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Abstract: Volatile organic compounds (VOCs) are commonly found in indoor spaces (e.g., homes or
offices) and are often related to various illnesses, some of them with carcinogenic potential. The ori-
gins of VOC release in the indoor environment are in office products, building materials, electron-
ics, cleaning products, furniture, and maintenance products. VOC removal can be done based on two
types of technologies: adsorption in specific materials and decomposition via oxidative processes.
The present article reports the development and photocatalytic activity of two heterostructures
(Cu2S/WO3 and Cu2S/SnO2) used for indoor air decontamination. The acetaldehyde removal rate
is discussed in correlation with the S-scheme mechanisms established between the heterostructure
components but also comparatively with the bare catalysts’ activity. Acetaldehyde was considered as
a VOC reference because it was found by the International Agency for Research on Cancer to be one
of the most frequent air toxins with potential carcinogenic effects. The samples contained monoclinic
WO3, tetragonal SnO2, and orthorhombic Cu2S crystalline structures. The Cu2S crystallite size in
the heterostructure varied from 75.9 to 82.4 Å, depending on the metal oxide substrate. The highest
photocatalytic efficiency (75.7%) corresponded to Cu2S/SnO2, with a constant rate of 0.106 s−1

(which was three times faster than WO3 or SnO2 and seven and a half times faster than Cu2S).

Keywords: photocatalysis; semiconductors; heterostructure; S-scheme mechanism; acetaldehyde;
air decontamination

1. Introduction

The development of urban areas and industrial activities has significantly decreased
indoor and outdoor air quality. Volatile organic compounds (VOC) are commonly found
in indoor spaces (home or office) and are often related to various illnesses, some of them
with carcinogenic potential [1–3]. The origins of VOC release in the indoor environment
are in office products, building materials, electronics, cleaning products, furniture and
maintenance products. VOC removal can be done based on two types of technologies:
adsorption in specific materials and decomposition via oxidative processes [4–6]. The ad-
sorption technique is able to capture the pollutant molecules into the sorbent media in
a stable form because of the formation of chemical or physical bindings. This method is
commonly used in office spaces but has as disadvantages the fast sorbent saturation and
removal capability [7,8]. Additionally, the increase in air flow rate or temperature will
induce VOC desorption and environmental re-contamination. After saturation, the sorbent
must be carefully treated and disposed in special containers, considering the contaminant’s
hazard potential [9,10].

The decomposition processes use oxidation techniques: photocatalysis, ozonation, or
plasma-driven oxidation [11–13]. The photocatalytic air decontamination has the advantage
of being activated by the light energy reaching the catalyst surface. Consequently, the pro-
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cess can be designed to be energy sustainable because of the use of sunlight or low-
energy-consuming light sources. In this case, the catalyst must be a material with high
receptivity to both UV and vis spectra. The catalysts are represented by a single component,
tandems/heterostructures, or composite materials, which can be activated by the photon
absorption with energy equal or higher than the band-gap value [14–16]. Single catalysts
such as TiO2 [17], WO3 [18], ZnO [19], SnO2 [20], and CuInS2 [21] show important lim-
itations in terms of reduced light absorbance, fast electron-hole recombination, or low
chemical stability in the working environment. Composite materials (graphene/ZnO,
textiles/TiO2, fly ash/semiconductors, etc.) combine both photocatalytic and absorbance
processes and usually exhibit high removal efficiencies [22–24]. The main issue is related
with the incomplete decomposition of the absorbed pollutant, which has the potential to be
released in the environment. Finally, the heterostructures such as TiO2/CuInS2 (CIS) [25],
TiO2/WO3 [26], SnO2/ZnO [27], or ZnO/WO3 [28] have the advantage of using an ex-
tended light spectra, a reduced charge recombination, and the ability to generate a high
quantity of oxidative radicals.

Using innovative materials such as cellulose particles [29], graphene-based nanoma-
terials and zeolite [30] with high VOC adsorbent capacity represents another approach
for gas pollutant removal. These types of adsorbents can reduce their capacity when they
reach the saturation point or the adsorption equilibrium. The photocatalytic oxidation of
VOCs is a difficult process, and the decomposition pathways and efficiencies depend on
various reaction conditions. The humidity is a very important factor influencing VOCs’
degradation [31]. High concentrations of water vapor in the working environment are
beneficial to the photocatalytic oxidation of VOCs because of the increase in hydroxyl
radical development, acting as an oxidizing agent on the surfaces of the photocatalytic
materials [32]. However, water molecules and VOC molecules can compete for filling the
adsorption active sites, which reduce the photocatalytic efficiency [33].

The present article reports the development and photocatalytic activity of two het-
erostructures (Cu2S/WO3 and Cu2S/SnO2) used for indoor air decontamination. The ac-
etaldehyde removal rate is discussed in correlation with the Z-scheme mechanisms es-
tablished between the heterostructure components but also comparatively with bare pho-
tocatalyst activity. The influence of the crystalline structure, morphology, and surface
composition was also investigated. The results indicated that a facile chemical route proce-
dure can be employed to obtain efficient photocatalytic heterostructures able to work in
the removal of toxic pollutants.

2. Materials and Methods
2.1. Heterostructure Development

Three mono-component and two heterostructures were obtained by the sol-gel tech-
nique as follows:

(i) WO3 powder was prepared by adding tungsten hexachloride (WCl6, 99.8%, Acros Or-
ganics, Geel, Belgium) in a solvent composed of 2-propanol (100%, Sigma Aldrich, Munich,
Germany) and ethanol (100%, Sigma Aldrich, Munich, Germany). The above composition
was stirred for 140 min until a light yellow solution was formed. The gel formed after the
slow addition of 0.21 mol natrium hydroxide (99.98%, Honeywell, Charlotte, NC, USA).
The precipitate was centrifuged, and the resulting powder was thermally treated for 7 h at
450 ◦C.

(ii) SnO2 powder was obtained by dissolving tin tetrachloride (SnCl4, 99.7%,
Sigma Aldrich, Munich, Germany) in absolute ethanol (100%, Sigma Aldrich, Munich,
Germany). A white solution was obtained after 120 min of stirring at 40 ◦C. Then, the 0.18 mol
of sodium hydroxide (99.98%, Honeywell, Charlotte, NC, USA) was added drop by drop
until the gel was formed. The resulting precipitate was centrifuged and the powder was
annealed for 5 h at 500 ◦C.

(iii) Cu2S powder was obtained from an aqueous solution containing 0.3 mol of
copper nitrate (Cu(NO3)2, 99.9%, Scharlau, Barcelona, Spain) and 0.5 mol of sodium thio-
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sulfate (Na2S2O3, 99.9%, Scharlau, Barcelona, Spain). The gel was formed after 30 min of
stirring and kept in the dark for 6 h to achieve the complete precipitation. After centrifu-
gation, the powder containing intermediary compounds based on CuS2O3 and Cu2S2O3
was thermally treated at 140 ◦C in a ceramic capsule containing a sulfured (sulfur, 99%,
Sigma Aldrich, Munich, Germany) atmosphere. The ceramic capsule was inserted into a fur-
nace (Nabertherm, Lilienthal, Germany) containing an Ar atmosphere (Linde, Dubline, Ire-
land). The low-oxygen-content atmosphere during the thermal treatment is a pre-requisite
to ensure the Cu2S stoichiometry.

(iv) The Cu2S/WO3 powder heterostructure was prepared based on the same proce-
dure as described for Cu2S. The WO3 powder was inserted into a copper nitrate precursor
considering the Cu:W atomic ratio of 1:1. The sample was annealed at 140 ◦C for 2 h.

(v) The Cu2S/SnO2 powder heterostructure was obtained by adding the SnO2 powder
into the copper nitrate solution, and the stirring period was increased up to 1 h. The Cu:Sn
atomic ratio was 1:1, and the final powder was thermally treated for 3 h at 150 ◦C.

2.2. Photocatalytic Experiments

The photocatalytic activity of the mono-component and the heterostructures was
tested into a cylindrical quartz air-proof photoreactor (Sigma Aldrich, Munich, Germany).
Firstly, the photoreactor was filled with dry air using a continuous flow rate for 30 min.
Secondly, the photoreactor containing 0.05 g of catalyst was injected with 150 ppm ac-
etaldehyde (Linde, Dubline, Ireland). The mixture was kept in the dark for 2 h to reach
the absorption equilibrium. Finally, the quartz photoreactor was uniformly irradiated
with a UV source (0.08 mW/cm2, 280–400 nm) for 12 h, in order to ensure that photons
were evenly distributed on the catalyst surface. The changes in acetaldehyde and car-
bon dioxide concentrations were recorded by gas chromatography (GC-2014, Shimadzu,
Maryland, CO, USA).

2.3. Characterization

The formation of the crystalline structure was identified by X-ray diffraction (XRD)
analysis made with a Rigaku Miniflex X-Ray diffractometer (Tokyo, Japan) using a Cu
Kα source (I = 1.54 Å, 40 kV, 100 mA). The mono-components’ and heterostructures’
morphology was investigated by field emission scanning electron microscopy (FESEM,
SU8010, Fukuoka, Japan) with an accelerated voltage of 25 kV and high-vacuum scanning
electron microscopy (SEM, Hitachi model S–3400 N type 121 II, Tokyo, Japan). Both devices
were able to investigate the surface elemental composition of the samples. The irradiation
source was tested with a class-A high-precision pyranometer (SR11, Hukselflux, Berlin,
Germany), and the acetaldehyde degradation was evaluated with gas chromatography
(GC-2014, Shimadzu, Maryland, CO, USA).

3. Results and Discussions
3.1. Composition and Morphology

The diffraction investigations are presented in Figure 1. Table 1 contains the aver-
age crystallites size evaluated based on each XRD samples pattern. The results indicate
that all mono-component samples contained the crystalline structure corresponding to
the designated semiconductor. Monoclinic WO3 (ICCD 83-0951), tetragonal SnO2 (ICCD
41-1445), and orthorhombic Cu2S (ICCD 20-0365) were formed after the power thermal
treatments followed the particular parameters presented in Section 2. The metal oxides presented
higher crystallite sizes (93.8 Å for WO3 and 81.5 Å for SnO2) comparatively with Cu2S (64.7 Å),
where milder thermal conditions were used to avoid sulfur sublimation [34–36]. The benchmark
samples preserved the stoichiometry of the envisaged compounds that would constitute
the basis of heterostructure catalysts and the substrate for Cu2S development. The het-
erostructures both contained the crystalline structure of the specific components, but the
Cu2S crystallite size was influenced by the addition of the metal oxide into the synthesis
precursor. Consequently, the Cu2S developed a higher crystallite size in the presence of
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WO3, where the space limitation restriction was lower than that of SnO2. These results
are similar with other reports [37–39] indicating the Cu2S will use the highest energy
sites, which were, in this case, the metal oxide particle, as preferential nucleation points.
The WO3 exhibited the larger crystallite sizes, which favor the Cu2S growth mechanism
and the formation of extensive component interfaces. The SnO2 induced space limitation
but had no negative influence on the nucleation process. Even if there were no indications
on the formation of other components because of ion diffusion, this process cannot be
excluded considering that they may have been in an amorphous state [40–42].
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Figure 1. X-ray diffraction (XRD) patterns of the mono-component and heterostructure samples.

Table 1. Photocatalysts’ crystallite size values evaluated based on the Scherrer formula.

Photocatalyst
Crystallite Size (Å)

Cu2S WO3 SnO2

WO3 - 93.8 -
SnO2 - - 81.5
Cu2S 64.7 - -

Cu2S/WO3 82.4 92.6 -
Cu2S/SnO2 75.9 - 82.6

The SEM analysis presented in Figure 2 indicates that the mono-component samples’
morphology was severely influenced by the sol-gel synthesis parameters. The metal oxides
exhibited dispersed particles, because of the use of an alcoholic precursor,
inducing the gel formation during the sodium hydroxide slow addition. The high an-
nealing temperature and NaOH concentration favored the formation of WO3 particles with
sizes varying from 0.5 to 2 µm. The use of a lower NaOH concentration and a shorter an-
nealing treatment would induce the formation of small SnO2 particles with an average size
of 200 nm. The aqueous precursor employed for Cu2S synthesis allowed the formation of
large aggregates composed of particles with sizes varying from 0.5 to 3 µm. As described by
Beneto et al. [43], the heterostructures’ morphology is influenced by the insertion of metal
oxide particles, which serve as a Cu2S-growing substrate. Cu2S/WO3 showed a dense
morphology containing particles with various shape and sizes combined in a relatively
compact assembly. The Cu2S development was done on small and uniformly distributed
SnO2, allowing the formation of a closely connected network with large cavities that can be
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used as photoactive sites during the acetaldehyde decomposition [44,45]. The metal oxides
had a higher Brunauer-Emmett-Teller (BET) surface area (36.8 m2/g for WO3 and 44.2 m2/g
for SnO2) compared with the copper sulfide (21.4 m2/g) component. The heterostructures
used the metal oxides as substrates for Cu2S development, which would influence the
overall active surface during the photocatalytic activity. Consequently, the Cu2S/SnO2
exhibited a larger BET surface area (41.5 m2/g) than that of Cu2S/WO3 (32.6 m2/g).
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Figure 2. Scanning electron microscopy (SEM) images of the photocatalysts: (a) WO3, (b) SnO2, (c) Cu2S, (d) Cu2S/WO3,
and (e) Cu2S/SnO2.

The elemental composition evaluation was done based on energy-dispersive X-ray
spectroscopy (EDS) measurements undertaken during the morphology investigations,
and the results are presented in Table 2. The investigation was influenced by the bulk
composition as the penetration index could not be limited to the surface layer. The sam-
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ples’ photocatalytic activity depended mostly on the homogenous surface composition,
considering that the acetaldehyde removal is an interface-dependent process [46,47]. The re-
sults were compared with the theoretical values calculated based on the compounds’ sto-
ichiometry identified by the diffraction analysis. The metal oxides’ mono-component
samples exhibited oxygen excess due to the oxygen atmosphere used for the annealing
treatment. However, the Cu2S benchmark showed a sulfur deficit, which was consistent
with other studies [48–50] indicating the tendency of sulfur sublimation during the thermal
treatment. The sublimation was significantly reduced by the low thermal temperature
treatment and Ar environment around the capsule. Additionally, the presence of a small
amount of oxygen in the Cu2S sample indicates the possible formation of amorphous
copper oxide, which was not found by XRD measurements. The heterostructure anal-
ysis indicated that the atomic ratio between the metals was preserved as presented in
the synthesis method. However, a deficit of oxygen and sulfur was identified in both
heterostructure compositions, which was due to the metal oxide’s partial coverage with the
Cu2S component. Defect formations, such as vacancies or interstices, were highly expected
based on the EDS results and can influence the overall photocatalytic activity.

Table 2. Average surface atomic composition of the photocatalysts by energy-dispersive X-ray
spectroscopy (EDS).

Sample
Elemental Composition (% at)

Cu Sn W O Oth 1 S Sth 1

WO3 - - 23.2 76.8 69.6 - -
SnO2 - 31.4 - 68.6 62.8 - -
Cu2S 71.5 - - 3.7 - 24.8 35.7

Cu2S/WO3 17.7 - 16.8 57.6 50.4 7.9 8.8
Cu2S/SnO2 24.8 - 23.1 41.3 46.2 10.8 12.4

1 Theoretic content calculated based on the stoichiometry.

3.2. Photocatalytic Activity and Mechanism

The photocatalytic activity was performed using a hermetic quartz photoreactor and
a catalyst dosage of 0.05 g for 150 ppm acetaldehyde. The acetaldehyde and CO2 concen-
tration evolutions during the experiments were evaluated and are presented in Figure 3a,b.
The differences between CH3CHO removal and CO2 production can be explained by the
by-product formations (such as C2H2O4, CH2O, etc.), which were not quantified during the
experiments. The samples were uniformly irradiated from all sides, using an UV irradiance
of 0.08 mW/cm2. The absorption equilibrium was reached after keeping the samples in
the dark for 2 h. In the next 12 h, the samples were irradiated and evaluated hourly, in the
first 4 h, and at 2 h intervals for the remaining period. Acetaldehyde was considered as a
VOC reference because it was found by the International Agency for Research on Cancer
to be one of the most frequent indoor air toxins with potential carcinogenic effects [51,52].
The photocatalytic acetaldehyde removal efficiency was calculated considering the initial
(C0) and final (C) concentrations based on Equation (1):

η =

[
(C0 − C)

C0

]
× 100 (1)

The mono-component samples exhibited low photocatalytic properties with a max-
imum 32.3% acetaldehyde removal efficiency for SnO2 and a minimum acetaldehyde
removal efficiency of 17.9% for Cu2S. The WO3 sample exhibited a 22% acetaldehyde re-
moval efficiency after 12 h of irradiation and the photocatalytic activity remain stable after
3 cycles. In the same photocatalytic testing condition, TiO2 showed a maximum acetalde-
hyde removal efficiency of 15% [53], which is similar with bare Cu2S. Another study [54]
showed that using composite sheets of titanium dioxide (TiO2) and an adsorbent ny-
lon film with a 0.5–5.0% mass ratio is possible to remove 250 ppm acetaldehyde after
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240–300 min irradiation with UV (80 µW/cm2). Titania can be doped with Fe using chemi-
cal vapor deposition and thermal treatment at 750 ◦C [55]. The photocatalytic experiments
were done at different relative humidities (0%, 30%, and 60%), and the results indicated
that the acetaldehyde removal efficiency was facilitated by the water vapor’s content.
The complete oxidation of acetaldehyde was gradually enhanced with increasing humidity.
Commercial TiO2 was combined with TaS2 to study the photocatalytic degradation of
gaseous acetaldehyde [56]. The second component, TaS2, provided two merits: (i) a higher
adsorptive capacity of gaseous acetaldehyde compared with TiO2 and (ii) a better sepa-
ration efficiency of charge carriers. The system was able to remove 98% of acetaldehyde
using vis light as an irradiation source.
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Figure 3. Photocatalytic activity of the mono-component and heterostructure samples: (a) acetaldehyde removal, (b) CO2

formation, (c) kinetic evaluation, and (d) long stability tests.

The photocatalytic activity increased significantly when heterostructures were in-
volved. The maximum photocatalytic efficiency was obtained for Cu2S/SnO2 (75.7%),
with lamellar morphology allowing cavity formation and a multi-scattering effect.
The Cu2S/SnO2 heterostructure reached 67.2% acetaldehyde removal efficiency, which is
consistently higher than that of bare catalysts. The kinetic evaluation presented in Figure 3c
was done based on the Langmuir–Hinshelwood model, which considers the concentration,
the time (t), and the constant rate (k) in the following equation:

ln C = ln C0 − kt (2)
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The results indicate a superior constant rate corresponding to the heterostructures’
photocatalytic activity, compared with mono-component samples. The Cu2S/SnO2 ex-
hibited an acetaldehyde degradation rate three times higher than that of WO3 or SnO2
and seven and a half times higher than that of Cu2S. The increase in the photocatalytic
performance by developing active heterostructure may be the key for fast VOC removal
from indoor spaces. The long-term stability tests presented in Figure 3b indicate small
changes of the photocatalytic properties after three cycles, excepting the Cu2S sample,
which showed a significant reduction in the photocatalytic activity between the second
and third cycle. However, when coupled with metal oxides in heterostructures, the Cu2S
exhibited good stability as the exposed liquid-catalysts interface was composed of metal
oxides and sulfides.

The photocatalytic activity enhancement corresponding to the Cu2S/SnO2 and Cu2S/WO3
heterostructures was elucidated by studding the mechanism behind the pollutant mineral-
ization. The production of oxidative species (HO·, ·O2

−) required charge carriers’ transition
and migration, which was based on the photon energy conversion during the irradiation.
The development of a band energy diagram consisted in evaluating the experimental band-
gap values of each component forming the heterostructure and is presented in Figure 4b–d.
The methodology is in good agreement with the literature [57,58], considering that the
band-gap heterostructures values shift because of the internal energy field. The evaluation
of the energy band position, presented in Figure 4a, includes the integration of several
parameters such as the free electron energy vs. hydrogen (Ee), the absolute cationic elec-
tronegativity (χcation), the semiconductor electronegativity (χsemiconductor), and the specific
cationic electronegativity χcation (P.u.), where P.u. represents the Pauling units and band
gap energy (Eg), into Equations (3)–(6).

EVB = χsemiconductor − Ee + 0.5Eg (3)

ECB = EVB − Eg (4)

χsemiconductor(eV) = 0.45 × χcation(eV) + 3.36 (5)

χcation(eV) =
χcation(P.u) + 0.206

0.336
(6)

During the light irradiation, the photogenerated electrons originating from the Cu2S
conduction band (−0.41 eV) would be transferred to SnO2 (+0.54 eV) or WO3 (+0.52 eV)
conduction bands. Owing to their potential, the photoinduced electrons from SnO2 and
WO3 conduction bands (CB) cannot produce ·O2

−, and the photoinduced holes from the Cu2S
valence band (+0.93 eV) cannot be involved in ·OH generation. These charge carriers cannot be
used in the acetaldehyde photocatalytic degradation and will recombine [59–61]. The useful
photogenerated electrons from the Cu2S conduction band (−0.41 eV), and the photogen-
erated holes from SnO2 (+3.94 eV)/WO3 (+3.42 eV) valence bands, possessed a stronger
redox ability. Consequently, these charge carriers can be efficiently separated by the electric
field formed in the charged space region. The synergy between the combined drift and
diffusion effect would promote the transfer of photogenerated charge carriers through the
heterostructure semiconductor components [62–65]. This behavior was attributed to the
Z-scheme mechanism able to efficiently convert the photon energy in order to produce the
charge carriers involved in the development of (super)oxidative species. The Cu2S/SnO2
heterostructure benefits from the higher SnO2 conduction band potential required for
charge separation and generation of ·OH radicals. Additionally, the Cu2S/SnO2 had a
higher BET surface area, which increased the interfacial contact with the pollutant gas
where the acetaldehyde decomposition takes place.
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4. Conclusions

A simple sol-gel procedure was employed to produce three mono-components (WO3,
SnO2, and Cu2S) and two heterostructure (Cu2S/WO3 and Cu2S/SnO2) photocatalysts.
The metal oxides were used as nucleation sites for Cu2S development during the synthesis.
The samples contained monoclinic WO3, tetragonal SnO2, and orthorhombic Cu2S crys-
talline structures. The Cu2S crystallite size in the heterostructures varied from 75.9 to 82.4 Å,
depending on the metal oxide substrate. The Cu2S/WO3 morphology was characterized
by a compact assembly of particles with various sizes and shapes. The surface elemental
composition indicated that both heterostructures exhibited an oxygen and sulfur deficit,
compared with the stoichiometric composition.

The photocatalytic removal of acetaldehyde was done using a 0.08 mW/cm2 UV
irradiance. The heterostructures had a significantly higher photocatalytic activity compared
with the bare samples. The Cu2S/SnO2 and Cu2S/WO3 followed a Z-scheme mechanism
allowing the efficient use of charge carriers with a stronger redox ability. The highest
photocatalytic efficiency (75.7%) corresponded to Cu2S/SnO2, with a constant rate of
0.106 s−1 (which was three times faster than WO3 or SnO2 and seven and a half times faster
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than Cu2S). The use of the Z-scheme-mechanism heterostructures can improve the photon
energy conversion and reduce the useful charge carrier recombination. The results indicate
that the heterostructures containing Cu2S have a better stability of the photocatalytic
activity compared with the bare Cu2S. The main issues were represented by the necessity
to increase the photocatalytic efficiency in the presence of a wider light spectrum (UV
and vis). Future work will investigate the optimization of heterostructure composition for
sunlight applications.
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