain the excitation power–corrected t1/2 = t1/2,raw/IPD at an illumi-
nation power density of 1 kW/cm2.

Fluorophore photoblinking characterization
For characterization of fluorophore blinking, an EGFP-HaloTag-
SNAP-tag fusion protein targeted to the plasma membrane via fu-
sion to the N-myristoylation sequence MGCIKSKRKDNLNDDE was 
stably expressed in HeLa cells. Cells expressing this construct were 
grown in LabTek chambered coverslips and labeled with TMR or SiR 
for HaloTag or SNAP-tag as described above. After labeling, cells 
were fixed in prewarmed PBS supplemented with 4% PFA and 
0.05% glutaraldehyde for 30 min at room temperature. Cells were 
then repeatedly washed in PBS and imaged directly after or kept in 
PBS at 4°C until being imaged. For recording of image time series, 
samples were prepared in either PBS or ROXS PCD buffer and indi-
vidual cells were randomly selected for imaging. Image stacks of 
1000 frames were acquired with TIRF at an illumination power den-
sity of 50 W/cm2 and with an exposure time of 25 ms on the alterna-
tive setup with homogenized illumination. Images were correlated 
following the approach developed in Sehayek et al. (2019) using 
Matlab code provided by the authors available at https://github.
com/ssehayek/blink-project.git. ACFs were computed using the first 
1000 frames of each image stack and a maximum lag time of 600 
frames. The initial decay (lag times 2–125 frames) of obtained ACFs 
containing information about photoblinking was fitted to a three-
state model (equalBleach) developed by Sehayek et al. (2019).

Counting by photon statistics measurements
Counting by photon statistics (CoPS) measurements were performed 
on a custom-built confocal microscope constructed around an in-
verted microscope stand (Axiovert 100; Zeiss, Germany). Linearly 
polarized light emitted by a ps-pulsed laser diode emitting at 
640 nm (LDH P-C-640B; PicoQuant, Germany) operated at a repeti-
tion rate of 20 MHz diode was circularized using a quarter wave plate 
and coupled into a single-mode polarization maintaining fiber 
(Schäfter Kirchhof, Germany). The excitation light was directed to-
ward a 100× NA 1.45 objective (Alpha Plan-Fluar; Zeiss) using a di-
chroic mirror (z532/640; CHROMA). Light emitted by the sample was 
collected by the same objective and passed through the dichroic 
filter. Scattered excitation light was removed using a quad-band 
notch filter (488/532/631–640 nm; AHF Analysetechnik). The re-
maining emitted light was then spatially filtered with a pinhole (100 
µm diameter) placed in the focal plane between two achromatic 
doublet lenses (f = 75 mm; Thorlabs). All remaining light was split 
into four equal paths using three 50:50 beamsplitters (Thorlabs) and 
focused on four avalanche photo diode (APD) detectors (SPCM 
AQR-13; Perkin-Elmer, USA) using achromatic doublet lenses (f = 
200 mm; Thorlabs). Bandpass filters (685/70 nm) were placed in front 
of each APD. Signals detected by the APDs were processed using a 
HydraHarp400 multichannel time-correlated single photon counting 
system and the SymPhoTime 64 software platform (both PicoQuant). 
The positions of objective and sample were controlled by a one-axis 
piezo scanner (P-721 PIFOC) and a two-axis piezo stage (7332CD; 
both Physik Instrumente, Germany). The two-axis piezo stage was 
also used for stage scanning during image acquisition.

DNA origami samples were prepared for CoPS measurements as 
described above and imaged ∼30 min after sealing of LabTek sam-
ple chambers. Measurements were initiated by acquisition of an 
overview scan to identify immobilized, diffraction-limited signals 
from individual DNA origami. Time-correlated single-photon count-
ing (TCSPC) data were then recorded by focusing on individual ori-
gami with 10 µW excitation as measured before the objective.
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CoPS coincidence data were analyzed by computing coincident 
photon histograms from the first 1 × 107 laser cycles (=0.5 s) of ac-
quired TCSPC data for each origami. The histogram is then mod-
eled with the analytical equation for coincidence probabilities (Ta 
et al., 2010) using the Python scipy optimization model (Levenberg–
Marquardt algorithm). Traces with a modeled molecular brightness 
of <5 × 10−3 were excluded.

Photobleaching step analysis
Data acquisition. Data for photobleaching step analysis were 
acquired in ROXS PCD buffer for all samples. DNA origami data 
were acquired with 2.4 kW/cm2 average laser power at 640 nm for 
R09, R20, and R35 and with 0.84 kW/cm2 average laser power at 
561 nm for Y09 origami. NUP107 data were acquired with 1.2 kW/
cm2 average laser power at 640 nm. Exposure times were 50 or 
200 ms for all measurements.

Data analysis. The first five images from the measured image 
sequence were averaged and used to locate fluorophore clus-
ters. The localization was performed with Fiji 1.52p (Schindelin 
et al., 2012; Schneider et al., 2012) using the plug-in thunder-
STORM (Ovesný et al., 2014). Trace extraction was done with the 
trace extraction submodule of the quickPBSA package, as de-
tailed in the package documentation. In short, the average signal 
from circular regions around the localizations was extracted with 
typical diameters of 950 nm for the in vitro samples and 150 nm 
for the NUP107 experiment. For background correction, the 
average signal from ring-shaped regions was subtracted (inner 
diameter 1.7 µm for origami, 0.6 µm for NUP107, outer diameter 
2.0 µm for origami, 0.9 µm for NUP107). Regions around 
neighboring localizations were excluded from the background 
region. Additionally, ROIs with nearest neighbors at a distance 
below 950 nm for DNA origami and 475 nm for NUP107 were 
excluded.

Photobleaching step analysis was performed using the quick-
PBSA package, as detailed in the main text and in the documenta-
tion of the quickPBSA package. Typically, the threshold parameter 
for preliminary step detection was set at 0.03 and maxiter at 200. 
Other analysis parameters were kept at their default values, except 
for the mult_threshold parameter in step refinement, which was 
typically set to 1.5 to decrease runtime.

Semisynthetic data sets were generated by manual annotation of 
traces obtained from tetraATTO 647N DNA oligonucleotides mea-
sured in NaSO3 ROXS buffer. The analysis according to Tsekouras 
et al. (2016) was performed with the Python code from https://
github.com/lavrys/Photobleach. The analysis of the benchmarking 
data set was performed on the University of Birmingham’s High Per-
formance Computing Service BlueBEAR (Intel CascadeLake; 40 
cores). All other analyses were carried out on a workstation with an 
eight-core CPU at 3.4 GHz (Intel(R) Core(TM) i7-3770) and 12 GB 
DDR3 memory.

Code availability
The quickPBSA package, example data, and documentation are 
available at https://github.com/JohnDieSchere/quickpbsa.
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