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Cardio-facio-cutaneous syndrome (CFCS) belongs to the group of RASopathies,
clinical disorders defined by disruptions in the RAS/MAPK signaling pathway. It is
caused by heterozygous gain-of-function germline mutations in genes
encoding protein kinases: BRAF, MAP2K1 (MEK1), MAP2K2 (MEK2), and in the
GTPase-encoding gene KRAS. CFCS is characterized by craniofacial
dysmorphic features, congenital heart defects, severe malnutrition,
proportionate short stature, anomalies within the structure of skin and hair,
and psychomotor disability. The pathophysiology of growth impairment is
multifactorial with feeding difficulties, growth hormone deficiency, and
insensitivity. Immunodeficiency has not been hitherto reported as an integral
part of CFCS yet an increased activation of the RAS/MAPK signaling pathway
may contribute to explaining the causal relationship between RASopathy and
the dysfunctions within the B and T lymph cell compartments resulting in a
deficiency in T cell costimulation and B cell maturation with impaired class
switch recombination, somatic hypermutation, and high-affinity antibody
production. We report on a boy born prematurely at 32 WGA, with the
perinatal period complicated by pneumonia, respiratory distress syndrome,
and valvular pulmonary stenosis. The boy suffered from recurrent pneumonia,
obstructive bronchitis, sepsis, urinary tract infection, and recurrent fevers. He
presented with severe hypotrophy, psychomotor disability, short stature,
craniofacial dysmorphism, dental hypoplasia, sparse hair, and cryptorchidism.
Whole genome sequencing showed a novel heterozygous pathogenic
germline missense variant: c.364A >G; p.Asn122Asp in the MAP2K1 gene,
supporting the diagnosis of CFCS. The immunological workup revealed
hypogammaglobulinemia, IgG subclass, and specific antibody deficiency
accompanied by decreased numbers of T helper cells and naive and memory
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B cells. Replacement immunoglobulin therapy with timely antibiotic prophylaxis were
instituted. At the age of six years, growth hormone deficiency was diagnosed and the
rGH therapy was started. The ever-increasing progress in genetic studies contributes to
establishing the definitive CFCS diagnosis and sheds the light on the interrelated
genotype-phenotype heterogeneity of RASopathies. Herein, we add new phenotypic
features of predominating humoral immunodeficiency to the symptomatology of CFCS
with a novel mutation in MAP2K1. While CFCS is a multifaceted disease, increased
pediatricians’ awareness is needed to prevent the delay in diagnostics and therapeutic
interventions.
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MAP2K1, rasopathy, immunodeficiency, short stature, craniofacial dysmorphism,
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Introduction

RAS genes constitute a multigene family including HRAS,

NRAS, and KRAS encoding a group of small guanosine

nucleotide-bound GTPases that act as an essential cellular

signaling axis. These RAS-GTPases control activation of the

downstream RAF-MEK-ERK pathway, constituting the

mitogen-associated protein kinase (MAPK) cascade that is

vital for a multiplicity of cellular processes in the nucleus and

cytosol, including survival, proliferation, differentiation,

motility, and apoptosis. They are activated by various

extracellular stimuli, such as growth factors binding to

receptor tyrosine kinase, cytokine receptors, and extracellular

matrix receptors. Subsequently, activated RAS phosphorylate

downstream transducers: RAF proteins (ARAF, BRAF, and

CRAF), MEK1 and/or MEK2, and finally, ERK1 and/or ERK2

(1, 2). The complex nature of the RAS/MAPK signaling

pathway with the multiplicity of mechanisms cumulated in

the RAS/MAPK pathway dysregulated activations as their

common pathogenetic denominator.

Cardio-facio-cutaneous syndrome (CFCS) belongs to the

group of the RASopathies, a spectrum of clinical disorders

caused by germline mutations in components or regulators of

the RAS/MAPK pathway. With its numerous genes and

overlapping regulatory mechanisms involved, interfering with

other cellular pathways contribute to the complex genotype-

phenotype correlations and the heterogeneity of phenotypic

features (3, 4). This pathway-based, mechanistic approach to

defining RASopathies makes these medical genetic syndromes

unique as opposed to the isolated one gene-one syndrome

approach (5–7). In CFCS, heterozygous gain-of-function

mutations occur in genes encoding protein kinases: BRAF,

accounting for 75% of the genetic background in the

syndrome, MAP2K1 (MEK1), MAP2K2 (MEK2), both found

in 25% of the mutation-positive patients, and in the GTPase-

encoding gene KRAS, constituting the rarest genetic

background, found in less than 2% of the CFC patients (5, 8).

An activating YWHAZ variant in the RAF-ERK pathway has
02
also been reported in individuals with clinical syndromic

features consistent with CFCS thereby expanding the

spectrum of deleterious gain-of-function mutations underlying

the characteristic phenotype (9). Recently, 19p13.3

microdeletion including the MAP2K2 gene in a newborn

patient with CFCS and severe clinical phenotype has also

been reported (10). Consequently, CFCS is a phenotypically

heterogeneous disorder characterized by craniofacial

dysmorphic features, congenital heart defects, severe

malnutrition, proportionate short stature, anomalies within

the structure of skin and hair, and psychomotor disability

(5, 8, 9, 11, 12).

In a mathematical multifactorial correlation study, a degree

of associations of clinical traits and their frequencies were

verified to calculate the CFC index thereby proposing an

objective method for the easier recognition and more accurate

clinical diagnosis of CFCS (13). It is worth noting that the

highest index has been attributed to developmental disability,

neurocognitive and motor difficulties (14, 15), craniofacial

dysmorphic features such as high cranial vault, macrocephaly,

bitemporal narrowing, depressed nasal bridge, anteverted

nostrils (16, 17), dysmorphologic, sparse hair (18),

hyperkeratotic skin (19), as well as congenital heart defect and

hypertrophic cardiomyopathy (20–22) and short stature (23,

24). The pathophysiology of growth impairment is

multifactorial with feeding difficulties, growth hormone (GH)

deficiency, and insensitivity have been postulated as possible

contributors to short stature.

Finally, clinical manifestations of CFCS in individual

patients may overlap and result from heterogeneous

pathological mechanisms governing the ultimate genotype-

phenotype relationship. Wide symptomatology associated with

inflammatory and autoimmune disorders (25), energy

metabolism disturbances, myeloproliferative disease (26), and

tumorigenesis (27) may be, therefore, observable in affected

patients at different stages of their development (28–30).

Immunodeficiency associated with syndromic features has not

been hitherto thoroughly studied and frequently reported as
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an integral part of CFCS (31), yet an increased activation of the

RAS/MAPK signaling pathway may contribute to explaining the

causal relationship between RASopathy and the regulation of

immune cells development and functions. It may be therefore

assumed that dysregulation in cellular processes within the B

and T lymphocyte compartments may result in deficiency in

T cell costimulation and B cell dysfunctions with impaired

class switch recombination (CSR), somatic hypermutation

(SHM), and high-affinity antibody production.
FIGURE 1

Phenotypical features of the patient with CFCS type 3 due to a novel
pathogenic germline missense variant (NM_002755.3:[c.364A > G;
p.Asn122Asp) in the MAP2K1 gene.
Case presentation

The patient

We report on a case of a boy who was referred to our

pediatric clinical hospital at the age of two years due to

recurrent respiratory tract infections for immunodiagnostics.

His antenatal history was remarkable for polyhydramnios and

supported pregnancy due to the signs of life threat to the fetus

since the 26 week gestational age (WGA). Due to

polyhydramnios, repeated amniocentesis and drainage of the

amniotic fluid were performed, and chorioamnionitis was an

indication to terminate the pregnancy. He was born

prematurely by cesarean section at 32 WGA, and the perinatal

period was complicated by pneumonia, respiratory distress

syndrome, and cardiac insufficiency due to valvular pulmonary

stenosis. Since birth, he required combined antibiotic therapy

and mechanical ventilation in the neonatal intensive care unit

because of respiratory and circulatory insufficiency. He also

presented with craniofacial dysmorphism and cryptorchidism

raising the suspicion of Noonan syndrome yet sequencing of

the PTPN11 gene did not show any mutation. By the age of

two years, the boy suffered from recurrent pneumonia and

bronchitis, staphylococcal sepsis, urinary tract infection, and

recurrent fevers with Staphylococcus aureus and Pseudomonas

aeruginosa repeatedly cultured in tracheal aspirates. Since the

age of four months, during the first two years of life, the

number of pneumonia episodes was four every year, severe

enough to require hospitalizations. In the first year of life, he

underwent a multistep corrective surgery of valvular pulmonary

stenosis. Due to the failure of thrive and feeding difficulties,

gastrostomy was created to improve his nutritional status, yet

poor weight gaining and recurrent fevers prompted the surgical

team to remove it. The patient received a live Bacillus

Calmette-Guerin (BCG) vaccine after birth and a measles-

mumps-rubella (MMR) trivalent vaccine at the age of 13

months was not recommended due to recurrent infections.

Inactive vaccines were administered without adverse effects and

the diphtheria, tetanus, and acellular pertussis (DTaP) booster

dose was given at the age of six years, 10 weeks before the

immunological workup. On admission to our pediatric

immunology unit, he presented with severe hypotrophy,
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psychomotor retardation, short stature, macrocephaly, facial

dysmorphism with prominent forehead, depressed nasal bridge,

and anteverted nostrils, macrostomia, dental hypoplasia, low-set

ears, sparse hair with absent eyebrows and eyelashes, and

bilateral cryptorchidism. The patient’s phenotypic features are

displayed in Figure 1. In-depth genetic studies including whole

genome sequencing (WGS) showed a novel heterozygous

pathogenic germline missense variant (NM_002755.3:[c.364A >

G; p.Asn122Asp) in the MAP2K1 gene and the diagnosis of the

cardio-facio-cutaneous syndrome (OMIM #615279) was

established. The detected missense substitution resulted in a

change of asparagine into aspartic acid in a highly conserved

amino acid residue 122. Furthermore, the variant occurred de

novo as it has been shown in targeted parental studies. To

follow the case history, see Figure 2 (Timeline). The

immunological workup revealed hypogammaglobulinemia, IgG

subclass, and specific antibody deficiency accompanied by a

decreased numbers of T helper cells and abnormalities within

the B cell compartment with low numbers of naive and

switched memory B cells (Data shown in Table 1).

Replacement immunoglobulin therapy (IgRT) with intravenous

(IVIg) followed by subcutaneous immunoglobulins (SCIg)

along with timely antibiotic prophylaxis were instituted leading

to significant improvement and reducing the infections rate.

The regular IgRT has led to a remarkable alleviation of

respiratory symptoms, and since the age of three years, he

suffered from two episodes of bronchitis and episodic mild

upper airway infections and, aged six years, required an

admission to the hospital.

At the age of five years, the boy was referred to the department

of pediatric endocrinology for hormonal assessment. On

admission, his height was 86 cm corresponding with the

standard deviation score (SDS) −8.3 and the body mass index

(BMI) was corresponding with SDS −6.1. The evaluation of the

endocrine system showed partial growth hormone deficiency
frontiersin.org
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FIGURE 2

Timeline showing clinical case history including symptomatology, infectious history, diagnosis of CFCS, and therapy.
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with remarkably low insulin growth factor 1 (IGF-1)

concentration, and the bone age was estimated at 1.5 years. The

recombinant growth hormone (rGH) therapy was started at the

age of 6.5 years, reaching the height of −7.0 SDS, height velocity

of 7 cm/year, the bone age of 4.5 years, and increasing the IGF-

1 level after one year of the therapy. Data including hormonal

laboratory parameters and a growth chart are displayed in Table 2.
Diagnostic assessment

Whole genome sequencing

Genomic DNA was extracted from peripheral blood (PB)

leukocytes according to standard procedures. The sequencing

library was prepared by Macrogen Inc. (Seul, Korea) using

TruSeq DNA PCR-free kit (Illumina Inc, San Diego,

California, USA) and 550 bp inserts. The library was

sequenced on the Illumina Novaseq 6,000 platform using

150 bp paired-end reads following standard protocols.

Bioinformatic analysis was performed as previously described

(32). FastQC was used to confirm the quality of the

sequenced reads which were mapped to the human reference

genome GRCh38 using Speedseq framework v.0.1.2 (BWA

MEM 0.7.10, Sambamba v0.5.9). Mapping coverage was

calculated using Mosdepth 0.2.4. Sequence variants were

detected using DeepVariant 0.8.0. and CNVnator v0.4, and

annotated using Ensembl Variant Effect Predictor 97.3

(VEP). Variants with minor allele frequency below 0.5% or

missing from gnomAD v3 database, and missing from an
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inhouse database of over 1,200 ethnically matched WGS

samples (33) were selected for the analysis; variants in genes

associated with RASopathies and immunodeficiency were

prioritized. Variants in genes associated with

immunodeficiency were reanalyzed using the minor allele

frequency threshold below or equal to 3%. The clinical

interpretation of detected mutations was performed based on

various online databases of genomic variants including

ClinVar2, GnomAD3, Human Gene Mutation Database

(HGMD) Professional 2014.1. The pathogenicity of the

identified variants was evaluated by multiple prediction tools

integrated into WGS data analysis pipeline and VarSome

Premium variant data analysis tool (34). The classification of

the reported mutation was performed according to the

American College of Medical Genetics and Genomics and

the Association for Molecular Pathology (ACMG/AMP) (35).

The de novo occurrence of the pathogenic mutation in the

proband was confirmed in parental testing employing

targeted Sanger sequencing. A detailed summary of the

pathogenicity prediction of the detected MAP2K1 mutation

including pathogenicity and conservation scores is shown in

Supplementary Table S2.
Flow cytometric peripheral blood lymph
cell immunophenotyping

Cells were labelled with the following murine fluorochrome-

stained monoclonal antibodies: anti-CD45 FITC (fluorescein

isothiocyanate), anti-CD14 PE (phycoerythrin), anti-CD19 PE,
frontiersin.org
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TABLE 1 The immunological workup with antibody-mediated response and peripheral blood flow cytometric immunophenotyping in the CFCS
patient.

Immunological workup Age 2 years
(1)

Reference values (1) Age 6 years
(2)

Reference values (2)

Antibody response

Immunoglobulins

IgG 184 mg/dl 520–1360 mg/dl 265 mg/dl 570–1410 mg/dl

IgA 19 mg/dl 45–135 mg/dl 73 mg/dl 65–240 mg/dl

IgM 28 mg/dl 46–190 mg/dl 5 mg/dl 55–210 mg/dl

IgG subclasses

IgG1 95 mg/dl 315–945 mg/dl 193 mg/dl 306–945 mg/dl

IgG2 41 mg/dl 36–225 mg/dl 124 mg/dl 60–345 mg/dl

IgG3 7 mg/dl 17–68 mg/dl 18 mg/dl 99–122 mg/dl

IgG4 0.5 mg/dl 1–54 mg/dl 2 mg/dl 20–112 mg/dl

Antigen-specific antibodies

Anti-diphtheria toxoid <0.1 IU/ml >1 IU/ml

Anti-tetanus toxoid <0.1 IU/m >1 IU/ml

PB lymphocyte immunophenotyping

WBC 10210 cc 14020 cc

Lymphocytes CD45+/SSC low 36.0%, 3676 cc 29.6–69.2%,
2300–6900 cc

28.0%, 3856 cc 29.6%–49.8%,
1700–3600 cc

B CD19+ 11.0%, 209 cc 14.1–28.5,0%,
400–1700 cc

4.0%, 178 cc 9.7%–23.7%, 300–600 cc

Transitional B CD19 + CD38 + IgM++ 23.7%, 99 cc 3.1%–12.3%, 20–200 cc 1.6%, 3 cc 4.6%–8.3%, 10–40 cc

Mature naїve B CD19 + CD27-IgD+ 94,8%, 395 cc 54.0%–88.4%,
280–1330 cc

64.4%, 115 cc 47.3%–77.0%, 130–460 cc

Non-switched memory B (MZL) CD19 + CD27 + IgD+ 2.0%, 4cc 2.7%–19.8%, 20–180 cc 12.3%, 22 cc 5.2%–20.4%, 20–100 cc

Switched memory B CD19 + CD27 + IgD- 2.1%, 5 cc 4.7%–21.2%, 20–220 cc 2.3%, 4 cc 10.9%–30.4%, 40–140 cc

Immature B CD19 + CD21lo 9.1%, 19 cc 4.1%–24.4%, 20–230 cc 4.9%, 9 cc 5.9%–25.8%, 20–120 cc

Activated B CD19 + CD38loCD21lo 4,6%, 11 cc 1.7%–5.4%, 10–60 cc 4.9%, 9 cc 2.3%–10.0%, 10–40 cc

Plasmablasts CD19 + CD38++IgM- 0.0%, 0 cc 0.6%–4.0%, 5–10 cc 0.0%, 0 cc 0.6%–5.3%, 0–3 cc

T CD3+ 74.0%, 1491 cc 52.0%–92.0%,
850–4300 cc

47.0%, 1905 cc 55.0%–97.0%,
850–4300 cc

T helper CD3 + CD4+ 34.0%, 1288 cc 25.0%–66.0%,
500–2700 cc

18.0%, 722 cc 26.0%–61.0%,
500–2700 cc

T suppressor/cytotoxic CD3 + CD8+ 19.0%, 720 cc 9.0%–49.0%,
200–1800 cc

23.0%, 916 cc 13.0%–47.0%,
200–1800 cc

CD4+/CD8+ 1.79 1.5–2.5 0.79 1.5–2.5

Recent thymic emigrants CD3 + CD4 + CD45RA + CD31+ 47.0%, 607 cc 37,0%–100%,
190–2600 cc

33.8%, 244 cc 41.0%–81.0%,
190–2600 cc

Naïve T helper CD3 + CD4 + CD45RA + CD27+ 66.1%, 851 cc 52.0%–92.0%,
300–2300 cc

47.9%, 345 cc 46.0%–99.0%,
300–2300 cc

Central memory T helper CD3 + CD4 + CD45RA-CD27+ 2.9%, 307 cc 15.0%–56.0%, 160–
660 cc

45.3% 327 cc 0.35%–100%, 160–660 cc

Effector memory T helper CD3 + CD4 + CD45RA-CD27- 9.6%, 123 cc 0.3%–9.0%, 3–89 cc 5.9%, 42 cc 0.3%–18.0%, 3–89 cc

Terminally differentiated memory T helper CD3 + CD4 + CD45RA + CD27- 0.4%, 5 cc 0.0%–1.2%, 0–16 cc 1.0%, 7 cc 0.0%–1,8%, 0–16 cc

Follicular CXCR5+ T helper CD3 + CD4 + CD45RO + CD185+ 16.0%, 206 cc 6.0%–72.0%, 13–170 cc 11.2%, 29 cc 7.0%–85.0%, 13–170 cc

Regulatory T helper CD3 + CD4 + CD25++CD127- 0.5%, 6 cc 3.0%–17.0%, 39–150 cc 6.8%, 49 cc 4.0%–14.0%, 39–150 cc

Naïve T suppressor/cytotoxic CD3 + CD8 + CD27 + CD197+ 27.7%, 199 cc 19.0%–100%, 53–1100 cc 26.1%, 239 cc 16.0%–100%, 53–1100 cc

Central memory T suppressor/cytotoxic CD3 +CD8 +CD45RA-CD27 + CD197+ 1.2%, 8 cc 1.0%–9.0%, 4–64 cc 2.2%, 20 cc 1.0%–6.0%, 4–64 cc

Effector memory T suppressor/cytotoxic CD3 + CD8 + CD45RA-CD27-CD197- 7.4%, 53 cc 10.0%–55.0%, 24–590 cc 19.0%, 174 cc 5.0%–100%, 24–590 cc

Terminally differentiated T suppressor/cytotoxic CD3 + CD8 + CD45RA +
CD27-CD197-

3.1%, 22 cc 6.0%–83.0%, 25–530 cc 12.8%, 117 cc 15.0%–41.0%, 25–530 cc

NK CD3-CD45 + CD16 + CD56+ 22.0%, 808 cc 2%–25%, 61–510 cc 19.0%, 754 cc 2.0%–25.0%, 61–510 cc

Szczawińska-Popłonyk et al. 10.3389/fped.2022.990111
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TABLE 2 Endocrinological workup of the presented CFCS patients before and one year after starting the rGH therapy, aged 6 and 7 years old,
respectively.

Hormonal Parameters Before starting rGH One year after
starting rGH

Reference values Growth chart

Max GH after onset of sleep 7.1 ng/ml >10.0 ng/ml

Max GH after glucagon 9.4 ng/ml >10.0 ng/ml

Max GH after clonidine 7.2 ng/ml >10.0 ng/ml

IGF-1 12.0 ng/ml 90.0 ng/ml 115.0–249.0 ng/ml

IGFBP-3 838.0 ng/ml 2462.0 ng/ml 2846.0–4462.0 ng/ml

LH 0.2 mIU/ml 0.02–1.03 mIU/ml

FSH 0.5 mIU/ml 0.25–1.92 mIU/ml

Testosterone 0.45 nmol/L 0.1–1.0 nmol/L

PRL 86.58 ng/ml 4.79–23.3 ng/ml

PRL after precipitation with PEG 27.52 ng/ml 4.79–23.3 ng/ml

Cortisol at 8:00 am 187.0 ng/ml 37.0–194.0 ng/ml

Cortisol after glucagon 189.0 ng/ml >180.0 ng/ml

ACTH 109.6 pg/ml 10.0–60.0 pg/ml

TSH 3.993 µIU/ml 0.700–4.170 µIU/ml

FT3 1.54 pg/ml 0.86–1.37 pg/ml

FT4 3.77 ng/dl 2.79–4.42 ng/dl

anti-TPO Ab 7.9 IU/ml <5.61 IU/ml

anti-TG Ab 1.9 IU/ml <4.11 IU/ml

Insulin 2.2 µU/ml <15.0 µU/ml

PTH 57.6 pg/ml 10.0–60.0 pg/ml

25-OH-D 36.8 ng/ml 30.0–50.0 ng/ml
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anti-CD19 PerCP (peridinin chlorophyll protein), anti-IgM

FITC, anti-IgD FITC, anti-CD38 APC (allophycocyanin),

anti-CD27 PE, anti-CD21 FITC, as well as anti-CD3 FITC,

anti-CD4 FITC, CD45RA FITC, CD127 FITC, CD185 FITC,

anti-CD8 PE, anti-CD16 + CD56 PE, CD25 PE, CD31 PE,

CD45RO PE, anti-CD3 PerCP, CD197 PerCP, anti-CD4 APC

and anti-CD8 APC (all Beckton-Dickinson Biosciences, USA).

The acquisition of cells and analysis was carried out with the

use of the flow cytometer FACSCanto and FACSDiva software

(Beckton-Dickinson, USA). With sequential gating on

biparametric scattering CD45 + CD14- lymphocytes, the

following lymphocyte subpopulations were identified:

– CD19+ B cells, immature CD19 + CD21lo, immature activated

CD19 + CD38loCD21lo, transitional CD19 + CD38hisIgMhi,

non-switched memory CD19 + CD27 + sIgD+, switched

memory CD19 + CD27 + IgD- B cells, and CD19 +

CD38hisIgM- plasmablasts

– CD3+ T cells, CD3 + CD4+ T helper cells, CD3 + CD4 +

CD31 + CD45RA+ recent thymic emigrants, naïve CD3 +

CD4 + CD27 + CD45RA+, regulatory CD3 + CD4 + CD25+

+CD27-, central memory CD3 + CD4 + CD27 + CD45RO+,

effector memory CD3 + CD4 + CD27-CD45RO+, terminally

differentiated CD3 + CD4 + CD27-CD45RA+, follicular

CD3 + CD4 + CD185 + CD45RO+, and regulatory CD3 +

CD4 + CD45RO + CD127-CD25++ T helper cells. Among
Frontiers in Pediatrics 06
CD3 + CD8 + cytotoxic T cells, the following subsets were

distinguished: naïve CD3 + CD8 + CD197 + CD27 +

CD45RA+, central memory CD3 + CD8 + CD197 + CD27 +

CD45RO+, effector memory CD3 + CD8 + CD197-CD27-

CD45RO+, and terminally differentiated CD3 + CD8 +

CD197-CD27-CD45RA+ cells.

– CD3-CD16 + CD56+ NK cells.

The relative values of PB lymphocytes, the B, T, and NK

cells of the total lymphocyte population as well as B and T

cell subsets were calculated. The absolute counts of all cell

subsets were calculated from the PB leukocyte counts. A

comparative analysis was done with the reference cut-off

values of B (36) and T cell subsets (37) for pediatric

populations at different age groups.
Auxology

The boys’ height was measured in the lying position due to

cerebral palsy using SECA measuring mat. The height and BMI

SDS for chronological age were calculated using WHO

references, and the bone age was estimated according to the

Greulich and Pyle method for evaluation of the skeletal

developments of the hand and wrist.
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Discussion

Addressing the concerns on the heterogeneity of clinical

features, the rarity of the syndrome, and complex genotype-

phenotype relationships, it needs to be highlighted that the

definitive diagnosis of CFCS is challenging for clinicians (38).

Attempts have been made to better delineate the phenotypic

perinatal (39) and childhood presentation (13) to facilitate the

early diagnosis. Functional consequences of mutations in the

CFCS-related RAS/MAPK pathway involving KRAS-BRAF-

MAPK-ERK components show clinical variety as well, making

the interrelated links between the causative pathogenic variant

and the patient’s phenotype difficult to predict. RAS/MAPK

pathway plays pleiotropic roles at the crossroads of the

development and homeostasis of endocrine and metabolic

tissues. Directing the metabolism towards anabolic processes,

such as macropinocytosis and autophagy as well as regulating

the response to foods through neuroendocrine signals, the

RAS/MAPK pathway acts as a modifier of the hormonal and

metabolic balance (40) as well as bioenergetics related to

mitochondrial physiology and high energy expenditure (41).

The response to hormones, such as insulin, leptin, and GH, as

well as the development of hormonally active organs, such as

the hypothalamus, pancreas, and adipose tissue has been

associated with the activation of the RAS/MAPK cascade.

Importantly, the RAS/MAPK pathway is mobilized

downstream from the GH receptor and in RASopathies,

increased activation of the RAS/MAPK signaling results in

reduced IGF-1 generation in response to GH (39). The most

widely proposed hypothesis of growth failure is a partial GH

insensitivity due to a post-receptor signaling defect (42, 43).

Nonetheless, the pathomechanism of short stature in

RASopathies is complex and multifactorial, and besides GH

deficiency, partial GH insensitivity, neurosecretory dysfunction,

also neuromuscular, orodental and feeding disorders, and

history of cardiac surgery have been proposed as contributory

disorders (42–44). In our patient, severe hypotrophy, poor

nutritional status, feeding disorders, muscular atrophy and

hypotonia, as well as a history of valvular pulmonary stenosis

in parallel with recurrent infections had a salient effect on his

developmental impairment and growth failure. Moreover,

failure to thrive may underpin immunodeficiency and, in turn,

immunodeficiency may escalate failure to thrive and hormonal

dysfunction, creating a vicious circle in pathomechanisms of

immunity and development. In RASopathies, an increased

RAS/MAPK pathway signaling in chondrocytes may impair

growth plate development and longitudinal growth (45). MAPK

activation is important in regulating the proliferation of

pituitary somatotrophs and, therefore, proper GH secretion

(46). The partial GH insensitivity in RASopathies has also been

postulated, implying that the response to rGH in MAP2K1

deficiency-related CFCS may not be entirely satisfactory (42,

43, 47). In the presented patient, the GH secretion was just
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below the cut-off value and was accompanied by a very low

IGF-1 and IGF-binding protein 3 (IGFBP-3) that might suggest

a coexisting GH insensitivity. Interestingly, the elevated

prolactin (PRL) concentration with nearly normal precipitation

with polyethylene glycol (PEG) may be hypothesized to result

from immunological disturbances and IgRT in the patient.

The pleiotropic effect of RAS-associated pathways on cellular

growth, differentiation, and apoptosis may also be hypothesized

as a potential background for the combined immunodeficiency

in the patient studied. The Ras/MAPK cascade cumulating in

ERK kinase underlie functional switching in lymph cells.

Engagement of antigen receptors in lymph cells stimulates Ras

proteins activation by guanine nucleotide exchange factors

(GEFs): RasGRP1 acts downstream from antigen receptors in T

cells, whereas RasGRP1 and RasGRP3 function in B cells (48–

52). Biallelic loss-of-function (LOF) mutations in the RASGRP1

gene have been described in several patients to develop a

combined immunodeficiency (CID) and impaired cytoskeleton

dynamics, susceptibility to severe viral, fungal, and bacterial

infections, autoimmune cytopenias, and an Epstein-Barr virus

(EBV)-driven lymphoproliferation. The immunodeficiency in

RASGRP1 is characterized by impaired B and T cell activation

and proliferation, decreased T cell numbers, and NK cell

cytotoxic dysfunction (53). It has also been shown that in B

cells, positive feedback-driven Ras activation is the proposed

source of digital MAPK responses and signal amplification

following antigen stimulation at the B cell receptor (54).

Whereas the regulatory role of MAPK has been shown in

crucial cellular processes, including driving proliferation and

activation of dendritic cells, it has been hypothesized that the

MAPK cascade promotes efficient adaptive immune response

(55). While the MAP2K1 variants have also been shown to

activate the ERK-dependent cell cycle progression and

autophagy (56), it has raised the question whether the

autophagy-mediated altered MAP2K1 function contributes to a

dysfunctional immunophenotype. Referring to the two hitherto

reported CFCS patients with hypogammaglobulinemia and

absent antigen-specific antibody response, both harbored the

same c.389A >G; p.Tyr130Cys mutation in the MAP2K1 gene

(31). While in our patient, developmental disorders within the

lymphocyte compartment have been found, it raises questions

regarding the role of this novel pathogenic c.364A >G;

p.Asn122Asp variant in MAP2K1 in lymphocyte development

and function, the degree of the immune response impairment,

as well as immuno-endocrine correlations. A comparative

analysis of the symptomatology and immunological workup of

two CFCS patients with hypogammaglobulinemia and our

patient is displayed in Supplementary Table S2. Noteworthy,

different missense variants in the same gene that lead to

increased activity of the mutated protein may have distinct

activating potential resulting in a variable degree of

dysregulation in downstream signaling pathways. It is therefore

possible that an individual immunophenotype may be ascribed
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to the different MAPK genotype (57). The presence of other

potentially pathogenic variants that could contribute to the

immunodeficiency has been excluded by careful bioinformatic

analysis of the WGS data using an immunodeficiency gene

panel and minor allele frequency threshold below or equal to

3%. Only two heterozygous variants, NM 000066.4:c.1282.C > T

(p.Arg428Ter) in the C8B gene and NM 001083116.3:c.272C >

T (p.Ala91Val) in the PRF1 gene, were predicted as pathogenic.

However, both variants were associated wit autosomal recessive

disorders and therefore, their contribution to the

immunophenotype of our patient seems unlikely. Further

functional experimental and clinical studies are required for the

precise delineation of the effect of both c.364 A >G;

p.Asn122Asp and c.389A >G; p.Tyr130Cys missense

substitutions on the MAP2K1 protein and the corresponding

CFCS immunophenotype. Although the role of mutations in

classical genes in components of the RAS/MAPK pathway has

been elegantly studied (5, 8, 9, 58), the effect of disease-

modifying altered mi-RNAs expression profiles has been

revealed thereby highlighting a contribution of epigenetic

regulation on MAP2K1 and the phenotypic immuno-endocrine

features in CFCS (59). It is also worth noting that genes in the

RAS-MAPK pathway are among the most frequently

deregulated genes in human cancer due to their regulatory role

in cell proliferation, differentiation and survival. Interestingly,

the genetic aberrations resulting in deregulated activation of the

RAS-MAPK signaling pathway which have been recently

reported in a spectrum of hematopoietic malignancies include

the same N122D MAP2K1 variant found in our CFCS patient

(60). This N122D alteration occurs in the kinase domain of the

MAP2K1 gene, in the regulatory helix, while other mutations

identified in CFCS are clustered.

The ever-increasing progress in genetic studies, contributing

to establishing the definitive CFC diagnosis and shedding light

on the interrelated genotype-phenotype heterogeneity of clinical

syndromes belonging to the group of RASopathies needs to be

highlighted. Herein, we add new phenotypic features of humoral

immunodeficiency to the syndromic symptomatology of CFC

with a novel mutation in MAP2K1. In this patient,

multidisciplinary care of specialists in pediatric endocrinology,

dermatology, cardiology, neurology, and physiotherapy is

indicated, under the pediatric clinical immunologist’s supervision.
Patient perspective

Finding a causative mutation and establishing a definitive

genetic diagnosis means primarily an explanation for the

multifaceted disease. Both for the family and leading

physicians, it paves the way for future diagnostic and

therapeutic interventions, shedding light on the expanded

phenotype with immunodeficiency. Importantly, the everyday

struggling with the child’s intellectual and motor disabilities,
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failure to thrive, recurrent infections, increased risk of

tumorigenesis, frequent medical consultations and treatments

with SCIg and GH, is a disease burden for the patient’s

relatives. To cope with the multisystemic syndrome of CFC,

medical and social support is needed for the family to

enhance undertaking positive health-promoting stimulating

activities. Therefore, the de novo nature of the pathogenic

MAP2K1 variant has an important informative role for

the family.
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