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Abstract

Background: Asnew technologies allow investigators to collect multiple forms of molecular data (genomic,
epigenomic, transcriptomic, etc) and multiple endpoints on a clinical trial cohort, it will become necessary to
effectively integrate all these data in a way that reliably identifies biologically important genes.

Methods: We introduce CC-PROMISE as an integrated data analysis method that combines components of canonical
correlation (CC) and projection onto the most interesting evidence (PROMISE). For each gene, CC-PROMISE first uses
CC to compute scores that represent the association of two forms of molecular data with each other. Next, these
scores are substituted into PROMISE to evaluate the statistical evidence that the molecular data show a biologically
meaningful relationship with the endpoints.

Results: CC-PROMISE shows outstanding performance in simulation studies and an example application involving
pediatric leukemia. In simulation studies, CC-PROMISE controls the type | error (misleading significance) rate very near
the nominal level across 100 distinct null settings in which no molecular-endpoint association exists. Also, CC-PROMISE
has better statistical power than three other methods that control type | error in 396 of 400 (99 %) alternative settings
for which a molecular-endpoint association is present; the power advantage of CC-PROMISE exceeds 30 % in 127 of

the 400 (32 %) alternative settings. These advantages of CC-PROMISE are also observed in an example application.

Conclusion: CC-PROMISE very effectively identifies genes for which some form of molecular data shows a
biologically meaningful association with multiple related endpoints.

Availability: The R package CCPROMISE is currently available from www stjuderesearch.org/site/depts/biostats/

software.

Keywords: Integrated data analysis, Microarray, Sequencing, Projection onto the most interesting statistical
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Background

The advance of microarray and sequencing technologies
have empowered the scientific community to economi-
cally and rapidly collect multipe forms of molecular ‘omic’
data for large cohorts of patients. These molecular data
have provided intriguing insights into the development of
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many human diseases. Integration of molecular data with
clinical endpoints can also identify molecular features that
associate with disease prognosis. These exciting possibili-
ties continue to expand as researchers continue to collect
more comprehensive molecular data on a larger number
of research subjects for a growing number of diseases.
The exponential growth in data acquisition capacity
presents many opportunities and challenges in data anal-
ysis and interpretation. Innovative methods have been
developed to address several interpretational challenges
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such as how to discover and define disease subgroups

[1-3], define statistical significance [4—6] compute statis-
tical power for settings that involve thousands or even
millions of variables. Computational methods have been
developed to facilitate visualization and process data
rapidly without overwhelming technical resources.

Genome-wide association studies (GWAS) have
explored the association of one form of molecular data
with one clinical endpoint of interest. Typically, a GWAS
evaluates the association of each molecular feature with
one endpoint of interest and then adjusts the results for
multiple testing. GWAS studies and data analyses have
yielded many intriguing biological insights as enumerated
by the GWAS catalog (https://www.ebi.ac.uk/gwas/).

A natural extension of GWAS is to explore the associa-
tion of one form of molecular data with multiple biologi-
cally related endpoints. One way to do this is to perform
a GWAS analysis for each endpoint and then identify
genes that appear on each endpoint’s list of most signif-
icant results. This list overlap approach can occasionally
yield useful findings. However, in many applications, it is
impossible to identify any particular gene without relaxing
the significance threshold for the lists to the extent that
statistical rigor is undermined.

Projection onto the most interesting statistical evidence
(PROMISE) is an effective method to integrate one form
of molecular data with multiple endpoints [7, 8]. For each
molecular feature, PROMISE computes a composite asso-
ciation statistic and p-value that evaluates the association
of that feature with each endpoint. In this way, PROMISE
obtains one list of significant findings thereby avoiding the
problem of non-overlapping lists and improving statistical
power. PROMISE has been used successfully to evaluate
the association of multiple endpoints measuring thera-
peutic efficacy with SNP genotypes [8] or gene expression
[7] in pediatric leukemia.

Most recently, it has become commonplace to
collect multiple forms of molecular data (geno-
type, copy number, methylation, mRNA expression,
miRNA expression, etc) and multiple endpoints for a
cohort of patients. The Cancer Genome Atlas (can-
cergenome.nih.gov) and The Pediatric Cancer Genome
Project (www.pediatriccancergenomeproject.org) are
examples of research projects with multiple forms of
molecular data on a common set of subjects. These
data present the opportunity to better understand the
associations among molecular data and the associations
of the molecular data with the endpoints. Canonical
correlation (CC) is a classical method used to evaluate the
association of two multivariate data sets with one another
[9]. CC computes the maximally correlated pair of linear
combinations of the two data sets, the correlation of those
linear combinations, and a p-value for that correlation
statistic. The linear combinations define a pair of score
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values for each patient that represent each molecular
data set. Recent research has developed versions of
CC that impose sparsity to enhance interpretability of
results [10].

To gain the most accurate understanding from these
data, there is currently a need to develop methods
that effectively perform an integrated analysis of mul-
tiple forms of molecular data with multiple endpoints.
PROMISE effectively integrates one form of molecular
data with multiple endpoints; CC effectively integrates
two forms of molecular data with one another. Here,
we introduce CC-PROMISE as a method that combines
CC and PROMISE to effectively integrate two forms of
molecular data with multiple endpoints.

Methods

The CC-PROMISE method may be used to integrate any
two forms of quantitative high-dimensional molecular
data with multiple endpoints of diverse data types (quan-
titative, qualitative, censored time-to-event, etc). Here,
we present the method in terms of integrating methy-
lation and RNA expression data as a concrete example.
The CC-PROMISE method may be used to integrate other
forms of data, such as miRNA and mRNA expression
data.

Setting and notation for data

Suppose methylation and gene expression data have been
collected for each ofi = 1, ..., nsubjects.Letg =1,...,G
index the genes for which methylation and expression data
are available. For each gene g, let [, = 1,..., Ly index the
loci of markers for which methylation data are collected.
Note that the subscript g of /; and L is clear by context.
Thus, the subscript g will be omitted from [, and L, for
simplicity of notation. Let 1y, represent the methylation
of locus [ of gene g for subject i. Also, let f; = 1,...,F,
index the features of gene g for which expression data are
available. The subscript g of f; and F, will be omitted for
simplicity of notation. Let x,; represent the expression of
feature f of gene g for subject i. Also, suppose that we have
collected data on endpoints k = 1,. .., K for each subject.
Let yi; represent the value of endpoint k for subject i. A
glossary of the mathematical notation is available in the
Additional file 1.

Associate each methylation marker with expression feature
For each gene g, it is often interesting to explore the asso-
ciation of each methylation marker with each expression
feature. For each gene g, let ry; represent the observed
sample correlation and p, represent the true population
correlation of the expression xgf1, Xgf2, . . ., Xgfi, Of feature f
with the methylation mg1, mgp, . . ., mg, of locus [. Also,
let py be the p-value testing the null hypothesis Ho :
Pg = 0 that the true correlation pgp is zero.


https://www.ebi.ac.uk/gwas/
www.pediatriccancergenomeproject.org

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):382

Associate each endpoint with each expression feature

For each gene g, it is also interesting to explore the asso-
ciation of each expression feature with each endpoint.
Thus, for each endpoint k and each expression feature
f of gene g, compute a statistic ay,r that measures the
association of the expression xgr1, %412, . . ., %gs With the
endpoint Y1, ¥Yk2, - - - » Vkn- Well-established methods may
be used to compute the association statistic. For exam-
ple, assuming that the expression data are continuous
quantitative values, one may use Spearman’s correlation
to measure association of expression with a continuous
quantitative endpoint, Kendall’s T to measure association
of expression with an ordinal endpoint, ANOVA may be
used to measure association with a categorical endpoint,
and Cox regression modeling may be used to measure
association with a censored time-to-event endpoint. We
typically use rank-based statistics for endpoint associ-
ations due to their well-established robustness against
outliers and other forms of noise in the data. We also
use rank-based statistics in the example application below.
Nevertheless, our framework allows for other methods to
be utilized as appropriate for specific applications. The
statistical significance (p-value) may be computed using
those classical methods or via a permutation algorithm
described in subsection “Compute permutation p-values”.
It is important that the association statistics be repre-
sented on a common scale for many of the subsequent
analyses described below.

Associate each endpoint with each methylation marker
For each gene g, the association of each endpoint with
each methylation marker is performed in a very sim-
ilar manner as described immediately above. For each
endpoint k and each methylation marker [ of gene g,
compute a statistic agg that measures the association
of the methylation mg;, mgp, . . ., Mg, with the endpoint
Vi1, Vk2, - - -» Vkn- Again, classical methods may be used
here and all association statistics should be represented on
a similar scale.

Define the most interesting statistical evidence
Association statistics can be represented on a correlation-
like scale such that values of -1, 0, and +1 respectively
indicate a negative deterministic relationship, no associ-
ation, and a positive deterministic relationship between
two variables. On this scale, values of £1 clearly indicate
deterministic associations that are typically of greatest
biological interest. Thus, the values 1 may be considered
the most interesting statistical evidence for any particu-
lar statistic that measures association on a correlation-like
scale. Subsequently, the result a5 = +1 on a correlation-
like scale is the most interesting statistical evidence for
the association of each endpoint k with the expression of
feature f of gene g.
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In many applications, biological and mathematical rea-
soning may be used to define the most interesting statis-
tical evidence for the vector ag = {aig, ayy, - - ., agg} of
statistics that measure the association of each endpoint
k = 1,...,K with the expression of feature f of gene
g As described above, air = =+1 is the most interest-
ing statistical evidence for each endpoint k. Therefore,
the most interesting statistical evidence for a; must be
the set of 2K vectors of length K with entries +1. By
symmetry, the constraint ;s = 1 is imposed to reduce
consideration to a subset of 2K~ vectors. Now, suppose
that prior knowledge about the endpoints indicates that
only one of the remaining 2K~ vectors is biologically
interesting or plausible. For example, in the application
of subsection “Acute myeloid leukemia example’, all three
endpoints measure sensitivity of leukemia cells to the
chemotherapeutic agent cytarabine. Thus, the most inter-
esting statistical evidence for that application is observing
that expression of feature f of gene g has a determinis-
tic positive (or negative) association with drug sensitivity.
With these biological and mathematical considerations,
we let A = {A1, X2, ..., At} represent the most interesting
statistical evidence for the vector ay, for each feature f of
each gene g.

Analogous logic indicates that either +A or —A is the
most interesting statistical evidence for the vector of
statistics a;; = {aif, dap, - - ., agy} that measure associ-
ation of methylation with the endpoints. Again, insisting
on biological plausibility imposes a constraint on the
sign of A. In particular, the findings are plausible only
if the methylation-expression association, methylation-
endpoint associations, and expression-endpoint associa-
tions are concordant. Thus, sign(rg;)A is the most inter-
esting statistical evidence for the vector a;, that measures
the association of each endpoint k with the methylation at
each locus / of gene g.

Associate all endpoints with each expression feature
To explore the association of each expression feature f of
each g with all endpoints, we compute the projection onto
the most interesting evidence (PROMISE) statistic as

K

Lof = Z)\kﬂkgﬁ (1)
k=1

The magnitude of the PROMISE statistic Z,; measures
the evidence indicating that the associations with the indi-
vidual endpoints align with predefined most interesting
statistical evidence. The sign of the PROMISE statistic
indicates the direction of the vector of the associations rel-
ative to that of the most interesting statistical evidence.
Overall, the PROMISE statistic measures the discrepancy
between the observed associations and the global null
(all associations are zero) along the direction of the most
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interesting statistical evidence. The statistical significance
of the PROMISE statistic is determined by computing a
permutation p-value as described in subsection “Compute
permutation p-values”

Associate all endpoints with each methylation marker
Similarly, to explore the association of methylation marker
[ of each gene g with all endpoints, we compute the
PROMISE statistic

K
ty =) hrarg (2)
k=1

with an analogous interpretation. Likewise, significance
is determined by computing a permutation p-value as
described in subsection “Compute permutation p-values”.

Associate all endpoints with each pair of one methylation
marker and one expression feature

Next, to explore the association of all endpoints with each
pair (/, f) of a methylation marker / and expression feature
f of each gene g, we compute the combined PROMISE
statistic

t;zf = tyr + sign(rgy)iy. (3)

This statistic measures the discrepancy between the
observed association statistics and the global null (all asso-
ciations are zero) along the vector defining the most inter-
esting statistical evidence. The sign measures direction in
terms of the most interesting statistical evidence and the
magnitude measures cumulative weight of the evidence
against the global null. Statistical significance is deter-
mined by computing permutation p-values as described
in subsection “Compute permutation p-values” Here, we
choose an additive formula to define (3) for simplicity
of calculation and interpretation in terms of the rejec-
tions regions depicted in Fig. 1. Future research may find
that other mathematical definitions of a combined statis-
tic have better performance than the additive formula in
some applications.

Gene-level analyses

Subsections “Associate Each methylation marker with
expression feature — Associate all endpoints with each pair
of one methylation marker and one expression feature”
describe analyses performed at the level of individual
expression features and individual methylation markers.
To perform a gene-level analysis for each gene g, we
first perform canonical correlation analysis (CCA) on the
matrix M, of the methylation at all loci [, = 1,...,L4
and the matrix X, of the expression of each feature
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Je = 1,...,Fg. CCA computes the canonical correlation
coefficient 7, and formally tests the null hypothesis that
the canonical correlation is zero. In this way, CCA per-
forms a gene-level analysis that is analogous to the simple
feature-level correlation analysis of subsection “Associate
Each methylation marker with expression feature”.

CCA also computes a summary score for expression and
a summary score for methylation that may be used to per-
form gene-level analyses analogous to those described in
subsections “Associate each endpoint with each expres-
sion feature — Associate all endpoints with each pair
of one methylation marker and one expression feature”
Given the matrix X, of expression values for each subject

i = 1,...,n and each expression feature f, = 1,...,F,
and the matrix M, of methylation values for each subject
i = 1,...,n and each methylation marker [, = 1,...,Lg,

CCA determines the linear combinations of the columns
of the matrices that are maximally correlated. As a result,
CCA obtains the expression matrix linear combination
value x,; and the methylation matrix linear combination
value 771g; for each subject i = 1,. .., n. These linear com-
bination scores are variables that can be evaluated using
the methods of subsections “Associate each endpoint with
each expression feature — Associate all endpoints with
each pair of one methylation marker and one expression
feature” In particular, these analyses can be performed by
substituting the expression score values x,; for the indi-
vidual feature expression values xgy; into the framework of
subsections “Associate each endpoint with each expres-
sion feature and Associate all endpoints with each expres-
sion feature”, substituting the methylation score values
1y for the individual marker methylation values g into
the framework of subsections “Associate each endpoint
with each methylation marker and Associate all endpoints
with each methylation marker’, and finally substituting the
canonical correlation 7, for the simple correlation 7,4 into
the framework of subsection “Associate all endpoints with
each pair of one methylation marker and one expression
feature”

Compute permutation p-values

The statistical significance of the PROMISE statistic is
determined by a permutation procedure. The assignment
of endpoint data to the molecular data is permuted and
the test statistic recomputed many times. The p-value is
given by the proportion of permutation repetitions that
yield a PROMISE statistic with magnitude greater than or
equal to that of the observed PROMISE statistic. An adap-
tive permutation procedure [8] is used to reduce com-
puting time without compromising the statistical rigor of
the results. Briefly, let £y be the value of the observed
PROMISE statistic, let b index permutation repetitions,
and let ¢, be the PROMISE statistic observed from per-
mutation b. (In this section, other subscripts are omitted
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Fig. 1 Rejection Regions of PROMISE and List Overlap Methods. The figure illustrates the rejection regions defined by PROMISE and list overlap
methods for association of one genomic variable with two endpoint variables. The horizontal axis shows —log;(p) for association of the genomic
variable with one endpoint (Endpoint A) and the vertical axis shows —log; (p) for association of the genomic variable with the other endpoint
(Endpoint B). The dashed lines at 3 indicate the significance thresholds for —log;(p) obtained by using p = 0.001 as the threshold to declare
significance for association of one genomic variable with one endpoint. Thus, the list overlap method will only identify genomic variables with
—log;(p) in the top right corner. In contrast, PROMISE will identify genomic variables above and to the right of a diagonal line as significant. The
position of the PROMISE threshold line will vary from application to application, but will usually encapsulate the overlap region

for simplicity of notation because the same permutation
procedure may be used to compute permutation p-values
for any of the PROMISE statistics defined above.) In each
permutation b, the adaptive permutation procedure notes
whether £, > |to| or |£p] < |fp|. The procedure contin-
ues until By permutations obtain |£,| > |to| or a total of
B; permutations are performed. This allows the permu-
tation procedure to terminate early for genes that clearly
are not statistically significant. For example, if By = 100
of the first 200 permutations obtain |£,| > |fy|, the pro-
cedure stops to report a p-value of % = 0.50 instead of
continuing for 10,000 permutations to report a blatantly
insignificant p-value to four decimal places. In applica-
tions that involve exploring the association of many genes
with the endpoints, the adaptive permutation procedure
can reduce computing time by 99 % because typically
the vast majority of genes do not have a strong associa-
tion with the endpoint. The user may select the minimum
number of permutations By and B; to obtain the desired
computational efficiency and statistical rigor as described
by [8]. We use By = 100 and B; = 10,000 in the
simulations and application described below.

Conceptual comparison of promise with list-overlap
approaches

A very widely used method for integrated data analysis
simply identifies genes that appear on multiple lists of the
most significant hits from different data analyses. In other
words, the analysis identifies the overlap across multiple
lists of the most significant genes. This type of list overiap
approach is popular because it is simple and thus can be
used in a very broad spectrum of applications. It has been
used with success in several applications.

However, list overlap approaches have several statisti-
cal and practical limitations. Each list includes a set of
genes that exceed an arbitrary threshold for a test statis-
tic or p-value. It can be unclear what statistical properties
(false positive and false negative rates) are obtained for
various thresholds for those lists. In many cases, there
may be no overlap across lists even when each list has
a very liberal threshold that allows for a large false posi-
tive rate. Additionally, the genes will appear in a different
order on each list which often makes it unclear how to
derive a final ranking of the genes by strength of empirical
evidence.
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The PROMISE method overcomes these limitations
and brings many additional advantages over list overlap
approaches. The PROMISE method provides one compre-
hensive p-value for each gene or feature tested. In this way,
the genes are ranked by a common criterion with a clear
statistical interpretation in terms of a false discovery rate.
Also, with one PROMISE p-value per gene, the problem
of finding no genes occurs only when no gene meets the
chosen significance threshold for the PROMISE p-value.
Furthermore, previously described [7, 8] and illustrated
in Fig. 1, PROMISE provides better statistical power to
identify genes with effects on multiple endpoints than do
list overlap approaches. Finally, as shown in the simu-
lation studies below, the CC-PROMISE provides similar
benefits in the integrated analysis of two forms of high-
dimensional molecular data with multiple endpoints.

Results

Simulation studies

Data generation

We performed simulation studies to evaluate the sta-
tistical properties of CC-PROMISE, PROMISE, and list
overlap approaches as methods for integrated analysis of
two forms of molecular data and multiple endpoints. In
our simulations, for each subject we generated data for
K = 2 endpoints and one gene with M = 10 methy-
lation markers and F = 2 expression features. For each
subject i, data was generated in the following way. (Note
that the subscript i will be omitted for simplicity of nota-
tion because the same process is used for each subject
i.) The methylation m; of locus [ = 1 was generated
from a standard normal distribution. For the subsequent
loci [ = 2,...,10, the methylation values were generated
from the autoregressive relationship m; = B,,m;_1 + e
where e is a completely independent standard normal
variable. The expression values of the j = 1,2 expression
features were generated from the regression relationship
xj = Bxmj + e where again e is an independent stan-
dard normal variable. The two endpoints are generated
from a similar regression relationship y; = B,x; + e for
j = 1,2. We simulated 1,000 independent data sets for
each of the 500 settings defined by combinations of the
parameter values 8,, = —0.5,—0.3,0,40.3,+0.5, B, =
—-0.5,-0.3,0,+0.3,+0.5, By = —0.5,—-0.3,0,+0.3,+0.5,
and sample size n = 30,50, 100, 500. Note that 8, # 0
implies that expression and methylation are associated;
By # O implies that expression and the endpoints are
associated, and that methylation, expression; and the end-
points are all associated with one another when both 8, #
0and B, # 0.

Analysis methods
We applied several analysis methods to each simu-
lated data set. We performed a complete CC-PROMISE
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analysis (CCPR), an expression PROMISE (XPR) analy-
sis for expression-endpoint associations, a methylation
PROMISE (MPR) analysis for methylation-endpoint
associations, and the overlap of the methylation and
expression PROMISE (OVPR) analysis. The CCPR
analysis performed canonical correlation analysis to
compute one methylation score and one expression score
and used those scores to perform the joint PROMISE
analysis described in subsection “Gene-level analyses”
The XPR and MPR analyses each performed a feature-
or marker-level PROMISE analysis with or without
Bonferroni adjustment. The unadjusted expression
PROMISE (UXPR) analysis was based on the minimum
of the two feature-level p-values from the XPR analysis.
The adjusted expression PROMISE (AXPR) analysis was
based on the minimum Bonferroni-adjusted p-value from
the two tests. The unadjusted methylation PROMISE
(UMPR) and adjusted methylation PROMISE (AMPR)
analyses were analogously defined. Finally, we performed
an adjusted overalp (AOV) analysis based on the maxi-
mum of the AMPR and AXPR p-values and an unadjusted
overlap (UOV) analysis based on the maximum of the
UMPR and UXPR analyses. We did not consider single-
endpoint analyses in this simulation study because our
previous work has shown that overlaps among single-
endpoint analyses typically have much less power than
PROMISE in settings with related endpoints [7]. The
statistical reasons for this power difference are briefly
described in subsection “Conceptual comparison of
promise with list-overlap approaches” and in detail by [7].

Performance metrics

For each of the 500 settings, we record the proportion of
the 1000 simulated data sets for which the gene is declared
significant by each method. For the settings with 8, = 0,
the optimal performance is indicated by declaring signif-
icance for 1 % of the simulated data sets (Type I error
control). For other settings, better performance is indi-
cated by declaring significance for a greater proportion of
data sets (statistical power).

Simulation results

CCPR clearly showed the best performance in the simula-
tion studies (Fig. 2). Figure 2a shows the results for the null
setting with 8,, = B, = B, = 0 (no associations among
any variables) and » = 100 subjects. The unadjusted anal-
yses UMPR and UXPR have poor type I error control
while the other methods have adequate type I error con-
trol. Figure 2b shows the results for the non-null setting
with 8,, = Bx = By = 0.5 (strong associations among
methylation, expression, and endpoints) and # = 100 sub-
jects. In this case, the power of CCPR greatly exceeds
that of all other methods. These two settings are indica-
tive of most settings in our simulation study. Figure 2c
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Fig. 2 Simulation results. Panel a shows the probability of a significant p-value as a function of the p-value threshold of each method for the null
setting Bm = Bx = B, = 0 with n = 100 subjects. The legend of line color and styles indicate results for the indicated methods and provide the
result for the p-value threshold 0.01. The same line colors and styles are used in the other three panels. Panel b shows similar results for the non-null
setting Bm = Bx = B, = 0.5 and sample size n = 100. Panel ¢ shows the observed type | error rate for the methods with p-value threshold 0.01
across all 100 null settings with g, = 0 indicating the endpoints have no association with the molecular data. Panel d shows the statistical power of
the methods with adequate type | error rate control for the 400 non-null settings with 8, # 0 indicating that the endpoints are associated with at
least one element of the molecular data

shows the type I error control at the p = 0.01 thresh-
old for all 100 null settings in which the endpoints are
not associated with expression or methylation (8, = 0).
In all these null settings, UXPR and UMPR fail to show
adequate type I error control. Figure 2d shows the power
estimates for all 400 simulation settings in which the end-
point is associated with the molecular data (8, # 0). In
the vast majority of these non-null settings, the power
of CCPR greatly exceeded that of all other methods with
adequate type I error control. In 4 of the 400 (1 %) non-
null settings, the power of AMPR slightly exceeded that of
CCPR (Table 1). Complete simulation results are available
in the Additional files 2 and 3.

Acute myeloid leukemia example

To evaluate the practical utility of the CC-PROMISE
method, we applied it to a data set obtained from
participants of the multi-center AMLO2 clinical trial
[11](NCT00136084) for pediatric patients diagnosed with

acute myeloid leukemia. Our analysis considers three
endpoints that measure response of leukemic cells to
cytarabine. The LC50 endpoint is the dose of cytarabine
required to kill 50 % of a patient’s leukemic cells during
an in vitro exposure assay. The minimal residual disease
(MRD) is the proportion of cells that a flow cytome-
try assay identifies as leukemic in a bone marrow sam-
ple collected after the patient has completed one course
of chemotherapy including cytarabine. The event-free
survival (EFS) is the duration of time elapsed from study

Table 1 Four simulation settings in which the observed
empirical power of AMPR exceeded that of CCPR

n By Bx Bm CCPR Power AMPR Power
500 -0.5 +0.5 -0.3 0314 0.366
500 +0.5 +0.5 -0.3 0323 0381
500 +0.5 -0.5 +0.3 0.343 0.387
500 -0.5 -0.5 +0.3 0336 0.392
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enrollment (within days of diagnosis) until relapse, death,
development of a second malignancy, or other catas-
trophic failure of chemotherapy including cytarabine. The
vast majority of treatment failure events are relapses. As
described in subsection “Define the most interesting sta-
tistical evidence’, we used established methods to mea-
sure the association of molecular data with each endpoint
and defined the most interesting evidence as a pattern
of association statistics indicating greater expression was
associated greater sensitivity as measured by all three
endpoints. Additional details on the specific association
statistics and definition of the PROMISE statistic are avail-
able in the Additional file 4. Here, we describe the results
for HOXB6, a gene of well-established relevance to the
development and prognosis of AML [12, 13]. Complete
analysis results and their biological interpretation will be
reported elsewhere.

Figures 3 and 4 show the results for HOXB6. CC found
that methylation and expression were very strongly asso-
ciated with one another (;%C = 075 p = 36 x
10715 CC heatmap in Fig. 3). The complexity of the
methylation-expression association is not easily charac-
terized by the biological model that hypermethylation of
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the promoter suppresses expression. For instance, hyper-
methylation of a block of markers within the gene body
strongly associate with expression (Fig. 3). This finding
indicates that CC can help identify novel phenomenon
that are not characterized by existing biological models.
Increases in the HOXB6 expression CCA score were asso-
ciated with increased cytarabine resistance (PROMISE
t = —0.24, p = 0.00058) as indicated by association with
increases in LC50(p = 0.01, Fig. 4a), increases in MRD
(p = 0.0034, Fig. 4b), and reductions in EFS (p = 0.1038,
Fig. 4c). Also, decreases in the HOXB6 methylation CCA
score were associated with increased cytarabine resistance
(PROMISE ¢t = —0.25, p = 0.00031) as indicated by
association with increases in LC50 (p = 0.0254, Fig. 4d),
increases in MRD (p = 0.0021, 4e), and reduction in
EFS (p = 0.0204, 4f). Cumulatively, these results strongly
indicate that HOXB6 expression and methylation asso-
ciate with cytarabine response in AML (CC-PROMISE
t = —0.24, p = 0.00012).

Figure 5 shows that CC-PROMISE identifies more genes
as significant than does overlap of the methylation and
expression PROMISE analyses. A total of 46 genes were
identified as significant with p < 0.001 in both the

Methylation

Load
0.03

-0.03

Fig. 3 CC-PROMISE Results for HOXB6 in the AML Study. The four heatmaps provide information for each patient in one row and each variable in
one column. The leftmost 3-column heatmap provides endpoint data for each subject with values indicating cytarabine resistance in red, values
indicating cytarabine sensitivity in blue, intermediate values in purple, and missing values in gray. The large heatmap in the center provides
methylation data for each microarray marker with hypermethylation indicated by red and hypomethylation indicated by blue. The genomic
locations of the markers are indicated by the lines matching them to genomic position. The rightmost 2-column heatmap provides expression
values for each of two microarray probe-sets with greater expression indicated by red and lesser expression indicated by blue. The two-column
heatmap in the middle shows the values of the CC scores for methylation and expression with greater values indicated by red and lesser values
indicated by blue. The scores show a strong correlation, indicating a strong multivariate correlation between methyaltion and expression
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Fig. 4 Detailed Endpoint Association Results for HOXB6 in the AML Study. Panel a shows a boxplot of LC50 values according to dichotomization of
the CC expression scores by the median (low or high). Panel b shows the prevalence of undetectable MRD, low MRD, and high MRD according to
the dichotomized CC expression score. Panel € shows EFS according to the dichotomized CC expression score. Panels d, e, f provide analogous
results according to median-dichotomization of the CC methylation score

methylation PROMISE and expression PROMISE analy-
ses. CC-PROMISE identified 204 genes as significant at
the p < 0.001 level including all 46 genes identified
by overlap of the methylation PROMISE and expres-
sion PROMISE results. In this application, CC-PROMISE
achieved better statistical power than overlap of individ-
ual PROMISE analyses by defining a rejection region that
encompasses the overlap rejection region as described
in subsection “Define the most interesting statistical evi
dence” and illustrated in Fig. 1.

We recognize that experimental validation of the find-
ings is necessary, but are still confident that many of
the 204 genes identified by CC-PROMISE are biologically
meaningful. We expect using a p-value threshold of 0.001
for testing 11,620 genes to yield only 0.001 x 11,620 =
11.6 false discoveries. Thus, most of the 204 genes identi-
fied by CC-PROMISE are expected to be authentic discov-
eries. The p-values were computed by permutation, which

is widely recognized for rigorous control of Type I errors
(incorrect rejection of the null). Additionally, the p-values
of all three PROMISE analyses were computed using the
same set of permutations so all three methods were pro-
vided identical protection against Type I errors. Thus, it
is statistically meaningful that CC-PROMISE identified
more genes than did other methods.

Discussion and conclusion

Effective integrated data analysis methods are essential
to the success of biomedical research that collects multi-
ple forms of molecular data and multiple endpoints from
subjects. Simplistic list overlap approaches have been
used successfully in some studies. However, it is clear
that the statistical limitations of list overlap approaches
will impede the success of other studies. Therefore, it is
imperative that the scientific community develop and rou-
tinely apply innovative methods for integrated analysis of
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Methylation PROMISE

Expression PROMISE

Fig. 5 CC-PROMISE Identifies More Genes than Does Overlap of Expression PROMISE and Methylation PROMISE. The figure shows a scatterplot of
the signed log o (p) statistics from the expression PROMISE and methylation PROMISE for each of 11,620 genes with methylation and expression
data. The gray rectangles capture the 46 genes significant at p < 0.001 by both expression PROMISE and methylation PROMISE. The points colored
in red correspond to the 204 genes identified as significant at the p < 0.001 level by CC-PROMISE

multiple forms of molecular data with multiple clinical
endpoints.

Projection onto the most interesting statistical evidence
(PROMISE) is an effective method to integrate one form
of molecular data with multiple clinical endpoints. The
PROMISE method is a statistically rigorous and robust
method that overcomes many of the limitations of widely
used list-overlap approaches. Here, we use canonical cor-
relation analysis and PROMISE to develop CC-PROMISE
as an effective method for integrating two forms of molec-
ular data with multiple clinical endpoints. In our sim-
ulation studies and example application, CC-PROMISE
shows similar benefits relative to list-overlap approaches.

In subsection “Define the most interesting statistical

evidence’, this work provides the first algorithmic pro-
cedure to determine the coefficients A of the endpoint
association statistics that define a PROMISE statistic. This
provides one method to objectively define the PROMISE
statistic for future applications. In some other applications
involving the PROMISE statistic, the selection of coeffi-
cients in the PROMISE statistic has been arbitrary. Still,
defining coefficients that accurately characterize the true
biological associations of the endpoints to one another is

a critical element of successfully using PROMISE to make
authentic biological discoveries in practice. Therefore,
further research should develop and evaluate methods to
define the coefficients in a biologically meaningful and
objective manner.

There are several other opportunities to explore in
future research. One direction that is very closely related
to this work would be to extend the PROMISE framework
to integrate multiple endpoints with more than two forms
of molecular data. Some methods that generalize canoni-
cal correlation analysis to analysis of more than two mul-
tivariate data sets [14, 15] may be useful building blocks
for such approaches. Another interesting direction would
be to develop methods that use the data to empirically
define coefficients for defining the PROMISE statistic. It
may also be worthwhile to develop methods based on
fundamentally different conceptual frameworks for inte-
grated data analysis such as formal joint modeling of
multiple forms of genomic data [16]. Such joint-modeling
methods are mathematically elegant and incorporating
biological knowledge of endpoint-endpoint relation-
ships may provide substantial practical and statistical
benefits.
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Additional files

Additional file 1: This PDF file provides a notation glossary in tabular
form. It provides notation and interpretation of most of the mathematical
symbols used in the manuscript. (PDF 60 kb)

Additional file 2: This PDF file provides plots of the probability of
significance as a function of the p-value threshold for all seven analysis
methods in each of the 500 simulation settings. The plots have a similar
interpretation as those in Fig. 2. (PDF 1263 kb)

Additional file 3: Each row of this table provides power estimates for each
method in one simulated setting. The columns labeled setting, n, beta.y,
beta.x, and beta.m provide the setting index number, the sample size n,
and the values of the parameters By, By, and B, respectively. (XLSX 41 kb)

Additional file 4: This PDF file provides technical details regarding the
CC-PROMISE analysis performed for the example application involving
pediatric acute myeloid leukemia described in subsection “Acute myeloid
leukemia example”. Details include description of the specific association
statistics used for each molecular data set and each endpoint, the
coefficients used in the analysis, and the number of permutations
performed. (PDF 266 kb)
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