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Abstract Aim is to assess the anti-biofilm property of tenorite nanoparticles and to study their

suitability as a possible coating material for medical implants. Tenorite (CuO) nanoparticles were

synthesized by the optimized thermal decomposition method and characterized using TEM,

XRD, FTIR and UV–Vis analysis. Their influence on biofilm formation of microbes was studied

by growing multi drug resistant bacterial strains in the presence or absence of these nanoparticles

at various concentrations. The cytotoxicity of nanoparticles on mammalian cells was studied at the

corresponding concentrations. The nanoparticles were found to be uniformly dispersed, spherical

shaped and <50 nm in size. They showed various degrees of anti-biofilm property against clinically

isolated, biofilm forming multi drug resistant microorganisms such as Staphylococcus aureus, Pseu-

domonas fluorescens, Burkholderia mallei, Klebsiella pneumoniae, and Escherichia coli. Furthermore,

Hep-2 cells showed excellent viability at tenorite nanoparticles concentration toxic to microbial

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsps.2014.11.007&domain=pdf
mailto:mubinano@gmail.com
http://dx.doi.org/10.1016/j.jsps.2014.11.007
http://www.sciencedirect.com/science/journal/13190164
http://dx.doi.org/10.1016/j.jsps.2014.11.007
http://creativecommons.org/licenses/by-nc-nd/3.0/


422 D. MubarakAli et al.
growth. These results indicate that tenorite nanoparticles may be ideal candidates for being utilized

as coating on medical implants in general and dental implants in particular.

ª 2014 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Figure 1 UV–Vis spectrum of tenorite nanoparticles showed

Plasmon resonance at 550 nm.
1. Introduction

Nanotechnology is an emerging field in science and technology

and is poised to bring in revolutionary changes across all
spheres of science, especially medicinal science. The field of
nanomedicine is the technology of diagnosing, treating, and
preventing the disease and traumatic injury, and of preserving

and improving human health, using nanostructured materials.
Synthesis of nanoparticles that have the right size, shape,
desired characteristics and functionality is at the core of their

use in nanomedicine (MubarakAli et al., 2013). Nanoparticles
are attractive for medical purposes due to their important and
unique features, such as quantum properties and large surface

to mass ratio which lead to better binding and adsorption of
compounds like drugs and probes. Other than their roles in
diagnostics and drug delivery, there are recent reports on the
inhibitory effect of metallic nanoparticles on biofilm forming

microorganisms (Nithya et al., 2011). But there are no modal-
ities available to combat biofilm forming, multi drug resistant
microorganisms (MDRs) (Gilbert et al., 2002). Thus there is

great scope in developing nanoparticles that target biofilm
forming and multi drug resistant microbes (MubarakAli
et al., 2011, 2012; Gopinath et al., 2012). Copper nanoparticles

have shown much promise in the area of nanotechnology and
nanomedicine in the last few decades because of their excellent
catalytic, optical, electrical and antibacterial properties (Ponce

and Klabunde, 2005; Huang et al., 2008). Most of the enzymes
and proteins are dependent on copper for their functionality
and the human body has an efficient system to metabolize cop-
per (Jose et al., 2011).

Nanoparticles are synthesized by chemical, physical and
biological methods. These methods not only require expensive
chemicals and complex steps, but some of the synthesis meth-

ods lead to impure preparations (MubarakAli et al., 2013).
Thus, it is desirable to choose a method that synthesizes nano-
particles without affecting their physical, chemical and biolog-

ical properties, and is cost effective at the same time. Copper
nanoparticles have been prepared using methods such as ther-
mal reduction (Dhas et al., 1998); vacuum vapor deposition

(Liu et al., 2003); microwave irradiation (Zhao et al., 2004);
chemical reduction (Yang and Zhu, 2003); laser ablation
(Yeh et al., 1999) and Polyol method (Park et al., 2007).
CuO, as a p-type semiconductor exhibiting a narrow band

gap (1.2 eV), is ideal to synthesize nanoparticles through inex-
pensive methods without using organic solvents, expensive raw
materials, and complicated equipments.

In the present study, tenorite nanoparticles were synthe-
sized by the thermal decomposition method with optimized
conditions. It was evaluated for anti-biofilm property. Cell via-

bility of Hep-2 cells was assessed with synthesized nanoparti-
cles at different concentrations. Based on our results we
perceive that these nanoparticles can be used for coating on
implants.
2. Materials and methods

2.1. Materials

Copper sulfate, Sodium hydroxide, Hydrochloric acid, LB
broth, MEMS Media and all other chemicals and reagents

were purchased from Sigma, Qiagen, HiMedia.

2.2. Culture and cell lines

All the multi drug resistant pathogenic strains used in this
experiment were procured from Department of Microbiology,
Bharathidasan University, Tiruchirappalli and maintained in

nutrient agar slants and broth.

2.3. Synthesis of tenorite nanoparticles

Hep-2 cells were obtained from National Centre for Cell Sci-
ence (NCCS), Pune, India. The Hep-2 cells were grown as
monolayer in MEM; supplemented with 10% FBS, 1% gluta-
mine, and 100 U/mL penicillin–streptomycin solutions. Cells

were incubated at 37 �C in 5% CO2 atmosphere at 95%
humidity.

Tenorite nanoparticles were synthesized by a modified ther-

mal decomposition method (Xu et al., 2002; Kim et al., 2011).
Different concentrations of Copper sulfate (0.001, 0.01, 0.1,
1 M) and Sodium hydroxide (0.1–1.0 M) were prepared for

synthesis and optimization study. Briefly, 200 mL of Copper
sulfate solution was taken in 500 mL of the Erlenmeyer flask
and stirred at 50 �C for 10 min. Sodium hydroxide solution

was then added drop-wise till the pH was achieved at 6.0
and also observed for color changes. The solution was then fil-
tered and dried, and then washed twice with Milli Q water. The
particles were transferred onto a borosil glass plate and heated

at 200 �C for 2 days and then cooled at room temperature.
CuO nanoparticles obtained as such were used for further
characterization.

http://creativecommons.org/licenses/by-nc-nd/3.0/
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Figure 2 FTIR spectrum recorded for tenorite nanoparticle, the bands seen at 1115.4 and 668.77 cm�1 were assigned to the metallic and

O stretching vibrations of the metallic oxides respectively.
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Figure 3 XRD analysis of synthesized tenorite nanoparticles showed (111), (002), (110) planes corresponding to the crystalline

nanoparticles of about 17 nm.
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2.4. Characterization of tenorite nanoparticles

Morphology and size of tenorite nanoparticles were investi-
gated by transmission electron microscopy (JEOL-1200 EX
(TEM with tungsten electron source)) with an accelerating

voltage of 120 kV. Tenorite nanoparticles were analyzed by
X-ray diffraction (XRD) (Phillips PW1710, Holland) with
CuK radiation = 1.5405 Å over a wide range of Bragg angles

by the following formula,
Crystallite size : D ¼ 0:09k=b cosH

where,
k – Wavelength of X-ray (1.54 Å)

b – Full Width Half Maximum (FWHM) value
H – Bragg’s angle

Reduced tenorite nanoparticles were also confirmed with
the bond pattern using Fourier transform infrared (FTIR)



Figure 4 TEM micrograph of tenorite nanoparticles showed the

average size of <50 nm was spherical in shape.
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spectroscopy and UV–Vis spectroscopy for the measurements
of Surface Plasmon Resonance (SPR).

2.5. Antibiofilm property of tenorite nanoparticles

Study of biofilm formation and antibiofilm property assay has
been previously described (Nithya et al., 2011). The antibiofilm

effect of tenorite nanoparticles was measured by direct visual-
ization by light microscopy. Briefly, cover-slips (1 · 1 cm) were
placed in 24 well polystyrene plates and media were added to

the wells. Tenorite nanoparticles were added to the media at
varying concentrations of 1, 10, 50, and 100 lg/mL. The bio-
film forming bacteria were then inoculated and allowed to

grow for the formation of biofilm on cover-slips for 24 h at
37 �C inside an incubator. For control, biofilm forming bacte-
ria were grown in a similar set-up but without any tenorite
nanoparticles in the growth medium. Each experiment was

run in triplicate. Next day the biofilms were stained with meth-
ylene blue and the effect of tenorite nanoparticles on biofilm
formation was observed under a light microscope (Carl Zeiss,

Germany) at the magnification of 40· and images were
obtained.

2.6. Cell viability assay

The viability of Hep-2 cells was evaluated by direct observa-
tion of cells by an Inverted Phase contrast microscope and fol-
lowed by the MTT assay method. 5 · 104cells in 100 ll of

MEM medium were seeded per well in a 96 well tissue culture
plate and incubated at 37 �C in a humidified 5% CO2 incuba-
tor. After 24 h the medium was removed, and fresh MEM con-

taining tenorite nanoparticles at different concentrations with
dilutions ranging from 1.56 to 200 lg/100 ll, were added to
the wells and incubated at 37 �C in a humidified 5% CO2 incu-

bator. In control cells, fresh medium was added without any
tenorite particles. The cells were observed after 24 h and up
to 72 h for any changes in morphology and density of the cells

by inverted phase contrast microscope and images were
acquired. After 72 h, the media were removed from the wells
and 10 ll of MTT solution was added to all test and control
wells. The plate was shaken gently and incubated at 37 �C in

a humidified 5% CO2 incubator for 4 h. After the incubation
period, the supernatant was removed and 100 ll of the MTT
solubilizing solution was added to solubilize the formazan

crystals. The absorbance values were measured at the wave-
length of 570 nm (Moshmann, 1983; Jeyaraj et al., 2013).

3. Results

Tenorite nanoparticles were synthesized by a modified thermal
decomposition method. It was found that 0.5 M of Copper sul-

fate reacted with 0.1 M Sodium hydroxide among tested con-
centrations at 50 �C for 10 min showed the formation of
nanoparticles. The formation of nanoparticles was indicated

when the color of the mixture changed from pale blue to
brown. Tenorite nanoparticles were formed as a result of ther-
mal events that included thermal dehydration, in situ crystalli-
zation of dehydrated amorphous compound, and thermal

desulferation (Darezereshki and Min, 2011). The concentra-
tion optimization was done for the generation of CuO based
on the UV–Vis spectral analysis. The synthesized tenorite
nanoparticles exhibited Surface Plasmon Resonance at
550 nm (Fig. 1). FTIR spectra showed the nature of synthe-
sized tenorite nanoparticles (Fig. 2). The absorption bands at

668 cm�1 and 1115 cm�1 were due to the SO4 bending and
stretching vibration, respectively. There is also a minute dip
in the spectra at 2361 cm�1 which is attributed to the presence

of atmospheric CO2. The adsorption at 1636 cm�1 and
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Figure 5 Light microscopic images of biofilm formed by Klebsiella pneumoniae (A), Escherichia coli (B) and Staphylococcus aureus

MTCC96 (C) and (A1; B1;C1) treated with tenorite nanoparticles (32 lM).
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3438 cm�1 are due to the H–O–H bending and O–H stretching
vibration. In the spectrum of copper nanoparticles, the two

absorption peaks that appear at 1420 and 1115 cm�1 are due
to O–H bending and C–O stretch. The peaks observed at
3438 cm�1 are characteristics of O–H stretching vibrations.
XRD spectra of synthesized tenorite nanoparticles are consis-

tent with the metallic copper (Fig. 3). The peaks at 36.5, 39.5
and 68.2 are corresponding to the indices (002), (111),
(220) respectively. The size of tenorite nanoparticles was cal-

culated from the Debye–Scherrer equation and was found to
be about 17 nm. Morphology of the tenorite nanoparticles
was determined using TEM, which suggested that the size of

the synthesized spherical nanoparticles was <50 nm (Fig. 4).
It is worth noting that the TEM imaging was performed along
with XRD analysis indicating size distribution (<50 nm) and

crystallite nature of the particles. The antibiofilm property of
tenorite nanoparticles was observed at the lowest concentra-
tion of 32 lM (Fig. 5). The results show that at the given con-
centration, the biofilm formation by multi drug resistant

pathogens was significantly inhibited. The biofilm formation
was reduced by 80% in case of Klebsiella pneumoniae, 90%
in case of Staphylococcus aureus MTCC96 and 70% in case

of Escherichia coli. This suggests with ample evidence that
the synthesized tenorite nanoparticles may be used for coating
on the implants to inhibit the biofilm formation. Results of cell

viability assay showed an excellent trend with 100% viability
observed in the presence of tenorite nanoparticle concentration
upto the concentration of 81 lM (Fig. 6). As the tenorite nano-
particles concentration increased (up to 650 lM), the Hep-2

cells viability went down, with just about 20% cells remaining
viable at the concentration of 650 lM.

4. Discussion

Previously Cu and CuO nanoparticles have been reported to be
synthesized in the ranges of 9–60 nm under supercritical condi-

tions (Shah and Al-Ghamdi, 2011). Copper nanoparticles have
also been reported to be synthesized by thermal decomposition
of copper oxalate (Salavati-Niasari and Davar, 2009; Salavati-

Niasari et al., 2008), copper (I) precursors (Adner et al., 2013)
and copper sulfate (Darezereshki and Min, 2011) and the par-
ticles sizes obtained were 40 nm, 10–30 nm and 170 nm

respectively.
Excitation of Plasmon resonance or inter-band transition is

reported to indicate the metallic characteristics of copper
nanoparticles. Furthermore, it has been reported that copper
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Figure 6 Cytotoxicity of tenorite nanoparticles with Hep-2 cell lines (A–D); cytologically tenorite nanoparticles showed toxicity up to

the concentration of (650 lM–162 lM) and viability from 81 lM to 5 lM (E–H).
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nanoparticles at a size of 50 nm typically exhibit the surface
Plasmon resonance at 560–570 nm (Creghton and Eadon,
1991). Non-oxidized copper nanoparticles show surface

plasma resonance at 580 nm while copper nanoparticles exhi-
bit surface plasma resonance at 556–580 nm in general (Zhao
et al., 2004; Ramyadevi et al., 2012). The peaks in the range

of 670–100 cm�1 are shifted to higher wave numbers in the
same type. These dramatic differences indicate that the thin
layer of starch forms on the surface of copper nanoparticles
(Surmawar et al., 2011). The XRD peaks were indexed using

JCPDS file (JCPDS card No: 41-0254). The peak-positions
are consistent with previous reports (Lo et al., 2005; Harne
et al., 2012; Ramyadevi et al., 2012). The CuO nanoparticles,

instead of pure copper are produced because of Cu reacting
with existing O2 in dielectric liquid (Lo et al., 2005). The sharp
peaks of the XRD pattern indicate the crystalline nature
(Ramyadevi et al., 2012).

It has been reported previously that copper nanoparticles
display varied antibacterial activities against pathogenic
microbes (Ramyadevi et al., 2012). Copper nanoparticles

adversely affect microbial pathogens as analyzed by the disk
diffusion method (Rupaarelia et al., 2008). Copper nanoparti-
cles are shown to be highly effective against filamentous bacte-
ria. Copper nanoparticles have been shown to be bactericidal

against strains like Bacillus subtilis and S. aureus which are
otherwise resistant to antibiotics (Chatterjee et al., 2012).

An earlier report has suggested that HeLa, A549 and

BHK21 cell lines show excellent viability in the presence of
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synthesized copper nanoparticles up to the concentration of
120 lM (Harne et al., 2012). Other studies have reported that
copper nanoparticles induce DNA damage, chromatin conden-

sation, inter-nucleosomal DNA fragmentation, oxidative stress
and interact with SH groups on proteins leading to protein
denaturation in a dose dependent manner (Yoon et al.,

2007). Tenorite nanoparticles are expected to have lower cyto-
toxicity than ionic copper which was shown to be on Chinese
Hamster Ovary cells and Hela cells (Studer et al., 2010). Due

to biocompatibility of copper, and effective physiological mea-
sures intracellular metal homeostasis and metabolism, tenorite
nanoparticles might show lesser toxicity against PC3 and
MCF-7 (Kim et al., 2012).

5. Conclusion

We summarize that the first generation method of thermal
decomposition was adopted for synthesizing tenorite nanopar-
ticles. These particles were further characterized by techniques
like TEM, XRD, FTIR, and UV–Vis for the characterization

of nanoparticles. It was found that prepared nanoparticles
were spherical in shape and <50 nm in size. The tenorite nano-
particles (32 lM) displayed anti-biofilm activity against biofilm

forming multi drug resistant microorganisms such as Pseudo-
monas fluorescens, Burkholderia mallei, Klebsiella pneumoniae,
E. coli and S. aureus MTCC96 strain. Cell viability of Hep-2

cells was checked in the presence of tenorite nanoparticles by
the MTT assay, which showed that cells had excellent viability
up to 81 lM. Given the excellent biocompatibility of copper,
combined with tremendous microbicidal properties, copper

nanoparticles may be a suitable coating material for the
implants.
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