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Abstract

A meteorological drought refers to reduced rainfall conditions and is a great challenge to

food security. Information of a meteorological drought in advance is important for taking

actions in anticipation of its effects, but this can be difficult for areas with limited or sparse

ground observation data available. In this study, a meteorological drought indicator was

approached by applying the Standardized Precipitation Index (SPI) to satellite-based precip-

itation products from multiple sources. The SPI based meteorological drought analysis was

then applied to Java Island, in particular to the largest rice-producing districts of Indonesia.

A comparison with ground observation data showed that the satellite products accurately

described meteorological drought events in Java both spatially and temporally. Meteorologi-

cal droughts of the eight largest rice-producing districts in Java were modulated by the natu-

ral variations in El Niño and a positive-phase Indian Ocean Dipole (IOD). The drought

severity was found to be dependent on the intensity of El Niño and a positive-phase IOD that

occurs simultaneously, while the duration seems to be modulated more by the positive-

phase IOD. The results demonstrate the potential applicability of satellite-based precipita-

tion monitoring to predicting meteorological drought conditions several months in advance

and preparing for their effects.

Introduction

In Indonesia, various regions have reported drought events indicated by a scarcity of surface

water [1, 2], which may be followed by depletion of the shallow groundwater table [3] and

reduced crop productivity [4, 5]. These events are mainly induced by the high seasonality of
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the rainfall, which is particularly erratic for regions located farthest south from the Equator

such as Java, Nusa Tenggara, and the southern parts of Sumatra, Kalimantan, and Papua [6, 7].

Drought events in Indonesia are closely related to global climate phenomena, particularly El

Niño [6, 8] and the Indian Ocean Dipole (IOD) [8]. The strong El Nino 1997/1998 impacted

on the declining 1998 paddy harvest in Indonesia by 3.6 percent below 1997 and 6 percent

below the 1996 harvest, due to the worst drought in that decade, according to the FAO report

[9]. Also during 2015 and early 2016, a strong El Niño has suppressed rainfall over a wide part

of the Indonesian archipelago. Rainfall in Indonesia’s prime rice growing areas on the islands

of Java, Sumatra, Sulawesi, and Kalimantan has been erratic and deficient, forcing farmers to

delay planting well beyond the optimal period during the wet season which traditionally runs

from October through April [10]. A strong El Niño may also induce intense fires in forest and

peatland areas [11] that cause transboundary haze or smoke. There is a need for sustained

monitoring and accurate forecasting of meteorological conditions to anticipate and minimize

the negative effects of drought events.

Droughts can be classified as meteorological, agricultural, hydrological, or socioeconomic.

At present, Indonesia has no services that provide comprehensive drought information to the

public. The Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) only

provides a meteorological drought warning service. A meteorological drought refers to a tem-

porary reduction in the amount of precipitation compared to the average [12, 13]. The degree

of the drought is determined according to the ratio between the amount of precipitation and

the amount considered normal for that period, and the duration is determined by how long

the dry condition persists. A meteorological drought affects the agricultural sector by causing a

groundwater deficit, which can result in crop failure, and reducing the water reserves of dams

available for irrigation. If a meteorological drought persists, a hydrological drought may occur,

which is defined as a reduced supply of surface water and groundwater and is based on the

measured water levels of rivers, reservoirs, lakes, and groundwater [14]. BMKG defines a mete-

orological drought as an area experiencing dry conditions for a certain time due to reduced

precipitation or a longer dry season than normal, and it issues warnings based on the number

of consecutive days without rain (i.e., dry spell) and prediction of a low precipitation amount.

Predicting dry spells is very important because they have a major influence on agriculture,

especially rice production [15, 16]. Prolonged dry spells can reduce the yield [17] and even the

overall rice production [18]. Dry spells are the most sensitive indicator of the effect of El Niño

on Indonesia [19].

BMKG monitors for dry spell based meteorological droughts on a 10-day timescale, which

is complemented by daily dry spell monitoring derived from near-real-time the daily precipita-

tion product estimated from Global Satellite Mapping of Precipitation (GSMaP). However, the

utilization of available multisource or selected satellite precipitation products is an ongoing

challenge that needs to be addressed to improve the comprehensiveness, speed, and accuracy

of drought information services in the spatial and temporal domains. Using satellite products

for near- and post-real-time precipitation estimation can greatly improve the quality of

drought analysis. Several high-resolution precipitation products derived from meteorological

satellites with worldwide coverage have recently become freely available in near real time with

a horizontal resolution of 0.05˚–0.25˚ [20–23]. These include Tropical Rainfall Measuring Mis-

sion (TRMM) and its successor Global Precipitation Measurement (GPM), GSMaP, Climate

Hazards Group InfraRed Precipitation with Stations (CHIRPS), and Precipitation Estimation

from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record

(PERSIANN-CDR).

Several studies have evaluated satellite products for the best fit to ground observations of

precipitation and meteorological drought. CHIRPS showed the closest agreement to rain
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gauge data compared with PERSIANN-CDR and TRMM for the Bundelkhand region of cen-

tral India [24]. PERSIANN-CDR and CHIRPS were found to be more accurate than TRMM

for meteorological drought monitoring of Chile in South America [25]. PERSIANN-CDR per-

formed better than CHIRPS for semiarid regions of Brazil [26]. GPM, GSMaP, and PER-

SIANN were all found to offer reliable near-real-time meteorological estimation of data-sparse

regions in Iran [27]. Climate Prediction Center Morphing Method (CMORPH) outperformed

TRMM and Integrated Multisatellite Retrievals for Global Precipitation Measurement

(IMERG) for daily estimation of the precipitation in the Yellow River basin of China, while

GSMaP and CHIRPS performed the worst. These satellite products have demonstrated an

acceptable accuracy compared to rain gauge data in some areas of Indonesia, although there

have been some difficulties and differences, particularly in the representation of extremely

heavy rain conditions [28–31]. CHIRPS was found to correlate well with rain gauge data from

six meteorological stations installed by BMKG with a correlation coefficient of 0.70–0.86 [32].

CHIRPS outperformed GSMaP and IMERG at assessing the monthly precipitation of Bali

Island [31]. TRMM performed better than Asian Precipitation–Highly-Resolved Observa-

tional Data Integration Towards Evaluation (APHRODITE) for the Pemali–Comal River

basin [33].

In this study, we analyse a meteorological drought indicator that applies the widely used

Standardized Precipitation Index (SPI) to precipitation products from multiple satellite data

sources. This differs from currently available where the SPI is calculated based on sparse sur-

face observation data. The evaluation of multi-source SPI with El Niño and IOD simulta-

neously is expected to provide a better, optimal, and more accurate representation and

understanding of meteorological drought events in the study area. We used the SPI based

meteorological drought indicator to evaluate the satellite precipitation products against

ground observation data for Java Island, with a focus on eight of the 10 largest rice-producing

districts as the national food barn of Indonesia. These eight largest rice-producing districts are

located in Java Island, namely Karawang, Subang, Indramayu that are located in West Java

Province, Cilacap, Grobogan, Sragen are located in Central Java. Ngawi and Lamongan are

located in East Java Province (Fig 1). The paddy fields and rice yields of the eight districts in

2019 are shown in Table 1. In these regions, rice is cultivated mostly in lowland areas, with

crops typically being irrigated, well watered and heavily fertilized. Rainfed rice fields that only

rely on rainwater are also found in this area. Water-related disasters, such as flood and

drought, will negatively affect rice production areas and yields, which can threaten food secu-

rity. A study by Pratiwi et al. (2020) revealed that in Central Java, the 2014 flood event affected

94,306 hectares (ha) paddy fields, while drought in 2015 affected 82,324 ha paddy fields [10].

The eight districts still have a relatively low density of rain gauges and other surface meteo-

rological observation networks. Accurate information and forecasting of meteorological

drought conditions for these districts is fundamental for food security by allowing counter-

measures to be performed early in advance. This study may also help address the effects of cli-

mate change on Java, which has experienced a continuous decrease in precipitation during the

dry season over the last three decades (1981–2010) [35].

Data and methods

Data

We used monthly precipitation estimated from four datasets covering Java with similar spatial

resolutions. Three datasets were satellite-based precipitation products: CHIRPS, TRMM, and

PERSIANN. The Southeast Asia Observational Dataset (SA-OBS) was used to validate the
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satellite products. Table 2 summarizes the datasets, their resolutions, and time covered. The

datasets are briefly described below.

Climate Hazards Group Infrared Precipitation with Stations. CHIRPS is a satellite

product with multiple data sources [36] that is available at high resolution (0.05˚ × 0.05˚) and

Fig 1. Study area: Java Island and the eight districts of the largest rice producer in Indonesia as the region of interest. The greener areas on the map indicate

paddy fields of the region of interest.

https://doi.org/10.1371/journal.pone.0260982.g001

Table 1. The rice fields and yields of the eight districts in 2019 [34].

District Rice (Paddy) Fields (ha) Rice Production (tones-brutto) Unhulled Rice Production (tones-netto)

Indramayu 215.731 1.376.429,68 789.657,71

Karawang 185.807 1.117.814 641.290

Subang 156.298,50 942.932 540.960

Lamongan 140.463,58 839.724 481.750

Ngawi 122.500,97 777.190 445.874

Grobogan 136.209,59 772.521 443.196

Sragen 111.569,05 766.012 439.461

Cilacap 439.461,26 699.965 401.570

https://doi.org/10.1371/journal.pone.0260982.t001
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a long time series from 1981 to the present [37]. Regional evaluations have shown that estima-

tions using CHIRPS agree well with ground observations from local gauge networks, which is

promising for drought monitoring [38]. In this study, we used the CHIRPS v.2 Global Monthly

dataset for the period March 1981–January 2021. The CHIRPS dataset used in this study is

obtained from https://data.chc.ucsb.edu/products/CHIRPS-2.0/.

Tropical Rainfall Measuring Mission. TRMM has three types of data products: orbital

(also known as swath), gridded, and TRMM-related (e.g., ancillary products, ground-based

instrument products, TRMM and ground observation subsets, and field experiment products)

[39]. In this study, we used a gridded data product: the TRMM (TMPA) 3B43 V7 Monthly

dataset for the period March 1998–January 2020. TMPA 3B43 is a widely used dataset because

of its high spatial and temporal resolutions. The latest version (Version 7) includes a uniform

data reprocessing and calibration scheme and a single use of Global Precipitation Climatology

Centre monthly rain gauge analysis, which improves the accuracy compared to previous ver-

sions [30]. The TMPA 3B43 dataset used in this study is downloaded from https://disc.gsfc.

nasa.gov/mirador-guide.

Precipitation Estimation from Remotely Sensed Information using Artificial Neural

Networks. PERSIANN is based on geostationary infrared imagery and daytime visible imag-

ery. This system was first developed in 2000, and it estimates surface precipitation rates based

on local cloud texture characteristics by using infrared images with an artificial neural network

(ANN) [40, 41]. The ANN generates global precipitation for the latitudes of 60˚ S to 60˚N in

two steps: an automatic clustering process is applied to transforming infrared (wavelength of

10.2–11.2 μm) images into a hidden layer to form a self-organizing feature map (SOFM); then

the discrete SOFM clusters in the hidden layer are made continuous [42, 43]. The PERSIANN

dataset used in this study is downloaded from https://chrsdata.eng.uci.edu/.

Southeast Asia Observational Dataset. SA-OBS is a newly available high-resolution

land-only gridded dataset for Southeast Asia. It provides the daily precipitation amount and

daily minimum, mean, and maximum temperatures. It was developed by BMKG and the

Royal Netherlands Meteorological Institute (KNMI) with the aim of providing an observa-

tional basis against which model results can be compared [44]. SA-OBS can be compared

against existing gridded datasets based either on a less dense network of stations covering the

same area or on satellite data where the interpretation of infrared and microwave signals as

precipitation or temperature has limited accuracy, such as APHRODITE [45, 46], CMORPH

[47], and TRMM [48]. We used a SA-OBS dataset with a regular 0.25˚ × 0.25˚ grid resolution

for the period of January 1981–December 2017. The dataset is available freely for research pur-

poses and can be downloaded from https://sacad.database.bmkg.go.id/.

We also used monthly data from the Oceanic Nino Index (ONI) and Dipole Mode Index

(DMI) to monitor the activities of the El Niño–Southern Oscillation (ENSO) in the Pacific

Ocean and the IOD in the Indian Ocean. The ONI was obtained from the National Weather

Service Climate Prediction Center (https://origin.cpc.ncep.noaa.gov/), while the DMI was

retrieved from the Global Climate Observing System (https://psl.noaa.gov/).

Table 2. Summary of the datasets used in this study.

Data source Temporal resolution Spatial resolution Time period

CHIRPS Monthly 0.05˚ × 0.05˚ January 1981–January 2021

TRMM Monthly 0.25˚ × 0.25˚ January 1998–January 2020

PERSIANN Monthly 0.25˚ × 0.25˚ March 2000–April 2021

SA-OBS Monthly 0.25˚ × 0.25˚ January 1981–December 2017

https://doi.org/10.1371/journal.pone.0260982.t002
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Methods

We used the SPI to determine meteorological drought conditions in the study area. The SPI is

commonly used for meteorological drought analysis and can be calculated for various time

scales to evaluate not only the water supply in the short term but also the available water

resources in the long term [49, 50]. McKee et al. developed the SPI in 1993 based on their

understanding that a precipitation deficit has different effects on the groundwater, reservoir

storage, soil moisture, snowpack, and streamflow [12, 51]. The SPI is computed by measuring

precipitation anomalies at a given location, which are identified by comparing the observed

total precipitation with the long-term historical record for a period of interest (e.g., 1, 3, 12, or

48 months) [52]. The historical record is fitted to a gamma probability distribution, which is

then transformed into a normal distribution such that the mean SPI for the given location and

period is zero. The SPI is calculated as follows [49]:

xms ðtÞ ¼
Xg

i¼g� sþ1
xðiÞ; g ¼ 12ðt � 1Þ þm ð1Þ

where x is the monthly precipitation series, t is the yearly index, and m is a specific month

(e.g., January, February).

For a given location, a rainfall deficit (i.e., meteorological drought) occurs when the SPI is

less than –1.0, while excess rainfall occurs when the SPI is greater than 1.0 (Table 3). Because

the SPI is given in units of standard deviation from the long-term mean, it can be used to com-

pare precipitation anomalies for any geographic location and any number of timescales. In this

study, we used the 3-month (SPI-3) and 6-month (SPI-6) timescales. SPI-3 compares the pre-

cipitation over a specific 3-month period with the precipitation over the same 3-month period

for all years included in the dataset; it reflects short- and medium-term moisture conditions

and provides a seasonal estimation of precipitation, which is useful for evaluating the available

water supply for primary agricultural regions [53]. Similarly, SPI-6 compares the precipitation

over a specific 6-month period with the precipitation over the same 6-month period for all

years included in the dataset. SPI-6 indicates seasonal to medium-term trends in precipitation

and may also be associated with anomalous streamflows and reservoir levels depending on the

location and time of year [53, 54].

In this study, we calculated the SPI by using the open-source module Climate and Drought

Indices in Python (https://climate-indices.readthedocs.io/en/latest/) [55]. All SPI analyzes and

plots were performed using the open source platform NCAR Command Language (https://

www.ncl.ucar.edu) [56] and R (https://www.R-project.org) [57], while the selected paddy field

areas and study domain were drawn using ArcGIS (https://www.esri.com) [58].

Table 3. Drought severity based on SPI values [53].

2.0+ Extremely wet

1.5 to 1.99 Very wet

1.0 to 1.50 Moderately wet

−0.99 to 0.99 Near normal

−1.0 to −1.50 Moderately dry

−1.5 to −1.99 Severely dry

−2 and less Extremely dry

https://doi.org/10.1371/journal.pone.0260982.t003
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Results

Accuracy of the satellite products at describing precipitation climatology

Fig 2 shows the annual total precipitation (left), mean monthly precipitation during the peak

of the rainy season (middle), and mean monthly precipitation during the dry season (right) of

Fig 2. Comparison of the annual total precipitation (left), mean monthly precipitation in the rainy season (middle), and mean monthly precipitation in the dry

season (right) over the study area according to 20 years of climatological data from CHIRPS, TRMM, PERSIANN, and SA-OBS. The rainy season corresponds to

December, January, and February (DJF); the dry season corresponds to June, July, and August (JJA). Dots on the map indicate the largest rice-producing districts of

Indonesia.

https://doi.org/10.1371/journal.pone.0260982.g002
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Java according to the satellite products (CHIRPS, TRMM, PERSIANN) and observational

dataset (SA-OBS) for 2001–2020. We analyzed the original datasets without ocean masking or

changing the horizontal resolution. The three satellite products returned similar and compara-

ble results for the total annual precipitation that agreed with SA-OBS; in general, West Java

was wetter than other parts of the study area. CHIRPS and TRMM accurately described the

parts of the study area with the highest precipitation intensity (>3200 mm/year): the southern

part of West Java and central part of Central Java. However, PERSIANN did not return to

such a high intensity. These parts of the study area with a high annual precipitation are domi-

nated by highlands or mountains. PERSIANN also showed a wider distribution of precipita-

tion over the study area but failed to describe the parts with the highest precipitation. TRMM

also identified a different location with the highest precipitation: the southern part of West

Java. In general, the precipitation tended towards areas close to the sea. Seven of the rice-pro-

ducing districts had an annual precipitation of 2000–2510 mm/year, while Cilacap received

even more. The variation in annual precipitation is generally determined by the precipitation

variations at the peaks of the rainy and dry seasons. The peak of the rainy season is defined as

the months with the highest precipitation intensity and frequency. In contrast, the peak of the

dry season is defined as the months with the smallest reduction in the precipitation amount

and frequency. For Java, the peaks of the rainy and dry seasons are typically December–Febru-

ary (DJF) and June–August (JJA), respectively.

During the peak of the rainy season, almost all of the datasets indicated that the central

mountainous part of Central Java had the highest precipitation intensity in the study area.

PERSIANN slightly differed by indicating a wider distribution area. CHIRPS, TRMM, and

SA-OBS showed good agreement on the precipitation distribution for the study area, with par-

ticularly strong agreement between CHIRPS and SA-OBS. During this period, the eight rice-

producing districts generally received about 251–400 mm/month of precipitation.

At the peak of the dry season, the precipitation intensity for the entire study area was gener-

ally 0–151 mm/month. All datasets indicated that West Java was wetter and East Java was drier

with varying spatial distributions. PERSIANN and SA-OBS agreed on the dry conditions of

East Java, while CHIRPS and TRMM indicated slightly wetter conditions. CHIRPS, TRMM,

and SA-OBS agreed on the wetter conditions of West Java. All rice-producing districts in West

Java and Cilacap received monthly precipitation of about 100 mm/month, while rice-produc-

ing districts in eastern Central Java and East Java experienced very low monthly precipitation

of<51 mm/month. The peak of the rainy season corresponds to December, January, and Feb-

ruary (DJF); the peak of the dry season corresponds to June, July, and August (JJA).

Accuracy of the satellite products at describing drought events: Spatial and

temporal domains

In Java, drought conditions are generally influenced by El Niño and a positive-phase IOD.

Drought events strongly affect agricultural productivity in Java. We needed to determine the

reliability of satellite-based precipitation products at describing the spatial and temporal distri-

butions of drought events. As an example, we applied the SPI to describe the spatial distribu-

tion of drought conditions in Java for a drought event that occurred in mid-2015 that was

caused by a strong El Niño in the Pacific Ocean and positive-phase IOD in the Indian Ocean.

Fig 3 shows the SPI-3 results for the spatial distribution of the meteorological drought event in

June (left), August (middle), and October (right). All datasets showed that the drought started

from the western part of Java in June. CHIRPS and SA-OBS agreed that the drought was uni-

formly distributed in West Java, but TRMM and PERSIANN indicated that the drought was

more concentrated on the north shore. SA-OBS had high absolute values for SPI-3 of less than

PLOS ONE Satellite-based meteorological drought indicator to support food security in Java Island

PLOS ONE | https://doi.org/10.1371/journal.pone.0260982 June 3, 2022 8 / 20

https://doi.org/10.1371/journal.pone.0260982


−2.4 in some parts of the study area while the surrounding parts had SPI values of more than

−1.2. SA-OBS had blank SPI-3 values for some parts of the study area, which was attributed to

a possible lack of observations for that time. No significant drought was detected in Central

Java and East Java in June. The largest rice-producing districts in West Java and the western

part of Central Java were affected by meteorological drought conditions based on the SPI

being between −1.2 and −2.0 (moderately to very dry). All datasets showed a gradual spatial

expansion of intense meteorological drought conditions toward the east of the study area in

August and October. The SPI values of TRMM, PERSIANN, and SA-OBS indicated that very

dry conditions had spread over almost all of Java by August, including the eight largest rice-

producing districts, and extremely dry conditions (below −2) had spread in some parts of

West Java by October. Because of its higher spatial resolution, CHIRPS gave a smoother

Fig 3. SPI-3 derived from CHIRPS, TRMM, PERSIANN, and SA-OBS for June (left), August (middle), and October 2015 (right) during the drought event due

to the 2015–16 El Niño. Dots on the map indicate the largest rice-producing districts of Indonesia.

https://doi.org/10.1371/journal.pone.0260982.g003
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distribution than the other datasets. SA-OBS returned a rougher distribution in some areas

because of the sparse observational data.

Similar to Figs 3 and 4 presents the spatial distribution of SPI-6 values over Java for June

(left), August (middle), and October 2015 (right). Compared to CHIRPS and TRMM, SA-OBS

and PERSIANN indicated drier conditions in June, while all datasets indicated a comparable

expansion of drought conditions in August. From June, SA-OBS indicated moderate to very

dry conditions (SPI-6 of −1 to −2) over the western half of Java and extremely dry conditions

(SPI-6 of less than −2) in Central Java. All datasets indicated that the meteorological drought

had worsened over all of Java by October. Moreover, most of the eight largest rice-producing

districts were suffering from the meteorological drought with very dry to extremely dry condi-

tions. The occurrence of an El Niño appears to trigger anomalies in the river flow and reservoir

Fig 4. Six-month SPI (SPI-6) derived from CHIRPS, TRMM, PERSIANN, and SA-OBS for June 2015 (left), August 2015 (middle), and October 2015 (right)

during the drought event due to the 2015–16 El Niño. Dots on the map indicate the largest rice-producing districts of Indonesia.

https://doi.org/10.1371/journal.pone.0260982.g004
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levels of the study area 5–6 months later; this can be used as an early warning for the agricul-

tural sector to take action against potential drought events.

The reliability of the satellite products also needed to be evaluated in the temporal domain

to determine the suitability of the SPI as a tool for drought monitoring. We focused on the

drought characteristics for the eight largest rice-producing districts of Java: Karawang, Subang,

and Indramayu in West Java Province; Cilacap, Grobogran, and Sragen in Central Java Prov-

ince; and Ngawi and Lamongan in East Java Province. Fig 5 depicts the time series of the

monthly precipitation (left) and SPI-3 (right) of these districts grouped by province: West Java

(top), Central Java (middle), and East Java (bottom). The monthly precipitation and SPI-3

were derived from CHIRPS (blue line), TRMM (green line), PERSIANN (red line), and

SA-OBS (black line). The time series were obtained for all available periods covered by

the datasets. In general, the four datasets showed similar evolutions and variations in precipita-

tion and drought conditions for all locations. Differences were observed in the monthly

Fig 5. Time series for the monthly precipitation (left) and SPI-3 (right) of the eight largest rice-producing districts in Java grouped by province: West Java (top),

Central Java (middle), and East Java (bottom). The monthly precipitation and SPI-3 were determined from CHIRPS (blue), TRMM (green), PERSIANN (red), and

SA-OBS (black).

https://doi.org/10.1371/journal.pone.0260982.g005
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precipitation intensity; for example, TRMM or PERSIANN sometimes indicated a higher or

lower monthly precipitation intensity than the other datasets. Consequently, SPI-3 values from

TRMM and PERSIANN sometimes indicated drier or wetter conditions than the other data-

sets. For certain locations (e.g., West Java and Central Java), PERSIANN sometimes exhibited

large deviations or even the opposite trend from the other datasets, which may be due to its

algorithms.

For a quantitative view, Fig 6 evaluates the accuracy of the monthly precipitation and SPI-3

derived from satellite products in terms of their proximity to the observational data, which is

indicated by the correlation R and root mean square (RMSE). We assumed that the SA-OBS

dataset is the ground truth and validated the satellite products against them. The satellite prod-

ucts were concluded to be valid if the data distribution was centered or converged to the 1:1

reference line, and the slope of the regression line closely fit the reference line. We only used

the period of 2001–2017 so that all datasets could be compared on the same basis. CHIRPS

and TRMM showed higher correlations with SA-OBS than PERSIANN with R values of 0.82

and RMSE around 0.7 for the monthly precipitation and>0.6 for SPI-3. For a longer time win-

dow (1998–2017), CHIRPS had a higher correlation a lower RMSE to SA-OBS than TRMM

(not shown).

Meteorological drought characteristics in the study area

As noted previously, drought in Indonesia has traditionally been related to global climate phe-

nomena, particularly the ENSO in the Pacific Ocean. However, research on the relation of

drought to the IOD is still limited [8]. Fig 7 presents a parallel time series of the ONI and DMI

showing the significance of the ENSO and IOD, respectively, as inter-annual climate drivers of

the precipitation variability in Indonesia. We wanted to determine if a temporal relationship

exists between variations in monthly precipitation and SPI-3 and these phenomena that can be

used as an indicator of meteorological drought. We built a multisource averaged SPI from

individual SPIs derived from CHIRPS, TRMM, PERSIANN, and SA-OBS. Most of the individ-

ual SPIs showed good agreement, except for those from PERSIANN for the last part of the

time series. The multisource averaged SPI showed that severe meteorological droughts always

occurred in conjunction with a strong El Niño or positive-phase IOD. Strong El Niño events

(ONI> +2) occurred in 1982–83, 1997–98, and 2015–16. Other El Niño events were weak or

moderate. These strong El Niño events were always followed by meteorological drought events

that could be extreme. The peaks of these extreme droughts occur simultaneously with the

peaks of ONI with no time lag. The seasonal precipitation patterns persisted even though the

intensity was lower than usual during these events. Meteorological droughts with very dry con-

ditions also occurred in 1987, 1992, 1994–95, 2007, and 2015 following weak to moderate El

Niño events. The meteorological droughts in response to weak and moderate El Niño events

did not occur simultaneously, and the droughts were moderately to very dry. In 1992, the very

dry condition showed a stronger correlation with the IOD timeline rather than El Niño, which

peaked later.

For the SPI results, the colored bar shows the average from multiple sources, and the lines

show the values derived from individual datasets: CHIRPS (blue), TRMM (green), PERSIANN

(red), and SA-OBS (black). For each time series, the vertical orange solid line indicates a year

with El Niño, and a vertical light-blue line indicates a year with La Niña. The horizontal gray

dashed lines indicate the levels of ENSO (top), precipitation (middle), and SPI (bottom).

Interestingly, the 2015 drought event only reached very dry conditions even though a

strong El Niño took place at the time. The positive-phase IOD was not very strong for this

event, so the meteorological drought did not reach extremely dry conditions as in the cases of
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Fig 6. Scatterplot of the regional pooled precipitation (left) and SPI-3 (right) for 2001–2017. CHIRPS, TRMM,

and PERSIANN were each plotted against SA-OBS.

https://doi.org/10.1371/journal.pone.0260982.g006
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Fig 7. Time series of the Oceanic Nino Index (ONI) and Dipole Mode Index (DMI) for climate events during 1981–2020

(top), the monthly precipitation derived from all datasets (middle), and SPIs (bottom). For the SPI results, the colored bar

shows the average from multiple sources, and the lines show the values derived from individual datasets: CHIRPS (blue),

TRMM (green), PERSIANN (red), and SA-OBS (black). For each time series, the vertical orange solid line indicates a year with

El Niño, and a vertical light-blue line indicates a year with La Niña. The horizontal gray dashed lines indicate the levels of

ENSO (top), precipitation (middle), and SPI (bottom).

https://doi.org/10.1371/journal.pone.0260982.g007

PLOS ONE Satellite-based meteorological drought indicator to support food security in Java Island

PLOS ONE | https://doi.org/10.1371/journal.pone.0260982 June 3, 2022 14 / 20

https://doi.org/10.1371/journal.pone.0260982.g007
https://doi.org/10.1371/journal.pone.0260982


the El Niño events in 1982 and 1997. On the other hand, an extreme meteorological drought

occurred in 2019, even though the El Niño had returned to neutral and was previously weak.

The severe 2019 drought showed a stronger correlation with the positive-phase IOD, which

was the strongest event according to historical records. It seems that the drought severity

depends on the intensity of El Niño and positive-phase IOD occurring simultaneously, while

the time phase seems to be modulated by the positive-phase IOD.

To summarize these results, the scatter and density plot between the averaged multisource

SPI against the ENSO and IOD indices is shown in Fig 8. The linear correlation is then

assessed within the three-class conditions according to SPI-based indicators: dry, normal, and

wet. As expected, the dry condition has positive relations with the positive index of the ONI

and DMI, with a slope of 0.07 and 0.09, respectively. For wet conditions, the effect of negative

ONI (La Niña) is more significant than the effect of DMI. Moderate to very dry drought condi-

tions consistently occur in the ONI and DMI threshold >0.5. Also, the intensity of wet and

Fig 8. Scatter and density plot of the (A) Oceanic Nino Index (ONI) and (B) Dipole Mode Index (DMI) against SPI classified as dry, normal, and wet conditions.

The SPI and its classification are determined from the averaged multiple source SPI as in Fig 7.

https://doi.org/10.1371/journal.pone.0260982.g008
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dry SPI is not necessarily linear related to the magnitude of ONI and DMI. Both ONI and

DMI have a significant role in the variability of the SPI during normal conditions.

Discussion

In this study, we showed that the SPI-based meteorological drought indicator derived from

satellite products may be applied to drought monitoring with more detail, wider coverage, and

a faster timescale than ground observations. The multi-sources SPI-based meteorological

drought indicator described well the relation of meteorological drought characteristics in Java

island with El Niño and positive-phase IOD. This adds to a better understanding of the role of

the Indian Ocean on drought variability in the study area. Several previous studies have char-

acterized the Java Island drought which is influenced by El Niño in the Pacific Ocean [7, 8].

The use of satellite based-SPI as a meteorological drought has been used widely in many

regions and many climatic zones. Suliman et al. in his study revealed a good consistency in SPI

time series estimated using remotely sensed precipitation data and ground stations data, with

the TRMM as the champion for monitoring droughts in different climatic zones of Iraq [59].

Not only a single source of satellite-based estimated rainfall, it is also possible to combine

multi sources into merged satellite precipitation datasets [60]. A study by Rahman et al. (2021)

found significantly improved performance of merged satellite d in monitoring the meteorolog-

ical drought [59].

If the SPI or other meteorological drought indicators can be used to predict drought condi-

tions in the next 3 months, then they can be used by the agricultural sector to anticipate and

prepare for drought events in the near future. The satellite-based precipitation products can be

utilized to predict future conditions including patterns, trends, and seasonal influences for

water resource management at different timescales [60, 61]. This may be very useful for farm-

ers, who need to make decisions on their planting strategies while accounting for the possibil-

ity of meteorological droughts that can progress to agricultural droughts. This is also

important for water management authorities when estimating the water supply and planning a

distribution strategy. The proposed satellite-based meteorological drought indicator can help

farmers secure their economic livelihood and help the government guarantee food security.

For example, rice production can be maintained by improved water management from several

reservoirs and cloud seeding in anticipation of predicted meteorological drought events.

Conclusion

SPI-based meteorological drought indicator was applied to multiple sources of satellite precipi-

tation products for the largest rice-producing districts of Java, for which ground observations

were still insufficient. The results showed that satellite products can be used to accurately

describe the spatial and temporal distributions of meteorological drought events in the study

area. A comparison with the ground observation dataset (SA-OBS) showed that the CHIRPS

and TRMM had better correlations than PERSIANN of up to 0.6. Meteorological drought

characteristics in the study area were shown to be strongly dependent on the variations in El

Niño and the positive-phase IOD. The drought severity depends on the intensities of El Niño

and positive-phase IOD occurring simultaneously, while the time phase seems to be modu-

lated by the positive-phase IOD. Our results indicate the potential applicability of satellite-

based precipitation monitoring to predicting meteorological drought events several months in

advance, something valuable for an early warning. Further research is still needed to improve

the satellite products accuracy by bias correction implementation, as well as investigating the

time lag of meteorological drought which will have an impact on causing agricultural drought
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in the study area. If this is provided, it will be very useful as a decision-making tool for farmers

and the government to take action early.

The SPI can also be used to indicate wetness in the study area, which seems to be influenced

by inter-annual climate variability in the Pacific Ocean and Indian Ocean (i.e., La Niña and

negative-phase IOD), although these appear to have different temporal characteristics com-

pared to meteorological droughts. Another study is needed to discuss this topic as it is outside

the scope of the present study.
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