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Purpose: The curation of images using human resources is time intensive but an essential step for devel-
oping artificial intelligence (Al) algorithms. Our goal was to develop and implement an Al algorithm for image
curation in a high-volume setting. We also explored Al tools that will assist in deploying a tiered approach, in
which the Al model labels images and flags potential mislabels for human review.

Design: Implementation of an Al algorithm.

Participants: Seven-field stereoscopic images from multiple clinical trials.

Methods: The 7-field stereoscopic image protocol includes 7 pairs of images from various parts of the
central retina along with images of the anterior part of the eye. All images were labeled for field number by reading
center graders. The model output included classification of the retinal images into 8 field numbers. Probability
scores (0—1) were generated to identify misclassified images, with 1 indicating a high probability of a correct label.

Main Outcome Measures: Agreement of Al prediction with grader classification of field number and the use
of probability scores to identify mislabeled images.

Results: The Al model was trained and validated on 17 529 images and tested on 3004 images. The pooled
agreement of field numbers between grader classification and the Al model was 88.3% (kappa, 0.87). The pooled
mean probability score was 0.97 (standard deviation [SD], 0.08) for images for which the graders agreed with the
Al-generated labels and 0.77 (SD, 0.19) for images for which the graders disagreed with the Al-generated labels
(P < 0.0001). Using receiver operating characteristic curves, a probability score of 0.99 was identified as a cutoff
for distinguishing mislabeled images. A tiered workflow using a probability score of < 0.99 as a cutoff would
include 27.6% of the 3004 images for human review and reduce the error rate from 11.7% to 1.5%.

Conclusions: The implementation of Al algorithms requires measures in addition to model validation. Tools
to flag potential errors in the labels generated by Al models will reduce inaccuracies, increase trust in the system,
and provide data for continuous model development. Ophthalmology Science 2022;2:100198 © 2022 by the
American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
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Ophthalmology is witnessing an explosion of research in
artificial intelligence (AI), with deep learning models per-
forming various image-based tasks such as classifying dis-
eases, predicting outcomes, and segmentation.' Fundus
photography is one of the most commonly used imaging
modalities for deep learning models, with a multitude of
open source data sets.” However, the application of Al
models in clinical care or research is still in its infancy,
with a number of publications pointing to issues with ap-
plications in clinical setting.™

A large part of Al research is data curation and the
development of an imaging pipeline before model training
can be implemented. An adequately planned data curation
process will preserve time and resources and is an important
step toward the development of robust Al models.” To be Al
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ready, images need to be standardized with metadata and
readily associated with corresponding labels. The format
for and metadata capture using ophthalmic imaging are
currently not standardized.® Although 3-dimensional imag-
ing, such as OCT scans, is nuanced with proprietary for-
mats, even simple 2-dimensional imaging, such as fundus
photography, is not uniform. Fundus photographs are
traditionally in TIFF or JPEG formats, which have no
intrinsic information such as patient demographic data, type
of image, quality metrics, annotations, measurements, la-
bels, or imaging protocol, including field of view and area of
the retina captured. The most basic information, such as
laterality of the eye (right eye vs. left eye), can be missing in
data sets, preventing further model development.” The
addition of metadata to images, particularly in large data
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sets, requires significant human resources. The use of deep
learning to automate sorting of retinal images on the basis
of imaging characteristics, such as laterality and field of
view, has been particularly useful.””

Diabetic retinopathy clinical trials require the use of the
well-established 7-field stereoscopic color photograph im-
aging ]?rotocol for the assessment of the ETDRS Severity
Scale." As part of this protocol, 7 different regions of the
retina are imaged, with each region identified by a specific
field number. This field number information is critical for
curating images for the development of AI and the
organization of images for grader assessment. Accurate
identification of retinal fields in eyes with pathology
requires knowledge of retinal anatomy and vessel
orientation as well as familiarity with lesions such as laser
scars and hemorrhages that can obscure vessels.
Additionally, the ability to account for photographer
variability in field definitions is critical. Labeling 16
images per eye (7 pairs of stereoscopic fundus images and
red reflex images) in a high-volume setting, such as a
reading center, is an arduous task. We developed an Al
algorithm to assist with automated labeling of fields with
field numbers with the aim of creating an efficient pipeline
for data curation. We discuss the process of implementing
an Al model in a tiered system for large-scale labeling of
images.
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Methods

Wisconsin Reading Center receives 7-field stereoscopic color
fundus photographs from multiple sites around the world for
clinical trial assessments. A complete submission includes 14
retinal images (7 pairs of stereoscopic images) per eye along with a
pair of images of the anterior segment, known as red reflex images
(Fig 1). The submission system automatically assembles
information on study identifiers, subject identifiers, visit code,
and laterality of the eye (right eye vs. left eye) into the image
file name. However, information regarding the specific field of
the retina captured is not readily available. The addition of a
field label is usually completed manually using software that
adds the field number to the metadata to allow sorting of images.
Institutional review board approval was obtained at each clin-
ical site as part of the clinical trial, and written informed consent
was obtained from all study participants. The research was also
approved by the University of Wisconsin Institutional Review
Board and conducted according to the Declaration of Helsinki.

Training and Testing Data Sets

Images from various clinical trial submissions that had 7-field
stereoscopic images with retinal fields previously labeled by
Wisconsin Reading Center graders were included in the training
data set. The graders were masked to all patient demographics. The
graders labeling the fields had > 2 years of experience in evalu-
ating diabetic retinopathy and a good understanding of field

Field 1 Field 2

Field 3 Field 4

Field 5 Field 6

Field 7

*" Red Reflex

Figure 1. A, An ultrawide retinal image showing 7 circles corresponding with the 7-field image. B, Images of each circle taken using a 30° camera are
submitted. Two images are submitted per field to provide a stereoscopic view for graders; 14 retinal images are provided per eye. The proof sheet is
representative of images submitted as part of the 7-field stereoscopic imaging protocol, including 7 regions of the retina and 1 pair of images of the anterior
part of the eye (red reflex). Each image is labeled to identify the field number on the basis of the region of the retina photographed. An artificial intelligence
model was developed to classify and label the field numbers.
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Figure 2. Examples of poor-quality images for identifying the field of the retina. The retinal vasculature is not visible in the images because of poor contrast
and dark images (A), poor focus and central artifact (B), dense choroidal vessels (C), and media haze and overexposed images (D).

definitions. The training data set included 17 529 images from 229
unique subjects, recruited from 42 clinical sites, and included 162
right eyes and 176 left eyes. Multiple visits from the same subject
were included. Images were captured using 3 different digital
fundus cameras, including Topcon TRC 50, Zeiss FF450, and
Kowa VX-20. The data were split as 80% for training and 20% for
internal validation. The data output by the Al model included both
field numbers and probability scores. The probability scores ranged
from O to 1, with O indicating the least probability of a correct label
and 1 indicating the highest probability of a correct label.

The testing data set included 3004 images from 240 eyes, 40
subjects, and 10 sites. The testing data set included images
captured using Topcon TRC 50 (75.3%), Zeiss FF450 (4.5%), and
Kowa VX-20 (20.2%). It was ensured that the clinics in the training
data set were not repeated in the testing data set because a single
clinic can submit images for multiple clinical trials.

After testing was completed, the algorithm was deployed on the
first 11 382 images that were submitted to the reading center.

Ground Truth. All images in the testing data set were inde-
pendently labeled by 2 graders (R.B. and J.H.) for the red reflex
image and 7 stereoscopic retinal fields (Fig 1). In addition, the
graders documented the confidence score for each image using a
3-level approach: (1) a high confidence score indicates that the
field definition adheres to protocol requirements, (2) a moderate
confidence score indicates that the field definition departs from
protocol requirements but that the field can be identified, and (3) a
low confidence score indicates that the field definition departs
significantly from protocol requirements or the images are of
significantly poor quality and that the field cannot be identified.
Examples of poor-quality images are provided in Figure 2, and the
reasons for these range from operator issues, such as poor field
definitions, to patient-related issues, such as media haze. The

Table 1. Confusion Matrix Showing Comparison of Grader-Attributed Field Number with Artificial Intelligence—Generated Field
Number

Artificial Intelligence Model-Generated Field Number

Red reflex Field 1
Grader-attributed field number Red reflex 297 0
Field 1 0 365
Field 2 0 0
Field 3 0 1
Field 4 0 1
Field 5 0 1
Field 6 0 0
Field 7 0 0
Total 291 368

Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Total
0 1 0 0 0 2 300
14 0 2 1 1 2 385

360 24 2 5 0 2 393
24 301 19 29 4 9 387
7 15 301 44 11 11 390
4 17 11 318 29 7 387
0 2 0 9 368 3 382
4 6 15 9 5 341 380
413 366 350 415 418 371 3004
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Table 2. Performance Measures of the Multiclass Artificial Intelligence Model for Field Numbers

Accuracy Kappa Sensitivity
Red reflex 1.00 0.99 0.99
Field 1 0.99 0.97 0.95
Field 2 0.97 0.88 0.82
Field 3 0.95 0.77 0.78
Field 4 0.95 0.79 0.77
Field 5 0.94 0.76 0.82
Field 6 0.98 0.91 0.96
Field 7 0.98 0.89 0.90

AUROQOC = area under the receiver operating characteristic curve.

graders first identified fields 1 and 2, which are the easiest to
identify on the basis of the inclusion of the optic nerve, followed by
the identification of peripheral fields. In some cases, an image
series of a particular eye had some images of poor quality that the
grader could still label on the basis of the exclusion of previously
labeled fields. The order of images in the folder varied depending
on the site and was not factored into field renaming.

Model Training

Two distinct models were trained in an identical fashion with
identical parameters, for which only the training data differed: one
was trained on the left eye and the other on the right eye. This was
done because information about eye laterality was known. No
augmentation was done on the training data. The EfficientNetBO
architecture (including the top classifier) from Tensorflow was
used, with 8 classes as the output. The model used average pooling.
The Adam optimizer, with a learning rate of 0.001, B of 0.9, and
B, of 0.999, was used to optimize the sparse categorical cross-
entropy loss. The training results were similar, with a lower
learning rate.

Training was repeated until the level of validation loss did not
improve for 3 epochs. The weights that returned the least (best)
level of loss were then saved for each eye modality. Training was
processed using a single Tesla V100.

All images were center cropped to be square in their original
format and then resized to 256 x 256 pixels with 3 color channels
(red, green, and blue). A batch size of 8 was used, with no image
augmentation.

Model Evaluation

The model output of field number was compared with the reading
center graders’ assigned field numbers on the testing data set. All

Specificity Precision F1 Score AUROC
1.00 1.00 0.99 1.00
1.00 0.99 0.97 1.00
0.98 0.87 0.89 0.99
0.98 0.82 0.80 0.97
0.98 0.86 0.81 0.96
0.96 0.77 0.79 0.98
0.98 0.88 0.92 0.99
0.99 0.90 0.90 0.99

metrics for comparison were collected, including accuracy, preci-
sion, sensitivity, specificity, kappa, area under the curve, and F1
score. A confusion matrix was generated to visualize the agreement
and distribution of mislabeled images across the 8 field numbers.
The distribution of probability scores, ranging from O to 1, in eyes
with and without disagreement was summarized as means and
medians. Because of their skewed distribution with long tails, an
enlarged scale was used to visualize the distribution of probability
scores. Stacked scores of all 8 classes were used to generate
receiver operating characteristic curves to determine the probability
scores for workflow implementation.

Results

The deep learning model output included field numbers
and probability scores. The grader output on the testing
data set included field numbers and confidence scores. The
comparison of the model output with the graders’ field
numbers showed agreement for 2651 (88.3%; kappa, 0.87)
images (Table 1). This implied that implementing an
automated workflow with the model would result in
mislabeling of 12% of the data set. The performance
measures of the multiclass Al model for each field
number are shown in Table 2. Although the overall
model accuracy was high for every field number, there
was variability within each class.

Rather than a fully automated renaming system, we
decided to use a tiered system with human override of
mislabeled images. To assist in flagging eyes with potential
errors, we explored the use of Al model-generated proba-
bility scores as a potential marker. The mean Al-generated

Table 3. Distribution of Probability Scores in Images with Incorrect and Correct Labels

Probability Score for Correct Labels,

Correct Labels, n (%) Incorrect Labels, n (%)

Red reflex 297 (100) 0 (0)

Field 1 365 (99) 3 (0.8)
Field 2 360 (87) 53 (13)
Field 3 301 (82) 65 (18)
Field 4 301 (86) 49 (14)
Field 5 318 (77) 97 (23)
Field 6 368 (88) 50 (12)
Field 7 341 (90) 36 (10)

NA = not available; SD = standard deviation.

Probability Score for Incorrect Labels,

Mean (SD) Mean (SD)
0.99 (0.05) NA

0.99 (0.03) 0.39 (0.08)
0.99 (0.06) 0.84 (0.18)
0.94 (0.13) 0.79 (0.18)
0.97 (0.09) 0.76 (0.20)
0.95 (0.12) 0.76 (0.19)
0.99 (0.05) 0.79 (0.20)
0.96 (0.10) 0.70 (0.18)
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Table 4. Association of Grader Confidence Scores with Artificial Intelligence Probability Scores

Incorrect Labels for
Field Number, n (%)

Correct Labels for

Grader Confidence  Field Number, n (%)

High confidence 2484 (93) 195 (7)
Moderate confidence 145 (56) 115 (44)
Low confidence 22 (34) 43 (66)

SD = standard deviation.

probability scores were higher when the graders agreed
with the AI prediction (i.e., correct label [0.94—0.99]) and
lower when the grader disagreed with the Al prediction
(i.e., incorrect label [0.39—0.84]), indicating their potential
utility in the identification of mislabeled images (Table 3).
This difference in the mean probability scores between
correct and incorrect labels remained similar across all
fields.

Along with field numbers, the graders provided confi-
dence scores on the validation data. Grader confidence
scores give an understanding of human certainty while

Prediction Score for Correct Labels,

Prediction Score for Incorrect Labels,

Mean (SD) Mean (SD)
0.98 (0.07) 0.76 (0.20)
0.89 (0.17) 0.79 (0.19)
0.78 (0.20) 0.80 (0.20)

labeling images; a lower image quality is denoted by low
confidence scores. Probability scores are a similar metric of
certainty for the AI model. We explored whether a rela-
tionship exists between grader confidence scores and Al
probability scores. In the data set, 2679 (89.1%) images
were labeled with a high confidence score by the graders,
260 (8.6 %) with a medium confidence score, and 65 (2.1%)
with a low confidence score. The overall Al probability
scores were highly correlated with the grader confidence
scores, with a mean of 0.96 (standard deviation, 0.10) in
high confidence, 0.85 (standard deviation, 0.19) in medium
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Figure 3. The scatter plots represent the distribution of probability scores for artificial intelligence (Al) prediction that graders agreed (blue) and disagreed
with (pink) for each field number. Zero indicates red reflex, and 1 to 7 indicates regions of the retina. The smaller inset represents the full range of probability
scores. Because of their skewed distribution, the larger plot provides a closer look at higher probably scores. Correct labels (blue) are densely packed in a
range of 0.99 to 1.00, whereas incorrect labels (pink) are distributed evenly across the spectrum.
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Figure 4. Receiver operating characteristic curve showing the sensitivity
and specificity of probability scores. The sensitivity and specificity for the
2 ideal cutoff for probability scores 0.99 and 0.985 are shown in
parentheses.

confidence, and 0.79 (standard deviation, 0.20) in low
confidence (P < 0.0001). We further investigated the rela-
tionship between incorrect labels and probability scores on
the basis of grader confidence scores (Table 4). The
frequency of incorrect labels was 7% in images with a
high grader confidence score and 66% in those with a low
grader confidence score. In images with high and
moderate grader confidence scores, the probability scores
were distinguishable for correct and incorrect labels: a
probability score of 0.89 to 0.98 in eyes with correct
labels versus 0.76 to 0.79 in eyes with incorrect labels. In
images with a low grader confidence score, the probability
scores were overall low and did not distinguish between
correctly and incorrectly labeled images (0.78 vs. 0.80,
respectively). This indicated that the probability scoring
system was a helpful flag for the identification of errors in
good-quality images but faltered in poor-quality images.
This implies that, in poor-quality images, the model seems
to give a low probability score despite being accurate.
Building a quality assessment filter for the model could
potentially help reduce these errors.

On the basis of the abovementioned data, it has been
established that the probability score cutoff could be a useful
metric for the identification of incorrect labels. It is also
evident that a probability score cutoff would include a mix
of both incorrect and correct labels. The next set of analyses
focused on identifying the cutoff to maximize the detection
of incorrect labels. Figure 3A, B shows the distribution of
correct (blue) and incorrect (pink) labels with probability
scores. There were a few incorrect labels, with the highest
probability score of 1.0, and conversely, correct labels had
a low score of 0.4. The distribution of probability scores

6
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was skewed to the upper end of the probability scores and
prevented the visualization of a cutoff. The smaller inset
Figure 2A shows the full range of probability scores, and
Figure 3B depicts an expanded view of the distribution of
probability scores, describing the sparse distribution of
incorrect labels in the high range of probability scores.
Correct labels were densely packed in the region with a
range of 0.99 to 1.0, whereas incorrect labels seemed to
be evenly distributed.

On the basis of the receiver operating characteristic curve
(Figure 4), both 0.985 and 0.99 were contenders for a
threshold for triaging images. The sensitivity and
specificity were 0.87 and 0.80, respectively, for a
probability score of 0.99 and 0.85 and 0.82, respectively,
for a probability score of 0.985. We examined the true-
and false-positive balance with each of these cutoffs
(Table SI1, available at www.ophthalmologyscience.org).
When applied to the validation data set of 3004 images, a
cutoff point of 0.99 would flag 831 (27.7%) images to be
reviewed by the grader. Of these, 308 (10.3%) would
require a grader override (incorrect label), and the
remaining 523 (17.4%) would be reviewed, although they
are accurately labeled by Al This cutoff of 0.99 would
permit 45 (1.5%) images with incorrect labels to slip
through the system. Implementing this threshold of 0.99
for flagging incorrect labels would reduce the number of
mislabeled images from 353 (11.7%) in a fully automated
workflow to 45 (1.5%) in a tiered system with human
oversight.

After validation, we deployed the model prospectively in
a workflow system that would flag any image that received a
probability score of < 0.99 on the first set of submissions
after model development. Out of the 11 382 images
received, 2905 (25.5%) images were identified as having a
probability score of < 0.99, requiring grader review. These
percentages are in line with the review rate of 27.6% pre-
dicted on the basis of the testing data set and support our use
of the tiered labeling workflow. The time taken to deploy the
algorithm for the 11 382 images was approximately 12
minutes (including accessing files from a network drive and
resizing the images) using the Intel i5 processor. The
average grader time for the renaming process is 7 minutes
for an eye, amounting to 5173 minutes for the same data set.
Using the tiered approach, the grader time was reduced to
25% (i.e., 1293 minutes). The average cost saving of
employing Al in this large-volume scenario was approxi-
mately $2000 for every 10 000 images.

Discussion

In this study, we explored the process of implementing a
deep learning model for image curation in a high-volume
setting. The focus of this paper was an exercise on the
implementation pathway and the explainable Al outputs
needed to support the workflow. The purpose of the Al
model is to automate and enhance the workflow and reduce
the burden on reading center graders, whereas the imple-
mentation of this workflow analyzes ways to maximize
automation and reduce incorrect field labels. To achieve this
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balance, we used probability scores to define the threshold
of sensitivity and specificity acceptable for the study.

The data used for Al research need to follow the Find-
ability, Accessibility, Interoperability, and Reusability
principles.' The preparation of data for AI research
following the Findability, Accessibility, Interoperability,
and Reusability principles includes many components:

implementing required ethical reviews, deidentifying
protected health information, ensuring comprehensive
metadata, structuring images in a homogenized and

machine-readable format, and linking the images to the
ground truth.” The challenges of the ground truth have been
previously discussed in publications because these serve as
the basis of model validation.'>~'* However, more complex
processes, including image standardization and metadata
structuring, have only been recently highlighted.®

Like most deep learning algorithms, the model developed
for this study can perform only a single task. Unlike most
binary classifiers, it is unique in being a multilevel classifier,
differentiating between 8 classes. However, this deep
learning model is limited to classifying field numbers and
cannot identify other image characteristics, such as image
eye laterality. It is also limited to 35° images, which are not
as common as wide-field images but still constitute 30% to
40% of clinical trial submissions for diabetic retinopathy at
Wisconsin Reading Center. A comprehensive image cura-
tion platform would be a string of Al algorithms that can
determine basic metadata from an image, such as type of
image, eye laterality, field degree, field position, and image
quality metrics.

The model has a high level of accuracy (97%) for clas-
sifying field numbers. Fields 1 and 2 had the best accuracy
possibly because of the presence of the optic nerve in both
the fields, which helped distinguish them from other fields.
Fields 3 to 5 had a lower accuracy (94%—95%) than other
fields, possibly because of overlapping fields in the temporal
retina that can be confused with each other. The most
frequently mislabeled field was field 5 (inferotemporal
quadrant), with an error rate of 5.5% compared with field 1
(optic nerve centered), which had an error rate of 0.7%. On
the basis of the confusion matrix, most errors were due to
the misattribution of field 4 (superotemporal) or 3 (temporal)
as field 5 by the deep learning model. In comparison, field 7
had a lower error rate but a wider distribution of mislabels,
wherein the Al model made an erroneous prediction across
all field numbers, even calling red reflex images as field 7 in
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2 images. In both these eyes, the red reflex images were
zoomed out further than usual. In a multiclass classifier,
apart from the frequency of errors, the type and distribution
of errors help to fine tune the model. In this case, although
the error rate was higher in field 5, it is the field 7 classifier
that requires further investigation. A noteworthy difference
in field labeling between an Al model and a human grader is
that a grader can identify fields by the process of elimina-
tion. For humans, once the optic nerve and macular fields
are identified, only 1 peripheral field needs to be labeled
confidently before the rest fall into place. The deep learning
model labels each image as an independent class and does
not approach the image series as dependent classes.
Increased image input size and treating images as a set
rather than independent data have the potential to greatly
increase performance. The Al model we developed uses a
set of 7 large pictures rather than 1 large picture, which is a
current technical limitation.

A major challenge for implementing Al-enabled auto-
mated workflows is lack of trust. To address this, various
forms of explainable models have been introduced, the most
common of which are attribution maps.” Reviewing
individual images for attribution maps is a good solution
in smaller data sets. In high-volume data sets, a more
quantitative metric that allows triaging of images is
preferred.’” Probability scores are an easily interpretable
metric of model confidence for assigning a class. The
model probability scores were highly correlated with the
grader confidence scores and served as a useful metric to
separate out mislabeled images, especially for good-
quality images. The triaging system enables a review of
the majority of misclassified images along with an oppor-
tunity to review correctly labeled ones. This feedback sys-
tem helps us understand the model better and can serve
toward continued model development.'® Over time, fine
tuning the model by retraining it on corrected image
labels will help reach a stage where low probability scores
can mostly be limited exclusively to mislabeled images.

We are in an exciting era of Al imPIementation where
integration standards are being defined.' In this article, we
described our thought process and the factors involved in
implementing Al in a workflow using an example of a
multiclass classifier model and probability scores for
identifying mislabeled retinal images. As Al-based
research continues to advance in ophthalmology, we will
need to invest more research into tools that foster trust.

The authors have no proprietary or commercial interest in any materials
discussed in this article.

Supported in part by an unrestricted grant from Research to Prevent
Blindness, Inc. to the University of Wisconsin Madison Department of
Ophthalmology and Visual Sciences.

HUMAN SUBJECTS: Human subjects were included in this study. Insti-
tutional review board approval was obtained at each clinical site as part of
the clinical trial. The research was approved by the University of Wisconsin
Institutional Review Board and conducted according to the Declaration of
Helsinki. Written informed consent was obtained from all study
participants.



Ophthalmology Science

No animal subjects were used in this study.

Author Contributions:

Conception and design: Domalpally, Slater, Blodi

Data collection: Domalpally, Slater, Barrett, Balaji, Heathcote

Analysis and interpretation: Domalpally, Slater, Barrett, Voland, Channa,
Blodi

Obtained funding: Study was performed as part of regular workflow at the
Wisconsin Reading Center. No additional funding was obtained.

Overall responsibility: Domalpally, Slater, Channa, Blodi

References

Volume 2, Number 4, December 2022

Abbreviations and Acronyms:

Al = artificial intelligence.

Keywords:

Artificial intelligence, Deep learning, Fundus photograph, Image curation,
Machine learning, Metadata, Retinal image, Standardization.
Correspondence:

Amitha Domalpally, MD, PhD, A-EYE Unit, Department of Ophthal-
mology and Visual Sciences, University of Wisconsin School of Medicine
and Public Health, 310 N. Midvale Blvd, Suite 205, Madison, WI 53705. E-
mail: domalpally @wisc.edu.

1. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al.
Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:
1-29.

2. Khan SM, Liu X, Nath S, et al. A global review of publicly
available datasets for ophthalmological imaging: barriers to
access, usability, and generalisability. Lancet Dig Health.
2021;3:e51—e66.

3. Baxter SL, Lee AY. Gaps in standards for integrating artificial
intelligence technologies into ophthalmic practice. Curr Opin
Ophthalmol. 2021;32:431—438.

4. Domalpally A, Channa R. Real-world validation of artificial
intelligence algorithms for ophthalmic imaging. Lancet Dig
Health. 2021;3:e463—e464.

5. Willemink MJ, Koszek WA, Hardell C, et al. Preparing
medical imaging data for machine learning. Radiology.
2020;295:4—15.

6. Lee AY, Campbell JP, Hwang TS, et al. Recommendations for
standardization of images in ophthalmology. Ophthalmology.
2021;128:969—970.

7. Liu P, Gu Z, Liu F, et al. Large-scale left and right eye classi-
fication in retinal images. In: Stoyanov D, Taylor Z, Ciompi F,
et al., eds. Computational Pathology and Ophthalmic Medical
Image Analysis. Lecture Notes in Computer Science. Cham:
Springer International Publishing; 2018:11039.

8. Rim TH, Soh ZD, Tham YC, et al. Deep learning for auto-
mated sorting of retinal photographs. Ophthalmol Retina.
2020;4:793—800.

9. Lai X, Li X, Qian R, et al. Four models for automatic recog-
nition of left and right eye in fundus images. In: Kompatsiaris I,
Huet B, Mezaris V, et al., eds. MultiMedia Modeling. Cham:

Springer International Publishing; 2019:11295. https:/link.
springer.com/chapter/10.1007/978-3-030-05710-7_42.

10. Early Treatment Diabetic Retinopathy Study Research Group.
Grading diabetic retinopathy from stereoscopic color fundus
photographs—an extension of the modified Airlie House
classification: ETDRS report number 10. Ophthalmology.
1991;98:786—806.

11. Wilkinson MD, Dumontier M, Aalbersberg 1J, et al. The FAIR
guiding principles for scientific data management and stew-
ardship. Sci Data. 2016;3:1—9.

12. Abramoff MD, Cunningham B, Patel B, et al. Foundational
considerations for artificial intelligence using ophthalmic im-
ages. Ophthalmology. 2021;129:e14—e32.

13. Nakayama LF, Gongalves MB, Ferraz DA, et al. The
challenge of diabetic retinopathy standardization in an
ophthalmological dataset. J Diabetes Sci Technol. 2021;15:
1410—1411.

14. Krause J, Gulshan V, Rahimy E, et al. Grader variability and
the importance of reference standards for evaluating machine
learning models for diabetic retinopathy. Ophthalmology.
2018;125:1264—1272.

15. McCrindle B, Zukotynski K, Doyle TE, Noseworthy MD.
A radiology-focused review of predictive uncertainty for Al
interpretability in computer-assisted segmentation. Radiol Artif
Intell. 2021;3:e210031.

16. Lee CS, Lee AY. Clinical applications of continual learning
machine learning. Lancet Digit Health. 2020;2:e279—e281.

17. Wiggins WF, Magudia K, Schmidt TM, et al. Imaging Al in
practice: a demonstration of future workflow using integration
standards. Radiol Artif Intell. 2021;3:¢210152.


mailto:domalpally@wisc.edu
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref1
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref1
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref1
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref1
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref2
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref2
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref2
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref2
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref2
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref3
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref3
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref3
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref3
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref4
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref4
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref4
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref4
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref5
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref5
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref5
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref5
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref6
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref6
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref6
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref6
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref7
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref7
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref7
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref7
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref7
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref8
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref8
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref8
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref8
https://link.springer.com/chapter/10.1007/978-3-030-05710-7_42
https://link.springer.com/chapter/10.1007/978-3-030-05710-7_42
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref10
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref10
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref10
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref10
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref10
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref10
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref10
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref11
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref11
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref11
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref11
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref12
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref12
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref12
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref12
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref13
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref13
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref13
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref13
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref13
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref14
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref14
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref14
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref14
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref14
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref15
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref15
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref15
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref15
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref16
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref16
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref16
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref17
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref17
http://refhub.elsevier.com/S2666-9145(22)00087-2/sref17

	Implementation of a Large-Scale Image Curation Workflow Using Deep Learning Framework
	Methods
	Training and Testing Data Sets
	Ground Truth

	Model Training
	Model Evaluation

	Results
	Discussion
	References


