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Data-independent acquis
ition-based proteomics
analysis correlating type 2 diabetes mellitus with
osteoarthritis in total knee arthroplasty patients
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Abstract
Background: To explore the effects of type 2 diabetes mellitus (T2DM) on osteoarthritis (OA), 12 bone tissue samples were
obtained surgically from the human total knee arthroplasty patients and analyzed by quantitative proteomics.

Methods: Based on patient clinical histories, patient samples were assigned to diabetes mellitus osteoarthritis (DMOA) and OA
groups. A data-independent acquisition method for data collection was used with proteomic data analysis to assess intergroup
proteomic differences. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genome pathway enrichment
analysis were used to further find the correlation between T2DM and OA.

Results: GO functional analysis found 153 differentially expressed proteins between DMOA and OA groups, of which 92
differentially expressed proteins were significantly up-regulated and 61 were significantly down-regulated. Kyoto Encyclopedia of
Genes and Genome pathway analysis found 180 pathways, including 9 pathways significantly enriched. Further data analysis
revealed that 6 signaling pathways were closely associated with T2DM and OA.

Conclusion: OA and DMOA onset and progression were closely related to synthesis and metabolism of extracellular matrix
components (e.g., fibronectin, decorin, etc.). The effects of T2DM on OA occur though 2 major ways of oxidative stress and low-
grade chronic inflammation, involving in 2 inhibited signaling pathways and 4 activated signaling pathways.

Abbreviations: DMOA = diabetes mellitus osteoarthritis, DIA = data-independent acquisition, DEPs = differentially expressed
proteins, ECM = extracellular matrix, GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genome, OA = osteoarthritis,
PPI = protein-protein interaction, T2DM = type 2 diabetes mellitus.
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1. Introduction

Osteoarthritis (OA) is a whole joint disease with early
modifications of synovium and subchondral bone.[1] Worldwide
estimates are that 9.6% of men and 18.0% of women aged ≥60
years have symptomatic OA. For advanced OA patients who
have difficulties to walk and move,[2,3] total knee arthroplasty is
frequently recommended to improve quality of life.
During a long time, ageing and mechanical stress were

considered as the single risk factors of OA. However, recent
advances in the knowledge of OA had highlighted the
involvement of metabolic syndrome factors. Such factors
working together appear to destroy the balance between
synthesis and degradation of articular cartilage cells, extracellular
matrix (ECM) components, and subchondral bone.[4–6]

As an important pathological component of metabolic
syndrome,[7] diabetes mellitus (DM) is divided into 4 types:
type 1, type 2, other special types, and gestational DM. Among
them, type 1 DMand type 2 DM (T2DM) are the main types, and
T2DM patients account for more than 90% of diabetic patients.
Epidemiological research studies have demonstrated that OA and
T2DM are closely related.[4–6] Data shows that the OA incidence
rate in diabetic patients is 30%, a rate more than double that of
non-diabetic patients (13%).[8] Meanwhile, there are numerous
overlaps between OA-related signaling pathways and T2DM-
related signaling pathway (Table 1),[9–13] indicating that OA and
T2DM are not only closely related, but may engage in extensive
interactions as well.
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Table 1

Signaling pathways related to osteoarthritis and type 2 diabetes
mellitus.

Signaling pathways related to OA Signaling pathways related
to DM

1 PI3K-Akt signaling pathway PI3K-Akt signaling pathway
2 MAPK signaling pathway AMPK signaling pathway
3 NF-kB signaling pathway Insulin signaling pathway
4 AMPK signaling pathway p53 signaling pathway
5 Wnt signaling pathway mTOR signaling pathway
6 Notch signaling pathway NF-kB signalng pathway
7 Toll-like receptor signaling pathway VEGF signalng pathway
8 p65 signaling pathway Calcium signaling pathway
9 mTOR signaling pathway MAPK signaling pathway
10 TGF-b1 signaling pathway HIF-1 signaling pathway
11 HIF-1 signaling pathway Ras signaling pathway
12 Jak2-STAT3 signaling pathway Jak-STAT signaling pathway
13 Hedgehog signaling pathway TGF-b1 signaling pathway
14 IL-17 signaling pathway cGMP-PKG signaling pathway
15 FoxO signaling pathway TNF signaling pathway
16 VEGF signaling pathway cAMP signaling pathway
17 Estrogen signaling pathway PPAR signaling pathway
18 ANP32A/ATM signaling pathway Caspase signaling pathway
19 AGE-RAGE signaling pathway in

diabetic complications
Adipocytokine signaling pathway

20 PERK/Bip signaling pathway Toll-like receptor signaling pathway
21 SDF-1/CXCR4 signaling pathway NOD-like receptor signaling pathway
22 Hippo-YAP signaling pathway FoxO signaling pathway
23 OPG-RANK-RANKL signaling pathway Sphingolipid signaling pathway
24 Integrin-actin signaling pathway Fc epsilon RI signaling pathway
25 BMP signaling pathway g-secretase mediated ErbB4

signaling
26 SOX9 signaling pathway
27 IGF signaling pathway
28 p53 signaling pathway
∗
DM = diabetes mellitus, OA = osteoarthritis.

Table 2

Clinical Information of 12 samples.

Characteristics DMOA OA

Subjects, N 4 8
Gender (M/F) 0/4 1/7
Age (mean ± SD) 74±3 74±6
BMI (mean ± SD) 26.2±1.6 26.4±1.8
Diagnoses OA OA
Type 2 diabetes mellitus yes no
Position of samples (right/left) the knee joint (2/2) the knee joint (3/5)
Degree of OA (III/IV) 2/2 5/3
∗
BMI = body mass index, DMOA = diabetes mellitus osteoarthritis, OA = osteoarthritis; Degree of OA
is graded according to the Kellgreen grading standard.
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Data-independent acquisition (DIA) is a new tandem mass
spectrometry method that fragments and analyzes all peptide ions
within a selected mass-to-charge ratio range. Because of its higher
throughput,[14] greater reproducibility,[14] precision,[15] and
accuracy[15] than previousMSmethods, DIA analysis technology
has been embraced bymedical practitioners in recent years for use
in clinical applications.[16,17] In this study we implemented DIA-
based proteomic analysis of specimens obtained surgically from
12 total knee arthroplasty patients. DIA results combined with
clinical laboratory results and medical histories were then
analyzed together to reveal significant differences between
proteomes of diabetes mellitus osteoarthritis (DMOA) and OA
patient groups and pave the way for further understanding of the
effects of T2DM on OA.
2. Material and methods

2.1. Samples collection

Human bone tissue samples of all OA patients with or without
T2DM whose surgery date was between May 7, 2020, and May
20, 2020, were collected at Nanjing First Hospital. Detailed
patient information is summarized in Table 2. No patients
received neoadjuvant-based radiological or chemotherapeutic
treatments prior to undergoing surgical resection. Participants
signed a written informed consent form, and this study design
2

was approved by the Medical Ethics Committee of the Ethical
Committee of Nanjing First Hospital (reference number:
KY20170109–04).
2.2. Protein extraction and peptide preparation for liquid
chromatography-mass spectrometry

After surgical resection, 12 bone tissue samples of the same mass
at the distal femur were taken and homogenized using a
homogenizer (24�2, 6.0m/s, 60s, twice), followed by addition
of SDT buffer (4% sodium dodecyl sulfate, 100mM dithio-
threitol, 150mM Tris-HCl, pH 8.0) (Bio-Rad, Hercules,
California, USA). After centrifugation and quantification using
a BCA assay Kit (Bio-Rad, Hercules, California, USA), an equal
amount of protein from each sample was taken and mixed to
create a pooled sample for library generation and quality control
(QC). 200mg of protein was dissolved in SDT buffer. Detergent,
dithiothreitol, and other low-molecular weight components were
removed using UA buffer (8M urea, 150mM Tris-HCl pH 8.0)
(Bio-Rad, Hercules, California, USA) followed by repeated
ultrafiltration (10-kD cutoff). Next, 100mL of 100mM iodor-
acetamide (Bio-Rad, Hercules, California, USA) was added then
samples were incubated. Filters were washed with UA buffer
triplicates. Finally, protein suspensions were digested with 4mg
trypsin (Promega, Madison, Wisconsin, USA) overnight at 37°C.
Filtrates were collected and desalted using an Empore SPE
Cartridges C18 (standard density, bed I.D. 7mm, volume 3mL),
followed by concentrating and reconstituting in 0.1% (v/v)
formic acid (Sigma, St.Louis, Missouri, USA). Peptide content
was estimated via UV light absorption-based spectral density
determinations at 280nm using an extinction coefficient of 1.1 of
0.1% (g/L) solution that was calculated based on the frequency of
tryptophan and tyrosine residues within vertebrate proteins.
Pooled peptides after digestion were then fractionated to create 10
fractions using aThermoScientific PierceHighpHReversed-Phase
Peptide Fractionation Kit. Each fraction was concentrated and
reconstituted followed by desalting and reconstituting in 40mL of
0.1% (v/v) formic acid. Next, iRT-Kits (Biognosys, BezirkDieti-
kon, Kanton Zürich, Switzerland) were employed to correct for
relative retention time differences between runs; a 1:3 volume ratio
(of iRT standard peptides to sample peptides) was used.
2.3. Liquid chromatography-tandem mass spectrometry
analysis of pooled sample

All fractions for library generation were injected on a Thermo
Scientific Q Exactive HF X mass spectrometer connected to an
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Easy nLC 1200 chromatography system (Thermo Scientific).
Each fraction (1.5mg) was first loaded onto an EASY-Spray C18
trap column (Thermo Scientific, P/N 164946, 3mm, 75mm �2
cm), then peptides were separated using an EASY-Spray C18 LC
analytical column (Thermo Scientific, ES802, 2mm, 75mm �25
cm) with a linear gradient of 84% acetonitrile (Merck, Hunter-
don County, New Jersey, USA) and 0.1% formic acid at a flow
rate of 250nL/min for 90minutes. The MS detection method:
positive ion; the scan range: 300 to 1800m/z; the resolution for
MS1 scans: 60000 at 200m/z; the target of automatic gain
control: 3e6; maximum injection time (IT) 25 ms; and dynamic
exclusion: 30.0second. Each full MS-single ion monitoring (SIM)
scan followed 20 ddMS2 scans. Resolution for MS2 scans:
15000; automatic gain control (AGC) target: 5e4; maximum
IT25 ms; and normalized collision energy: 30eV.
2.4. Liquid chromatography-mass spectrometry analysis
of 12 samples

Sample peptides were analyzed in the DIA mode. Each DIA cycle
contained1 fullMS-SIMscanand30DIAscansand themass range
was 350 to 1800m/z using the following settings: SIM full scan
resolution: 120,000 at 200m/z; AGC 3e6; maximum IT50 ms;
profile mode. DIA scan settings were: resolution of 15,000; AGC
target 3e6; Max IT auto; normalized collision energy 30eV.
Running time, flow rate and mobile phase are the same as the
previous part. QC samples were injected using DIAmode from the
beginning of the MS study throughout completion of 6 injections
during the experiment in order to monitor MS performance.
2.5. Database searches and spectral library construction

To construct the DDA library, the FASTA sequence database was
searched using Spectronaut Pulsar X (version14.4, Biognosys AG,
USA) after FASTA database download from the UniProt website
(http://www.uniprot.org) with the iRT peptides sequence added
(>BiognosysjiRTKitjSequence_fusionLGGNEQVTRYILAGVE-
NSKGTFIIDPGGVIRGTFIIDPAAVIRGAGSSEPVTGLDAKTP-
VISGGPYEYRVEATFGVDESNAKTPVITGAPYEYRDGLDAA-
SYYAPVRADVTPADFSEWSKLFLQFGAQGSPFLK). The pa-
rameters were set as follows: enzyme set to trypsin, max missed
cleavage set to 2, fixed modification set to carbamidomethyl (C),
dynamic modification set to oxidation(M) and acetyl (Protein N-
term). All protein identification results were evaluated then
significant results were selected based on 99% confidence, as
determined using false discovery rate (FDR =N(decoy)

∗
2/(N

(decoy)+N(target)))�1%.The spectral librarywas constructed by
importing original raw spectral files and search results into
SpectronautPulsarX (version14.4, BiognosysAG,USA).DIAdata
were analyzed by searching the abovementioned constructed
spectral library. Main software parameters were set as follows:
retention time prediction type is dynamic iRT, interference onMS2
level correction is enabled, and cross run normalization is enabled.
All results were filtered based on the P value cutoff of .01
(equivalent to FDR <1%).
2.6. Data extraction and statistical analysis

Cluster 3.0 (http://bonsai.hgc.jp/∼mdehoon/software/cluster/soft
ware.htm, version 3.0, Sun microsystems, USA) and Java
TreeView software (http://jtreeview.sourceforge.net, version
3.0, Sun microsystems, USA) were used to perform hierarchical
3

cluster analyses. The Euclidean distance algorithm for similarity
measurements and average linkage clustering algorithm (cluster-
ing using centroids of the observations) used for cluster analysis
were selected when performing hierarchical clustering analysis. A
heat map was often generated for use as a visual aid in addition to
dendrograms. Protein sequences of selected differentially
expressed proteins (DEPs) were locally searched using NCBI
BLAST+ client software (ncbi-blast-2.2.28+-win32.exe) and
InterProScan to find homologous sequences, then Gene Ontology
(GO) terms were mapped and sequences were annotated using
the software program Blast2GO (https://www.blast2go.com/,
version 5.2.5, BioBam, USA). GO annotation results were plotted
using R package scripts. After completion of annotation steps,
subject proteins were blasted against the online Kyoto Encyclo-
pedia of Genes and Genome (KEGG) database (http://geneontol
ogy.org/) to retrieve their KEGG orthology databasematches that
were subsequently mapped to KEGG pathways. The application
of enrichment analyses was based on the Fisher exact test while
considering the whole quantified proteins as the background
dataset. The Benjamini-Hochberg correction for multiple tests
was further applied to adjust derived P values to ensure that only
functional categories and pathways with P values below the
threshold of .05 were considered significant. Protein-protein
interaction (PPI) information for selected proteins was retrieved
from the IntAct molecular interaction database (http://www.ebi.
ac.uk/intact/) according to their gene symbols was obtained
using STRING database (http://string-db.org/). The results were
downloaded in XGMML format and imported into Cytoscape
(https://cytoscape.org/, version 3.2.1, JetBrains, Czech Republic)
to visualize and further analyze functional protein-protein
interaction networks. As a final analysis, the node degree of
each protein was calculated to evaluate the relative importance of
the protein within the PPI network. The experimental and
analytical flow chart was shown in Figure 1.

3. Results

3.1. MS analysis of the pooled samples and 12 clinical
samples

Pooled sample was analyzed as triplicates designated QC-1, QC-2,
and QC-3. Numbers of peptides quantified were 6405, 6323, and
6227, respectively, yielding a relative standard deviation value of
1.15%. And numbers of parent proteins were 1269, 1281, and
1250 proteins, respectively, yielding a relative standard deviation
value of 1.01% (Supplementary Digital Content Tables S1–S2,
http://links.lww.com/MD/G607, http://links.lww.com/MD/G608).
Correlation coefficients of QC-1, QC-2 andQC-3>0.9 and all QC
samples were centrally distributed, yielding a mean coefficient of
variation (CV) value of 13.02%. The number of peptides and
proteins quantified of 12 samples was shown in Figure 2.

3.2. Quantification of protein expression differences
between proteomes of OA and DMOA groups

DIAMS was used to quantitatively analyze differences in protein
expression between DMOA and OA groups (fold change<0.8 or
>1.2 and P value<.05). A total of 153 DEPs were found, of
which 92 DEPs were significantly up-regulated and 61 were
significantly down-regulated (Fig. 3 and Fig. 4A); in the DMOA
group, levels of some DEPs associated with functional terms of
signaling pathways, glycoprotein, secreted, etc. were increased,
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Figure 1. The experiment and analysis flow chart.

Figure 2. Numbers of proteins and peptides quantified in 12 clinical samples. OA 1–8 represents 8 osteoarthritis patients; DMOA 1–4 represents 4 type 2 diabetes
mellitus osteoarthritis patients.
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Figure 3. Relative expression levels of 153 differentially expressed proteins. The
ordinate represents a significantly differently expressed protein; the abscissa
shows patient sample designations. Values of the logarithm of expression levels
of significantly differently expressed proteins in different samples (Log2
Expression) were depicted using different colors in the heat map; red represents
a significantly up-regulated protein, blue represents a significantly down-
regulated protein, and gray represents no protein quantitative information.
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while levels of proteins associated with functional terms of
acetylation, ATP synthesis, phosphoprotein, transport, etc. were
decreased. Next, GO term enrichment analysis was performed
(Fig. 4b, Supplementary Digital Content Table S3, http://links.
lww.com/MD/G609). Terms within the biological process (BP)
GO functional category that exhibited significant intergroup
differences included mucopolysaccharide metabolic process (12
DEPs), aminoglycan metabolic process (14 DEPs), glycosamino-
glycan biosynthetic process (11 DEPs), aminoglycan biosynthetic
process (11 DEPs), and glycosaminoglycan metabolic process (13
DEPs). Terms associated with the molecular function (MF) GO
functional category that exhibited significant intergroup differ-
ences included glycosaminoglycan binding (22 DEPs), heparin
binding (16 DEPs), sulfur compound binding (21 DEPs),
extracellular matrix structural constituent conferring compres-
sion resistance (6 DEPs), and carbohydrate derivative binding (43
DEPs). Terms associated with the cellular component (CC) GO
functional category that exhibited significant intergroup differ-
ences included ECM (45 DEPs), collagen-containing ECM (42
DEPs), Golgi lumen (10 DEPs), mitochondrial membrane part
(12 DEPs), and extracellular region (125 DEPs).

3.3. KEGG pathway enrichment analysis of differentially
expressed proteins (DEPs)

Ultimately, 153 DEPs were enriched within 180 KEGG pathways
(Supplementary Digital Content Table S4, http://links.lww.com/
MD/G610). Based on P value <.05, a total of 9 pathways were
significantly enriched, including adherens junction, proteoglycans
in cancer, thermogenesis, focal adhesion, oxidative phosphoryla-
tion, regulation of actin cytoskeleton, amyotrophic lateral
sclerosis, valine, leucine and isoleucine degradation, and ECM-
receptor interaction. Functional analysis of these 9 pathways
revealed that theyweremainly associatedwith cell communication
(33.33%), diseases (22.22%), metabolism (22.22%), organismal
systems (11.11%), and cellular processes (11.11%).
3.4. Protein-protein interaction analysis of differentially
expressed proteins

The PPI network of DEPs contained 139 DEPs (14 DEPs lacked
protein interactions), and 627 edges representing interactions
between proteins (Fig. 5). The average node degree in the network
was 8.25 and the average local clustering coefficient was 0.486.
The PPI network was mainly divided into 5 functional modules.
Module 1 (pink) included 58 nodes and 259 edges that were
mainly related to ECM-receptor interaction, metabolism and
PI3K-AKT signaling pathway. Module 2 (yellow) included 43
nodes and 161 edges that were mainly related to metabolism of
amino acids and derivatives, oxidative phosphorylation, and
pentose phosphate pathway. Module 3 (cyan) included 30 nodes
and 76 edges that were related to insulin signaling pathway and
MAPK signaling pathway. Module 4 (blue) included 4 nodes and
3 edges that were related to WNT signaling pathway and ECM.
Module 5 (lavender) included 4 nodes and 5 edges that were
related to protein digestion and absorption.

3.5. Further analysis of differentially expressed proteins
related to T2DM or OA signaling pathways

Further data analysis was conducted to understand functional
roles of DEPs that were associated with T2DM or OA signaling
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Figure 4. (A) Volcano map analysis of 153 differentially expressed proteins (DEPs). Blue dots represent significantly up-regulated proteins, red dots represent
significantly down-regulated proteins, and gray dots represent proteins with no expression difference. (B) Gene Ontology (GO) terms enrichment analysis of 153
DEPs. The label indicates the enrichment factor which represents the ratio of the number of DEPs annotated to a GO functional category to the number of all
identified proteins annotated to the GO functional category. BP = biological process, CC = cellular component, MF = molecular function.
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pathways. Subsequently, 7 signaling pathways related to T2DM
and OA were identified (Table 3, Fig. 6).

4. Discussion

Scanning of pooled sample triplicates using the DDA method
generated average CV values that were <15%, with correlation
coefficients that were all >0.9, together demonstrated that the
experimental methodology has satisfactory reproducibility and
stability. Peptide could be accurately integrated and quantified by
collecting 5 data points at peptide chromatographic peaks. There
was no significant difference in the number of proteins between
the DMOA group and the OA group, indicating that the
parallelism among the 12 samples was good. Moreover, Figure 3
demonstrated that comparisons of DEPs between patients within
a single group revealed significantly more similarity overall than
comparisons of DEPs between patients of different groups,
indicating that grouping patients according to T2DM status was
a sound strategy for studying T2DM effects on OA.
According to GO terms enrichment analysis results, of the first

5 biological process terms, 3 were metabolic processes of ECM
and 2 were biosynthetic processes of ECM. And in the PPI
network, all 5 functional modules are related to ECM or amino
acid and protein metabolism. In other words, T2DMmay induce
imbalances of ECM synthesis and degradation that promote OA
progression.[18,19] Functional analysis results of significantly
enriched pathways highlighted the key role that cell communica-
tion plays in development of both T2DM and OA and are
consistent with results of other studies showing that both T2DM
onset and development involve complex signaling between
pancreatic islet cells and hormones, regulatory factors, and
metabolites released from peripheral tissues (e.g., fat,[20] liver,[21–
23] and skeletal muscle).[24–26]

Two inhibitory signaling pathways and 4 activation signaling
pathways were discovered in further data analysis (Fig. 6). Down-
regulation of both RAC1 and RAS indicated that PI3K-AKT
6

signaling pathway was inhibited in DMOA patients.[27,28]

Inhibited PI3K-AKT signaling pathway can interfere with glucose
homeostasis and lipid metabolism,[29] leading to insulin resis-
tance (IR),[30] and both T2DM occurrence and progression.[31]

Meanwhile, down-regulation of FLNA and HSP72 activated
MAPK signaling pathway, which marks the occurrence of
oxidative stress. Oxidative stress can disrupt the function of b
cells in the islets, leading to IR and eventually T2DM
development.[32] Moreover, up-regulation of PAI-1, TSP1, and
IGF-BP3 activated p53 signaling pathway. Notably, LBP, TNF-
R1, and SDF-1a were all up-regulated as evidence that NF-kB
signaling pathway was activated. Activated NF-kB signaling
pathway aggravates OA by promoting inflammatory response
and triggering expression of proteins whose activities promoted
joint destruction.[33] Up-regulation ofTIMP-1, PAI-1, etc.
activated HIF-1 signaling pathway, whose abnormal activation
influenced chondrocyte activity, cartilage matrix synthesis,[34]

and induced T2DM development by promoting anaerobic
metabolism and inhibiting the tricarboxylic acid cycle.[35] In
addition, down-regulation of RAB led to down-regulation of
GLUT4, which reduced glucose uptake and increased blood
sugar, indicating that AMPK signaling pathway was inhibited in
T2DM. The down-regulation of AMPK expression increased
FAS expression and promoted fatty acid biosynthesis.[36] It is
worth noting that the up-regulation or down-regulation of some
proteins is the result of the joint action of multiple signaling
pathways, so the expression of these proteins differing between
groups might not be as indicative as proposed. In the future, we
will further verify correlating between T2DM and OA by in vivo
and in vitro experiments. Moreover, we will also collect and
analyze more clinical samples.
In postoperative follow-up visits and patient inquiries, we

found that blood sugar levels of DMOA patients can be
maintained within the normal range through diet, exercise, and
rational use of medications. If nondiabetic OA patients had a
long-term high-sugar diet and lack of exercise, hyperglycemia



Figure 5. The protein-protein interaction (PPI) network of 139 differentially expressed proteins (DEPs).

Table 3

Two down-regulated and four up-regulated signaling pathways in the diabetes mellitus osteoarthritis group.

Signaling pathways Differently expressed proteins

1 PI3K-Akt FN1 (2.61), PDGFC (2.36), THS4 (2.24), ANGPTL2 (2.16), COMP (2.05), CHAD (1.89), HSP90 (1.26), RAS (0.77), RAC1 (0.75),
COL1A2 (0.43), COL1A1 (0.39).

2 AMPK FAS (1.55), EEF2 (0.63), RAB (0.62), CD36 (0.55).
3 MAPK PDGFC (2.36), ANGPTL2 (2.16), TNFR (1.84), MEK (1.40), RAC1 (0.75), HSPA8 (0.74), HSP72 (0.74), FLNA (0.60), HSP27 (0.60).
4 Wnt PAI-1 (3.18), PDGFC (2.36), TSP1 (1.50), IGF-BP3 (1.16), ADT3 (0.63).
5 HIF-1 PAI-1 (3.18), ANGPTL2 (2.16), TIMP-1 (2.16), ENO1 (1.35), PGK1 (1.24), rpS6 (0.77).
6 NF-kB signaling pathway LBP (3.19), CXCL12 (2.26), SDF-1a (2.25), TNFR (1.84).
∗
ANGPT = angiopoietin, ANGPTL2 = angiopoietin-like protein 2, CD36 = platelet glycoprotein 4, CHAD = chondroadherin, COL1A1 = collagen alpha-1(I) chain, COL1A2 = collagen alpha-2(I) chain, COMP =
cartilage oligomeric matrix protein, CXCL12 = stromal cell-derived factor 1, EEF = eukaryotic elongation factor, ENO1 = enolase-a, FAS = Fatty acid synthase, FLNA= filamin-A, FN1 = fibronectin 1, HSP27 =
heat shock protein 27, HSP72 = heat shock protein 72, HSP90B1 = endoplasmin, HSPA8 = heat shock cognate 71 kDa protein, IGF-BP3 = insulin-like growth factor-binding protein 3, LBP =
lipopolysaccharide-binding protein, LDHA = lactate dehydrogenase A, MEK = mitogen-activated protein kinase kinase, PAI-1 = plasminogen activator inhibitor type 1, PDGFC = platelet-derived growth factor C,
PGK1 = phosphoglycerate kinase 1, RAB = ras-related protein, RAC1 = ras-related C3 botulinum toxin substrate 1, RAS = rat sarcoma, rpS6 = 40S ribosomal protein S6, SDF-1a = stromal cell derived factor
alpha-1, THBS4 = thrombospondin-4, TIMP-1 = tissue inhibitor of metalloproteinase 1, TNF-R1 = tumor necrosis factor receptor 1, TSP-1 = thrombin sensitive protein 1.
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Figure 6. Protein-pathway interaction networks of distinct proteins. Red text indicates up-regulated proteins and blue text indicates down-regulated proteins,
while numbers represent fold changes. Red lines connecting ellipses represent activation.
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may occur, which in turn stimulated DM and OA-related
signaling pathways and aggravated OA. We therefore recom-
mend that orthopedic clinicians include detailed medical histories
in OA patient records and ensure that blood glucose levels of
DMOA patients are monitored and documented. Such measures
would alert clinical caregivers to changes in patient DM status
and help caregivers formulate reasonable diagnosis and treat-
ment plans.
5. Conclusions

DIA method with proteomic data analysis was used to assess
intergroup proteomic differences. A total of 153 DEPs were
found, and 6 signaling pathways constituted a complex system
that affected each other were analyzed. The effects of T2DM on
OA occur though 2 major ways of oxidative stress and low-grade
chronic inflammation. Inhibiting the 2 pathways could slow OA
progression and benefit OA patients. At the same time, we also
provide an open data set for use in analysis of signaling pathways
in future DM and OA patient specimens. Such studies will
enhance our understanding of molecular mechanisms underlying
DM and OA diseases and disease interactions.
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