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Abstract: As relationships mature, partners share common goals, improve their ability to work 
together, and experience coordinated emotions. However, the neural underpinnings responsible 15 
for this unique, pair-specific experience remain largely unexplored. Here, we used single nucleus 
RNA-sequencing to examine the transcriptional landscape of the nucleus accumbens (NAc) in 
socially monogamous prairie voles in peer or mating-based relationships. We show that, 
regardless of pairing type, prairie voles exhibit transcriptional synchrony with a partner. Further, 
we identify genes expressed in oligodendrocyte progenitor cells that are synchronized between 20 
partners, correlated with dyadic behavior, and sensitive to partner separation. Together, our data 
indicate that the pair-specific social environment profoundly shapes transcription in the NAc. 
This provides a potential biological mechanism by which shared social experience reinforces and 
strengthens relationships. 
 25 
 

Main Text: 
Social bonds are shaped through the continuous integration of shared experiences, resulting in a 
mutual understanding that is critical for successfully navigating real-time interactions and 
achieving long-term collaboration. Yet how a pair is able to coordinate their behavior has been a 30 
long-standing question in social neuroscience. Non-invasive human research has repeatedly 
highlighted interbrain neural synchrony – the alignment of oscillatory neural activity between 
individuals – as an emergent property of social interaction (1, 2). Interbrain synchrony scales 
with relational closeness, and is associated with enhanced empathy, liking, rapport, and prosocial 
behavior (3–9). In animal models, neural synchrony has been observed during acute social 35 
interaction (9, 10), decision making in social dominance tests (8), and cooperation tasks (11). 

While neural synchrony may initially arise from real-time interpretation of the same stimuli, its 
strengthening between individuals in a close relationship likely reflects aligned cognitive 
processing, even in the absence of shared cues (12). In the absence of shared cues, neural 
synchrony and organized intra-pair behavior must rely on pre-existing, common biological 40 
substrates that prime neurons to fire synchronously. This underlying state is likely achieved 
through shared prior experiences that have altered cell states in the same way across individuals. 
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Thus, we would expect this shared biological state to emerge as a product of social experience 
with another individual. In prairie voles, correlation in cFos expression – a molecular marker of 
neuronal activity – emerges between partners in some brain regions within the first 24 hours of 
pairing (13). Further, in pairs of fighting betta fish, brain-wide gene transcription becomes more 
correlated between partners, but not between non-partners, as the duration of fighting increases 5 
(14). 

In the present study, we investigated if a pair-specific global transcriptional state exists in the 
context of different types of social bonds. To determine whether a pair-specific signature exists 
in the nucleus accumbens (NAc), a ventral striatal region extensively implicated in social bonds 
and important for reward, learning, and action selection, we performed single nucleus RNA-10 
sequencing (snRNA-seq) of the NAc in prairie voles. In contrast to the vast majority of single 
cell (sc)/snRNA-seq studies to date, rather than pooling samples, we sequenced the NAc from 
each vole individually. This provided a unique opportunity to assay gene-behavior correlates at 
the individual level and query intra-pair transcriptional synchrony. We leveraged this approach 
to compare within-pair transcriptional synchrony to across-pair synchrony as a powerful internal 15 
control. Together, this experimental design interrogates intra-pair similarity that is not simply a 
consequence of a general housing environment, sex, or bonding state in voles more broadly. 

Prairie voles form selective affiliative relationships with peers or with a mate, akin to human 
friendships and romantic relationships, respectively (15, 16). We identified distinct gene modules 
that underpin individual variation in bond-related behaviors in different sexes/relationship types. 20 
Using machine learning and more traditional analytical approaches, we further found that voles 
were more transcriptionally similar to their relationship partner than other voles regardless of sex 
or pairing type, which we refer to as transcriptional synchrony. We then show that synchronized 
gene expression is correlated with pairwise interaction behavior and highly sensitive to partner 
loss. Our data are the first to identify a potential cell-level molecular mechanism underlying 25 
organized intra-pair patterns of neural activity (e.g. synchrony) and behavior, providing novel 
insights into how pair-specific behaviors may be reflected at a cellular level. 

Prairie vole NAc transcriptional landscape across relationship types 

We used snRNA-seq to identify cell type-specific NAc expression patterns that support long-
term social bonds using prairie voles. As in humans, peer and mate relationships in this species 30 
share many behavioral features, with reproductive behaviors predominantly exhibited within 
mate relationships. To examine transcriptional differences and similarities across different types 
of relationships, we paired individual prairie voles with either a novel same-sex (peer-paired) or 
opposite-sex (mate-paired) partner. 

To map the transcriptional landscape of the prairie vole NAc, we collected NAc tissue 16 days 35 
post-pairing (1 day post-behavior testing). 39 of 40 tissue samples passed quality control and 
were merged to create a combined dataset of 142,488 single nuclei (Table S1; 8 peer-paired 
females, 10 peer-paired males, 11 mate-paired females, and 10 mate-paired males). In pair-wise 
analyses, the unpaired animal (one female from a mate pair) was excluded. We identified 15 
transcriptionally-defined cell type clusters in the NAc based on known markers of cell types in 40 
this region (Fig 1A, B). Medium spiny neurons (MSNs), the primary neuronal cell type within 
the NAc, were identified based on their combined expression of the dopamine receptors Drd1a 
and Drd2, the opioid receptor Oprm1, and opioid ligands Pdyn and Penk. This resulted in five 
MSN clusters we termed MSN-Drd1Pdyn, MSN-Drd1PdynOprm1, MSN-Drd1Penk, MSN-
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Drd2Penk, and MSN-Drd2NoPenk. Five interneuron clusters were identified based on their 
expression of only Gad1/Syt (Int-GABAergic), Igfbpl1/Dlx2 (Int-Dlx2Immature), Sst/Npy (Int-
SstNpy), Vip/Kit (Int-Pvalb), and Chat (Int-Cholinergic). Glia were identified based on their 
expression of Mog (MatureOligos), Olig2/Pdgfra (oligodendrocyte progenitor cells, or OPCs), 
Gja1 (Astrocytes), Aif1 (Microglia), and Vim (RadialGlia-LikeCells). These clusters are largely 5 
consistent with those identified in snRNA-seq datasets from other species including mice (17), 
rats (18), and humans (19), suggesting overall cell type conservation in the NAc, congruent with 
a conserved role for this brain region in learning, reward and social behavior across species (20). 

 

Figure 1. Prairie vole NAc transcriptional landscape across relationship types. A. UMAP 
clustering of NAc cells revealed 15 clusters. B. Dotplot indicating expression of marker genes. 
C. Stacked bar plot of cell type proportions calculated per experimental group (colors refer to 
cell groups in A, B). D, E. Cell type proportions differ between groups in MSN-Drd1Pdyn and 
MSN-Drd2Penk clusters. * p < 0.05. 

Having identified the major cell classes that comprise the NAc, we next asked whether cell type 
proportions differed by sex or pairing condition. For most clusters (13/15), the proportion of cells 10 
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in each cluster did not differ between sexes or pairing types (Fig S1). However, mate-paired 
females had a higher proportion of MSN-Drd1Pdyn and MSN-Drd2Penk neurons than peer-
paired females (GLM with estimated marginal means, FDR corrected: MSN-Drd1Pdyn: T = 
2.93, p = 0.024; for MSN-Drd2Penk: T = 2.80, p = 0.033), and peer-paired males had higher 
proportion of MSN-Drd1Pdyn neurons than peer-paired females (T = 2.44, p = 0.041; Fig 1C, D, 5 
E). This proportional shift is likely due to shifts in neuronal gene expression rather than 
neurogenesis as the overall number of MSNs does not differ across groups. This is consistent 
with prior work indicating that dopamine D1-class receptors and the kappa opioid receptor 
ligand Pdyn are upregulated in the NAc upon bonding in prairie voles (21, 22). Such changes 
may reflect the onset of selective aggression (mate guarding) in mate relationships (21, 22). 10 

To identify transcriptional correlates of pair bonding behavior, we performed partner preference 
tests (PPTs) after 14 days of pairing on the same 20 vole pairs (4 female/female or FF, 5 
male/male or MM, 11 female/male or FM) that were sequenced (Fig 2A, B). After excluding the 
one mate-paired male whose sequencing did not pass quality control, 38 out of 39 voles 
displayed a partner preference (>50% time huddling with partner vs. novel; Fig 2C, D). There 15 
were no group differences in partner preference metrics based on sex or pairing type (Fig 2C, D). 
These results are consistent with prior reports (15, 16, 23) and provide a platform to identify the 
unique and shared features of different types of social bonds. 

Gene expression patterns underlying different relationship types and individual differences 
in relationship behaviors 20 

We next examined gene-behavior relationships using Hotspot, a cluster-agnostic computational 
algorithm that groups genes into modules based on similar expression patterns across cells (24, 
25) (Table S2). Seurat and Hotspot differ in their analytical purposes, with the first designed to 
cluster cell types and the latter to identify modules of genes with similar expression patterns. 
Thus, the top 3,000 variable genes identified by our cell clustering algorithm (Seurat) only 25 
partially overlapped (1,954/3,000, or 65%) with the top 3,000 variable genes identified by 
Hotspot.  

Using Hotspot, we identified 23 gene modules (31-415 genes/module) that are informative to, 
but not constrained by, cell type clusters (Fig 2E). For instance, modules 7 and 14 consist of 
genes expressed across the MSN cell clusters, enabling us to query shared gene expression 30 
differences across these cell types as they relate to behavior. Surprisingly, we found that no 
modules differed at the group level (Fig S2), suggesting that individual variation in gene 
expression supersedes sex and pairing type differences and that gene expression is largely shared 
across different types of bonds.  

To better understand what factors may be associated with gene expression variability between 35 
animals, we used the Hotspot gene modules to interrogate gene-behavior relationships at the 
individual level. We calculated the average (mean(log(counts))) expression of genes for each 
animal in each module and compared module expression to behavior in the PPT (Spearman 
correlation with significance threshold determined by bootstrapping). We found that different 
gene modules correlated with PPT behavior in different sex/pairing type groups (Fig 2F). This 40 
suggests that different gene networks regulate the same behaviors in different social 
relationships. Although the specific modules that exhibit gene-behavior correlations differ 
between groups, 3 of our 4 groups (F-Peer, F-Mate, M-Mate) show correlations between novel-
directed behavior and gene expression in oligodendrocytes (Module-3 in MatureOligos and 
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Module-6 in OPCs; Fig 2E, F). This is consistent with prior work from our lab implicating 
oligodendrocytes in pair bonding (23) and with a role for oligodendrogenesis and myelination in 
complex learning (26–28). Further, most gene-behavior correlations were in novel-directed 
rather than partner-directed behavior, suggesting that these gene programs play a role in the 
dissociation of pro- and anti-social behaviors that comprise behavioral selectivity within 5 
relationships.  

 

Figure 2. Gene module expression associations with behavior in different relationship 
types. A. Experimental timeline. B.  Schematic of partner preference test (PPT). C. Huddle 
time in the partner preference test. All groups huddle significantly more with the partner than 
the novel vole. There are no group differences in partner huddle or novel huddle time. 
D.  Percent partner preference calculated as [partner huddle]/[partner huddle + novel 
huddle]x100%. All groups show a partner preference (mean % partner huddle > 50%) and 
there are no group differences. E. The top 3,000 variable genes identified by Hotspot were 
grouped into 23 co-expression modules. The size of the circle indicates the average module 
eigenvalue (calculated per cell) for cells in each UMAP cluster. F. Module expression 
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correlation with PPT behaviors (top: partner huddle, bottom: novel huddle). The color of the 
box indicates Spearman’s Rho. Significant correlations (corrected via bootstrapping) are 
indicated with asterisks. * p < 0.05, ** p < 0.01, *** p < 0.001. 

Transcriptional synchrony within pairs 

We next tested the hypothesis that transcription would be more similar between partners than 
between non-partners (Fig 3A, B). To leverage the unique advantages of our individual animal 
and cellular-resolution dataset, we developed a transcriptional decoder, which uses the 
multidimensional transcriptional profile (expression of the 3,000 variable genes from Seurat) to 5 
predict the vole from which a cell originated. Specifically, we used support vector machines 
(SVMs) as multi-class classifiers. SVMs work by finding differences between samples and 
grouping them into distinct categories. Here, we used this principle to examine similarity 
between cells from different animals; any (mis)classification of an individual cell reflects the 
animal whose transcriptional profile that cell is most alike. 10 

We trained our transcriptional decoder in a cell cluster-specific manner using 75% of our dataset 
(up to 150 cells/cluster/vole), reserving the remaining 25% (up to 50 cells/cluster/vole) as the test 
dataset. The chance likelihood that the classifier assigns a cell from the dataset to the correct vole 
is only 2.6% (i.e. 1 out of the 38 voles in our dataset). We separated the resulting cell 
classifications from the SVM into three categories: cells originated from the correct animal 15 
(“self”), the correct animal’s partner (“partner”) or any other animal (“other”). Our classification 
strategy and experimental design enables important cross-pair comparisons that serve as robust 
internal controls (Fig 3A, B). Cross-pair comparisons are more informative than comparing to 
animals housed in isolation, as isolation has profound effects on neural gene expression (23, 29), 
and the lack of a partner makes it impossible to test for pairwise synchrony. Rather, reliable 20 
decoding of identity when comparing animals housed in the same type of relationship provides 
much stronger evidence of intra-pair transcriptional synchrony. 

Supporting the validity of our machine learning approach, we found that, in every cluster, our 
SVMs are most likely to classify cells correctly (e.g. “self”, Fig 3D). The mean percentage of 
self-classifications ranged from 24.9% to 72.2% across clusters. When cells were misclassified 25 
by the SVM, they were much more likely to be classified as the partner animal (“partner”) than 
any other non-partner animal (“other”) (Fig 3D, p < 10-5 for all partner vs. other comparisons). 
This was not sensitive to sex or relationship type (Figs S3, S4). Mean partner classifications 
ranged from 7.4% to 25.3% across clusters, still significantly greater than chance (2.6%) albeit 
lower than self. Moreover, this was not due to cohort effects (Fig S5), providing further evidence 30 
that partners are more transcriptionally similar than non-partners. 

To further test the hypothesis that partners show transcriptional synchrony, we employed a 
“leave-one-out” version of our decoder. We tasked an SVM with classifying cells when the 
correct choice (“self”) was not available, forcing the classifier to assign the cell to an animal 
other than self (Fig 3C). Strikingly, when correct self-assignment was not available, the SVMs 35 
were most likely to classify the cells as originating from the partner animal (Fig 3E, p < 10-16 for 
partner vs. other in all clusters). The mean percentage of partner classifications ranged from 
27.3% to 48.5% across clusters. While this was lower than accurate self-classification, it 
dramatically exceeded classifications for “other” and random chance, which would predict a 
partner classification only 2.7% of the time (1 of 37 voles) (Fig 3E, p < 10-5 for chance vs. 40 
partner in all clusters).  
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While the results of our decoder indicate that partners are more transcriptionally similar than 
non-partners, this does not rule out a potential role for other factors in driving transcriptional 
similarity to some extent. We collected behavior and tissue in three cohorts of animals, run in 
successive waves constrained by the number of behavioral tests that could be run in parallel. All 
nuclear isolation and sequencing randomly incorporated animals across cohorts. Using the 5 
“leave-one-out” classifiers that could not predict self (Fig 3C, E), we asked if the cells classified 
as “other” were from the same experimental behavioral cohort, the same group (F-Peer, F-Mate, 
M-Peer, M-Mate), the same pairing type (FF, FM, MM), the same parents (i.e. siblings), and the 
same sex. We found that, compared to the expected percentage of classifications, behavioral 
cohort has the largest effect on cell classification with cells being ~2.5 times more likely to be 10 
assigned to the same cohort than would be expected by chance (Fig 3F, p < 10-15, T = 37.08). 
This indicates that animals from the same behavioral cohort, which existed at the same time in 
our colony and underwent the experimental timecourse together, are more transcriptionally 
similar to each other than to animals from other cohorts. Additionally, animals were more likely 
to be classified as sibling animals (same parents) than non-siblings, although with a much 15 
smaller effect size (~0.75X greater than chance) (Fig 3F, p = 0.013, T = 2.62). This suggests that 
there is some genetic contribution to transcriptional similarity albeit less than shared cohort 
effects. Cells were classified approximately equally as originating from an animal of the same or 
opposite sex (Fig 3F), reflecting a potential lack of overall sex differences in the NAc in prairie 
voles. The other factors we investigated also do not exceed chance probability. 20 

In sum, these data demonstrate that SVMs are a powerful tool for inference of cell identity, one 
that we have employed to discover factors important for driving transcriptional similarity across 
individuals. Partner is the predominant factor for explaining transcriptional similarity between 
two voles, although we also identified a smaller role for cohort and genetic relatedness. 
However, even classifications for other cohort members did not exceed classifications for a 25 
partner (Fig S5). This supports our hypothesis that it is social environment and an animal’s 
partner specifically that is the largest contributor to transcriptional synchrony. 
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Figure 3. SVM-based decoding of cellular transcriptional profiles reveals similarity 
between partners. A. Schematic of intra- and inter-cage comparisons (“partner” and “other”, 
respectively). B. Schematic of how SVMs were trained to predict the identity of the 
originating vole for each cell. Correct predictions are denoted as “self”. C. Schematic of how 
SVMs were trained to predict the most similar transcriptional profile in a hold-one-out design 
where assignment of self was not possible. D. The SVM predominantly classified cells 
correctly (self, black outline), with the most common misclassification assigned to their 
partner (dark grey outline), followed by any other animal (light grey outline). E. SVMs were 
iteratively trained for each cluster by holding one animal out from the training set, and then 
testing the SVM on the held-out animal. The held-out animal was most frequently classified as 
their partner (dark grey outline) rather than any other animal (light grey outline). F. Allocation 
of “other” classifications from the hold-one-out SVMs (E). The y-axis indicates the percentage 
of “other” cells for each animal belonging to animals from the same cohort, same parents, 
same sex, same pairing type or sex-by-pairing type. The red dashed line denotes the expected 
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Genes responsible for transcriptional synchrony 

To identify genes that play a role in transcriptional synchrony, we examined pairwise 
relationships in Hotspot module gene expression. We found that, regardless of pairing type, two 
Hotspot modules, Module-6 (expressed in OPCs) and Module-11 (expressed in interneurons), 
exhibited pairwise expression similarity via multiple metrics. First, Module-6 and Module-11 5 
average gene expression is correlated between partners (Module-6: Rho = 0.61, p = 0.0057; 
Module-11: Rho = 0.59, p = 0.0075, Fig 4A, C). Second, using the expression of all genes within 
each module to calculate the Euclidean distance between partners, we found that for these two 
modules, partners were closer together in Euclidean space than non-partners (Wilcoxon rank sum 
tests: Module-6: W = 9781, p = 0.00017; Module-11: W = 8803, p = 0.0083, Fig 4E, F, G). 10 
Finally, when we ranked the animals by their module gene expression and calculated the rank-
based distance between partners, we found that partners were closer together in the ranking than 
would be expected by chance (One-sample t-tests vs. null (expected) value: Module-6: T = -3.46, 
p = 0.0028; Module-11: T = -2.73, p = 0.014, Fig 4H, I). In all instances, there was no difference 
in the degree of pairwise similarity (via correlation, Euclidean gene expression distance, or rank) 15 
based on relationship type (Figs S6, S7, S8).  

GO terms for Module-6, include terms related to oligodendrocyte differentiation and 
myelination, and GO terms for Module-11 include terms related to synaptic signaling and ion 
transport (Fig 4B, D). The former suggests that oligodendrocyte maturation, subsequent 
myelination by mature oligodendrocytes, and/or synaptic pruning by oligodendrocytes could be 20 
contributing to similarity in population-level neural activity in partners. In contrast, the latter 
may act on faster timescales consistent with a role for interneurons in shaping population-and 
ensemble-level activity within the striatum (30–32). Together, these data indicate that specific 
gene networks in OPCs and interneurons are synchronized between partners and that 
oligodendrocyte maturation and interneuron signaling may be drivers of pair-wise transcriptional 25 
similarity regardless of pairing type.  

 

percentage of classifications for animals in the same category for each metric (chance). * p < 
0.05, ** p < 0.01, *** p < 0.001 
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Figure 4. Module correlation between partners and with dyadic behavior. A, C. Spearman 
correlation between partners for average module gene expression of Module-6 (A) and Module-
11 (C). B, D. Selected GO terms for Modules-6 (B) and -11 (D), prioritized based on relevance 
for neural/glial function. Intersection size indicates number of genes in module overlapping with 
genes in that term. E. Diagram of intra-pair Euclidean distance calculation based on counts for 5 
genes in each module. F, G. Euclidean distance between partners (True Pair) is less than between 
all non-true pair distances (Chance) for Modules-6 (F) and -11 (G). H. Diagram of pairwise 
rank-based distance calculation based on module gene expression. I. Rank-based distance 
between partners for each module is less than chance for Modules-6 and -11 (line at y=13 
represents average chance distance). * p < 0.05, ** p < 0.01, *** p < 0.001. 10 

Transcriptional synchrony and pairwise interaction behavior 

Given that partners exhibited correlated expression of Modules-6 and -11, we asked whether 
expression of these modules predicted pairwise behavior. On day 15 after pairing, we performed 
three-hour free interaction tests as a metric of dyadic behavior (Fig 5A). Total interaction time 
did not differ between pairing types (Fig 5B). Unlike in the PPT, where the tethered animals lack 15 
some amount of agency and choice, during free interaction both members are allowed to initiate 
or reject interaction. This better reflects ethologically relevant social behaviors and captures the 
complexity of a two-body system. Further supporting that these two tests measure different 
facets of social behavior, we replicated prior findings that partner huddle in the PPT is not 
predictive of levels of dyadic interaction in the free interaction test (Rho = 0.04, p = 0.8061; Fig 20 
5C) (33).   

We next found that synchronized gene Module-6 was correlated with pairwise interaction 
(Module-6: Rho = 0.50, p = 0.0013, Module-11: Rho = 0.16, p = 0.34, Fig 5D, E). Thus, 
expression of a synchronized gene module in OPCs is associated with pairwise behavior 
regardless of bond type. This supports our hypothesis that the pair-specific bond itself – rather 25 
than the type of relationship – is a critical factor in transcriptional and behavioral synchrony. 
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Figure 5. Synchronized Module-6 expression is associated with pairwise behavior. A. 
Experimental timeline and schematic for free interaction test. A video of the interaction test is 
also available in the online version. B. Total time interacting with a partner in the free interaction 
test does not differ between groups. C. Partner-directed huddle in the PPT does not predict 5 
pairwise interaction. D, E. Average gene expression for Module-6 (D) but not Module-11 (E) 
correlates with interaction time in the free interaction test.  

Synchronized genes are sensitive to bond loss 

Module-6 genes are correlated between partners and with pairwise dyadic behavior, leading us to 
hypothesize that these genes would be sensitive to manipulation of the bond itself and social 10 
context more generally. To test this hypothesis, we used data previously generated in our lab in 
which male voles were paired with either a peer or mate partner for 2 weeks (equivalent to our 
snRNA-seq timeline) or paired for 2 weeks and then separated from their partner for an 
additional 4 weeks (23). This timecourse is validated by prior work showing partial erosion of 
bonds (34) and potential for re-bonding at this timepoint (35). We then performed tissue-level 15 
RNA-seq of the NAc from these paired and separated animals. We identified 82% (117/143) of 
our Module-6 genes in our tissue-level RNA-seq data. Upon clustering the mean z-scored 
expression values for each group, we found that our genes grouped into 3 major clusters: one that 
has higher expression in separated vs. paired animals for both peer and mate bonds, one that has 
lower expression in separated vs. paired animals for both peer and mate bonds, and one cluster 20 
that does not show consistent expression changes between peer- and mate-bonded animals (Fig 
6A, B, C). 71% (83/117) of our Module-6 genes show consistent differences in expression 
following long-term separation from a peer or from a mate.  

We next asked whether Module-6 was more sensitive to partner separation than our other 
Hotspot gene modules. For each module gene, we found the difference in median expression 25 
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level between paired animals and separated animals (combining peer and mate-paired groups, z-
scored expression per-animal) (Fig 6B, C). This generated a distribution of difference scores for 
each module. If module genes are particularly socially sensitive, their true distribution of 
differences should have a high variance, representative of large differences between paired and 
separated animals. To determine the statistical significance of variance for each module, we 5 
iteratively shuffled the animal identities prior to calculating the same metrics to generate a null 
distribution of difference scores (schematic example provided in Fig 6D). Using an F-test, we 
tested whether the true module difference score distribution was more variable than chance for 
each iterative shuffle, repeated 100 times. We found that Module-6 had significantly greater 
variance than the shuffled null distributions (p = 10-7.19; Fig 6E), and 91% of the shuffled 10 
iterations for Module-6 had p-values smaller than a cutoff of p ≤ 10-5. Module-6 showed more 
significant variance than all but 3 other modules, indicating that Module-6 genes are highly 
sensitive to bond loss and to social environment more generally (paired vs separated). 
Interestingly, the other 3 modules that show the greatest variance (social sensitivity) are all 
enriched in glial clusters (Module-1 in microglia, Module-2 in astrocytes, and Module-3 in 15 
mature oligodendrocytes, Fig 2E), suggesting that several glial cell types are sensitive to partner 
separation. 

Finally, we demonstrated that paired and separated animals could be distinguished by their 
transcriptional profiles of Module-6 genes. We used hierarchical clustering to group individual 
animals based on their expression of Module-6 genes. We found that animals largely clustered 20 
by whether they remained paired or were separated from their partner, irrespective of whether 
they were in peer or mate bonds (Fig 6F). This indicates that Module-6 genes are socially 
regulated but not sensitive to relationship type, consistent with our observation that 
transcriptional synchrony does not differ based on relationship type (peer or mate). 

Together, our data indicate that Module-6 and OPCs are sensitive to bond loss at the level of 25 
individual pairs. This suggests a model in which Module-6 genes converge with a partner when a 
bond is formed, and that this pair-specific transcriptional signature erodes upon partner 
separation. This is consistent with prior conclusions from this dataset (23) and provides further 
evidence that oligodendrocytes may play an important, yet understudied, role in social bonds.  
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Figure 6. Module-6 genes are sensitive to bond loss. A. Heatmap of average z-scored 
normalized counts from RNA-seq data of Module-6 genes. Animals included were peer- and 
mate-paired males either paired for 2 weeks (paired) or paired for 2 weeks and then separated 
from their partner for 4 weeks (separated). B, C. Ridgeline plots of normalized counts on a 
per-animal basis for peer-paired (B) or mate-paired (C) animals. D. Schematic of difference 
score distribution comparisons. Modules with high social sensitivity will have many genes 
with large-magnitude differences between paired and separated groups, resulting in 
significantly more variance than expected by chance (shuffled). E. Social sensitivity of genes 
in each module. log10(p-value) distributions for F-tests comparing the variance of true 
(separated minus paired) difference scores vs. shuffled by animal ID (separated minus paired) 
difference scores for each module. Bottom: Dotplot with size representing the percentage of 
log10(p-values) < -5 and the color representing the mean(log10(p-value)) for each module. F. 
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Heatmap of animal clustering based on Module-6 genes. Animals cluster separately by social 
condition but not by pair type within condition. *mate-paired. 

Discussion: 

Using single nucleus transcriptomics in prairie voles, we provide new insights into the cellular 
basis of peer and mating-based social bonds. Our data indicate that different gene programs 
correlate with affiliative behavior in different sexes and relationship types, and that pairs exhibit 
similarity in cellular transcriptional states regardless of relationship type, which we refer to as 5 
transcriptional synchrony. Further, we show that a gene module expressed in OPCs is 
synchronized between partners and sensitive to partner loss. Our data suggest that a pair-specific 
transcriptional state supersedes a sex-specific or pair type-specific transcriptional state, and that 
the degree of intra-pair transcriptional similarity may influence, and be influenced by, pairwise 
behavior. Thus, transcriptional synchrony may serve as a pair-specific mechanism that 10 
contributes to the organization of successful intra-pair behavior. 

One intriguing finding from our paper is the potential importance of oligodendrocytes in 
transcriptional synchrony and pair bonding behavior, confirming prior transcriptional work that 
likewise suggested a role for oligodendrogenesis in pair bonding (23). Social bonds are 
underpinned by a form of complex social learning as partners develop a repertoire of shared 15 
behaviors. Work in mice has shown that myelination is important for encoding and stabilizing 
complex memories (26–28). Myelination in the mammalian brain is also sensitive to social 
environment (36, 37). This raises the intriguing but speculative possibility that oligodendrocytes 
contribute to bonding via myelination of neurons that encode key facets of behavior.  

Overall patterns of transcription rather than expression of any single gene likely contribute to the 20 
emergence of a shared, bonded neural state. However, we did note that Down syndrome cell 
adhesion molecule (Dscam) is among the synchronized Module-6 OPC genes. Dscam is 
important for synaptogenesis, neuronal patterning, and is a risk gene for autism spectrum 
disorders; its disruption in mice leads to social behavior and learning deficits (38–40). Dscam is 
also one of 24 genes whose differential expression is conserved in taxonomically diverse 25 
monogamous species (41). Thus at least one gene in Module-6 is functionally consistent with 
genes that are likely to guide social behavior and bonding. 

In the brain, neuronal firing and transcription mutually affect one another, providing a 
mechanism which may link neural synchrony and transcriptional synchrony. This is corroborated 
by evidence that expression of the immediate early gene cFos becomes correlated between 30 
prairie vole partners within the first day of pairing, likely contributing to parallel downstream 
effects on transcription. In addition to neurons, neural activity sculpts transcriptional profiles in 
glia (42–47), and in oligodendrocytes specifically, neural activity affects proliferation, 
differentiation, and myelination, which in turn modulates neural activity (48). Thus, it is possible 
that shared neural activity patterns during social interactions could have wide-ranging effects on 35 
transcription in oligodendrocytes (or other cells) in two individuals. Ultimately, neural activity-
transcription relationships may be mutually reinforcing, with neural activity driving the initiation 
of transcription, which in turn creates a shared transcription state that is likely to lead to more 
aligned neural activity. Strengthening of this over the course of a relationship may contribute to 
organized behavior and other pairwise facets of bonding.  40 
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The factors that drive shared transcriptional state and/or those that contribute to variation in 
synchrony across pairs remain unknown. Results from our transcriptional decoder suggest that 
no single factor (cohort, sex, relationship type) was sufficient to drive the same degree of 
synchrony between animals observed in bonded pairs. Thus, we postulate that shared socio-
environmental factors, including ongoing navigation of social relationships, is a major driver of 5 
transcriptional synchrony. Prior work also suggests that at least some aspects of transcriptional 
synchrony can emerge within the first few hours of interaction; in fighting betta fish, brain-wide 
transcriptomes become correlated within 60 minutes of interaction, and in prairie voles, cFos 
expression becomes correlated within 24 hours. This raises the intriguing possibility that the 
most salient and dynamic features of an environment – namely social interactions with a 10 
cohoused partner – are a primary and heterogeneous driver of transcriptional synchrony. Here, 
we build on this by further showing that transcriptional synchrony is also evident at longer 
timepoints, potentially helping to cement bonds over time. 

While we provide compelling evidence of transcriptional synchrony, our studies have a number 
of limitations and important future directions. For instance, the specific factors that contribute to 15 
variation in synchrony across pairs remain unknown. Likewise, the functional relevance of 
transcriptional synchrony has yet to be examined. To what extent does transcriptional synchrony 
depend on affiliative bonds versus other types of social interactions? Finally, it will be important 
to determine whether this phenomenon is observed across brain regions or even across tissues.  

In sum, the strengthening of transcriptional synchrony may facilitate a pair’s ability to coordinate 20 
their behavior. Regardless of the specific drivers of this phenomenon, similar transcriptional 
profiles may provide a common biological substrate that facilitates enhanced neural synchrony 
and organized behavior. This alignment of transcription and neural activity may enable partners 
in long-term, meaningful relationships to predict the actions of their partner, quickly infer their 
mental state, and choose an appropriate behavioral response.  25 

Methods: 

Animals 

Prairie voles were bred in-house in a colony descended from wild animals collected in Illinois, 
USA. Animals were weaned at 21 days and housed in same-sex groups of 2-4 animals in 
standard static rodent cages (19l x 10.5w x 5 in. h) with ad-libitum access to rabbit chow (5326-30 
3, PMI Lab Diet) and water. Sunflower seeds and dried fruit treats were given to supplement the 
diet, and cotton nestlets, PVC tubes, and plastic houses were given for enrichment. All voles 
were between 77-154 days old at the start of the experiment. On day one of the experiment, 
animals were co-housed with either a same-sex (peer-paired) or opposite-sex (mate-paired) 
animal in smaller standard static rodent cages (11l x 8w x 6.5h) with ad-libitum access to food 35 
and water, cotton nestlets and plastic houses. These pairings resulted in 11 female/male pairs, 4 
female/female pairs, and 5 male/male pairs. The colony room was kept at 23-26C with a 14:10 
light:dark cycle. All procedures were performed during the light phase and approved by the 
University of Colorado Institutional Animal Care and Use Committee. 

Partner preference test 40 

Partner preference tests were performed on day 14 of the experiment. Both partners within a pair 
were tested consecutively, with the order randomized. Briefly, partner preference tests were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submitted Manuscript: Confidential 
Template revised November 2023 

16 
 

performed in a three-chamber plexiglass arena (76 cm long x 20 cm wide x 30 cm tall). Opaque 
dividers were placed between the chambers of the arena to prevent animals from seeing each 
other at the start of the test. Partner and novel animals were tethered to opposite ends of the 
chamber using tethers consisting of a wall-attached eye bolt with a chain of fishing swivels. 
Animals were briefly anesthetized with isoflurane and a zip tie was used around the animal’s 5 
neck to attach them to the tether. Rabbit chow and water were given for the duration of the test. 
At the start of the test, the experimental animal was placed in the center chamber and the dividers 
were removed, allowing the experimental animal to freely roam the arena for 2.5 hours. The tests 
were recorded using overhead cameras (Panasonic WVCP304). 

The videos were analyzed using TopScan software v3.0.0 using the parameters in Ahern et al 10 
(49). Behavior was analyzed using a custom Python script developed in-house 
(https://github.com/donaldsonlab/CleversysSummaryRearranger) to calculate time spent 
huddling with the partner and time spent huddling with the novel. Partner and novel proximity 
metrics consisted of time spent in the chamber with the respective animal, respectively. Partner 
preference was calculated as (partner huddle time/[partner huddle time + novel huddle time]) 15 
*100%. 

Free interaction test 

Free interaction tests were performed on day 15 of the experiment as described in Brusman et al 
(33). Each pair was placed in a plexiglass arena (50.7 cm long x 20 cm wide x 30 cm tall) and 
allowed to freely roam the arena for 3 hours. The tests were recorded using overhead cameras 20 
(Logitech C925e webcam). The videos were scored for total interaction time post hoc using 
TopScan software v3.0.0 and the parameters described in Brusman et al. 

Tissue harvest 

On day 16 of the experiment, animals were rapidly decapitated using a guillotine and brains were 
placed immediately on dry ice before moving to -80C. Uteri of female animals were removed 25 
and dissected to assess pregnancy status. Brains were later sectioned on a cryostat until the front 
of the NAc was reached (coordinates). A 2 mm diameter tissue punch was used to punch the 
NAc ~1mm deep on each side of the brain. Punches were stored separately for each animal in 
eppendorf tubes at -80C until nuclei dissociation. 

In our experiment, of our 11 mate-paired females, 8 became pregnant over the course of pairing, 30 
while 3 did not. While it is possible that pregnancy could be a confounding factor in behavior or 
the transcriptional patterns we observed, we found no differences in partner huddle time between 
pregnant and non-pregnant females (Wilcoxon rank-sum test, p = 0.92), and a difference in gene 
expression only in Module-19 (Wilcoxon rank-sum test, p = 0.017). Of note, Module-19 is not a 
synchronized module, nor is it a module that correlates with PPT behavior. Additionally, because 35 
there are 8 pregnant and 3 non-pregnant animals in this sample, this statistical difference may be 
confounded by sample size. 

Single nuclei isolation 

Brain punches were placed on wet ice until barely thawed. 0.5 mL Complete Buffer HB (250mM 
sucrose, 25mM KCl, 5mM MgCl2, 20mM Tricine-KOH, 0.042% BSA, 0.06 U/ul RNAsin, 40 
0.15mM spermine, 0.5mM spermidine, 1mM DTT, cOmplete EDTA-free protease inhibitor 
cocktail tablet) was then added to each tube with brain punches and then Complete Buffer HB 
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and punches were transferred to 2 mL dounce homogenizer. Samples were dounced with a tight 
pestle 20 times. 16 uL 5% IGEPAL CA-630 in Buffer HB (250mM sucrose, 25mM KCl, 5mM 
MgCl2, 20mM Tricine-KOH) was added to the dounce homogenizer and the samples were 
dounced 10 more times. The samples were then filtered through a Flowmi 40 um strainer into a 2 
mL LoBind Eppendorf tube. The volume of flowthrough was measured and an equal volume of 5 
Working Solution (50% iodixanol (OptiPrep), 25mM KCl, 5mM MgCl2, 20mM Tricine-KOH, 
0.042% BSA, 0.064 U/ul RNAsin) was added to the homogenate and mixed by gentle pipetting 
using a wide-bore P1000 pipette tip. First, 50% iodixanol was made by diluting 60% iodixanol 
(OptiPrep) in Working Solution. Then, 30% and 40% iodixanol solutions were made by diluting 
the 50% iodixanol/Working Solution in Complete Buffer HB. In 0.8 uL ultracentrifuge tubes, 10 
160 uL 30% iodixanol was carefully layered on top of 80 uL 40% iodixanol and the interface 
was labeled with pen. Approximately 560 ulof filtered sample was carefully layered on top of the 
iodixanol gradient using a 23G angled needle attached to a 1 mL insulin syringe. The samples 
were centrifuged at 10,000g for 30 min in a swinging bucket ultracentrifuge at 4C with the 
acceleration set to slow and the brake set to slow. When the spin was finished, the majority of the 15 
layer above the interface was carefully removed using a 23G angled needle attached to a 1 mL 
insulin syringe. Approximately 70 uL of nuclei were collected at the 30%-40% iodixanol 
interface using a 14G blunt end needle attached to a 1 mL insulin syringe and put in a LoBind 
eppendorf tube. To check the concentration of nuclei, 10 uL trypan blue was added to 10 uL 
nuclei and nuclei were examined using a brightfield microscope at 10X magnification. Samples 20 
were diluted to 320-2020 nuclei/uL in Complete Buffer HB before loading onto 10X Genomics 
Chromium controller. 

Sequencing 

Samples were sequenced using the Chromium next GEM Single Cell 5’ kit v2 from 10X 
Genomics. Single nuclei suspensions were loaded onto the 10X Genomics Chromium controller 25 
at concentrations between 320-2,020 nuclei/ul, aiming to capture 5,000 nuclei/sample at a read 
depth of 40,000 reads/nucleus. Single nuclei RNA-seq (snRNA-seq) libraries were prepared 
according to the manufacturer’s instructions. Library quality was assessed using the Agilent 
High Sensitivity D5000 ScreenTape System and were subsequently sequenced using paired-end 
sequencing on an Illumina NovaSeq6000. 30 

Analysis 

Sequence alignment and UMI counting: 

Raw reads were aligned and counted using the Cellranger v3.1.0 analysis pipeline. Briefly, a 
Cellranger-compatible genome was generated via the mkref function using the published prairie 
vole genome (MicOch1.0, GenBank accession number AHZW00000000). Cellranger mkfastq 35 
was then used to create FASTQ files from the raw BCL files. Across samples, we had a mean 
percent read alignment of 80.3%. Cellranger count was then used to align, filter, and count the 
reads. The mean number of nuclei per sample was 4,862 and the mean read depth was 37,745 
reads/nucleus. Samples with a mean less than 20,000 reads/nucleus were excluded from 
downstream analysis (1/40 samples). 40 

Sample integration and clustering 
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We used Seurat v4.3.0 in R v4.2.2 to analyze our single nuclei data (50). First, the filtered 
feature barcode matrices were used to create Seurat objects with sample-associated metadata. For 
each sample, cells were filtered to have >200 genes detected per cell and <5% reads from 
mitochondrial genes. The 39 samples were then transformed using Seurat’s SCTransform 
function and integrated using Seurat’s SCT Integration. This left 178,020 nuclei. Following 5 
integration, potential effects of the sequencing cohort and the behavior cohort were regressed 
out. Cells were re-clustered, and clusters were removed that expressed Slc17a7 (excitatory 
neurons) or Pecam1 (endothelial cells). These are two molecular markers consistent with cell 
types adjacent to, but not found within, the NAc (51). Cells were clustered again, and one 
remaining cluster was removed that expressed Trh (hypothalamus). Finally, this yielded 142,488 10 
nuclei included in the final clustering analysis. 

Using the SCT-normalized counts, dimensionality reduction was performed using PCA. The top 
50 PCs were used for UMAP clustering to generate the final cell clusters. 15 clusters were 
identified and their biological identities were determined by the expression of known marker 
genes for cell types in the NAc. 15 

We then calculated the percentage of cells in each cluster for each animal. To compare groups, 
we created generalized linear mixed models with sex and pairing type as fixed effects using the 
glmmTMB package (v1.1.8) in R (v4.2.2). For post-hoc comparisons, we used the emmeans 
package (v1.8.5) in R with p < 0.05 set as our significance threshold for all experiments. 

Hotspot analysis 20 

We used the Hotspot (v1.1.1) analysis pipeline (24) in Python (v3.11.3) to group genes into gene 
modules based cross-correlations in gene expression across cells. First, we converted our Seurat 
object to a SingleCellExperiment object. Next, we created the Hotspot object using the Seurat 
SCT counts matrix, the PCA previously calculated by Seurat, and a negative binomial model. 
We then computed the neighborhood using an unweighted graph and 30 nearest neighbors. We 25 
computed the autocorrelations for each gene to determine the top 3000 most variable genes, and 
then computed pairwise local correlations between these genes. Finally, we created our modules 
using these local correlations, with a minimum module size of 30 genes. This left us with 23 
modules ranging in size from 31-415 genes. We then calculated module scores for each module 
in each cell to determine module enrichment across cell populations. 30 

Downstream of the module creation, we calculated the average (mean) gene expression for all 
genes in each module across all cells for each animal. To determine group differences, we 
generated generalized linear mixed models using glmmTMB (v1.1.8) with sex and pairing type 
as fixed effects and did post-hoc testing using emmeans (v1.8.5) as stated above. 

To determine whether partners were more similar than non-partners, we began by calculating a 35 
Spearman correlation for the average module gene expression between partners. We then used 
the SCT counts for the genes in each module to find the distance between partners in Euclidean 
space. As a control, we found the distance between all non-true pairs (chance) and compared the 
true partner distances to that distribution. Finally, for each module, we ranked the animals 
according to their average module gene expression and found the rank-based distance between 40 
partners. With 38 paired animals, the expected rank distance between any two animals by chance 
is 13. We performed one-sample t-tests for each module against a null value of 13. 
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To determine the roles of the genes in each module, we performed gene ontology (GO) analysis 
using the gprofiler2 package (v0.2.1) in R. The prairie vole gene names were mapped onto the 
ENSG namespace prior to running GO analysis via gprofiler2. All GO p-values were FDR 
corrected. 

Support vector machine analysis 5 

We used the e1071 package (v1.7-13) in R (v4.2.2) to analyze our data using support vector 
machines (SVMs). For each cluster, we downsampled our cells to 200 cells per animal if there 
were >200 cells for that animal in that cluster. For our SVMs that were able to classify the 
animal as itself, we split the cells into a training set and a test set, where 75% of the cells were 
randomly allocated to the training set and the remaining 25% to the test set. We then trained the 10 
SVM for each cluster to classify cells based on animal identity using the scaled Pearson residuals 
of the gene expression of the top 3,000 variable genes as determined by Seurat. For each animal, 
we found the percentage of cells from the test set that were classified as the animal from which 
they originated (self), the partner of the animal from which they originated (partner), or any other 
animal (other). We then compared the distributions of “self”, “partner”, and “other” 15 
classifications. 

To train our SVMs that were not provided with the option to classify as self, we downsampled 
our cells as mentioned above, and then trained a separate SVM for each animal for each cluster. 
For each SVM, we held a single animal out of the training set, and then tested the SVM on only 
the held-out animal. This forced the SVM to classify each cell as an animal other than the animal 20 
from which it originated. We then calculated the percentage of cells in the test set classified as 
the partner or as other and compared these groups using generalized linear mixed models with 
estimated marginal means as post-hoc tests. 

Partner separation experiment 

The partner separation experiment was performed as described in Sadino et al (23). Briefly, the 25 
animals from Sadino et al. included in this analysis were sexually naïve male prairie voles paired 
with either a same-sex (peer/sibling) or opposite sex (mate) partner for 2 weeks. On day 14, all 
experimental animals underwent a PPT. The “paired” voles were then cohoused for an additional 
two days (16 days total, consistent with snRNA-seq experimental animals) and the “separated” 
voles were separated from their partner for 4 weeks. At these final timepoints, animals were 30 
sacrificed by rapid decapitation and the NAc was dissected out from the brain prior to processing 
for RNA-seq. 

Analysis of RNA-seq separation data 

Sequence mapping and counting was performed as described in Sadino et al (23). Following this 
analysis, DESeq2 (v1.38.3) (52) was used in R (v4.2.2) to calculate the normalized counts on a 35 
per-animal basis. For each gene, the normalized counts were z-scored. For the Module-6 analysis 
specifically, we found that 117/143 Module-6 genes were detected in the RNA-seq dataset. For 
each of these 117 genes, we calculated the mean z-score within groups and used hierarchical 
clustering to cluster the genes into 3 primary clusters. We then used the z-scored counts on a per-
animal basis to cluster individual animals. The animals largely separated by social condition 40 
(paired vs. separated). 
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Finally, we combined the mate-paired and peer-paired animals into two groups based on social 
condition: paired and separated. For each group in each module, we found the median expression 
for each gene. We then used those median values and calculated the difference between groups 
for each gene as a metric representing the degree of change between paired and separated 
animals. This resulted in a distribution of change scores for each module. As a control, we 5 
iteratively shuffled the animal identities 100 times prior to performing these same calculations, 
and then used an F-test to compare the two distributions for each iteration. 

Code availability 

All code written for this analysis is provided on the Donaldson Lab Github at: 
https://github.com/donaldsonlab/snRNAseq_voles. 10 

 

References: 
1.  L. Kingsbury, W. Hong, A Multi-Brain Framework for Social Interaction. Trends in Neurosciences, doi: 

10.1016/j.tins.2020.06.008 (2020). 

2.  D. Liu, S. Liu, X. Liu, C. Zhang, A. Li, C. Jin, Y. Chen, H. Wang, X. Zhang, Interactive Brain Activity: 15 
Review and Progress on EEG-Based Hyperscanning in Social Interactions. Front. Psychol. 9 (2018). 

3.  Y. Pan, X. Cheng, Z. Zhang, X. Li, Y. Hu, Cooperation in lovers: An fNIRS‐based hyperscanning study. Hum 
Brain Mapp 38, 831–841 (2016). 

4.  S. Kinreich, A. Djalovski, L. Kraus, Y. Louzoun, R. Feldman, Brain-to-Brain Synchrony during Naturalistic 
Social Interactions. Scientific Reports 7, 17060 (2017). 20 

5.  A. Czeszumski, S. Eustergerling, A. Lang, D. Menrath, M. Gerstenberger, S. Schuberth, F. Schreiber, Z. Z. 
Rendon, P. König, Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social 
Interaction. Front. Hum. Neurosci. 14 (2020). 

6.  A. Djalovski, G. Dumas, S. Kinreich, R. Feldman, Human attachments shape interbrain synchrony toward 
efficient performance of social goals. NeuroImage 226, 117600 (2021). 25 

7.  Y. Hu, Y. Pan, X. Shi, Q. Cai, X. Li, X. Cheng, Inter-brain synchrony and cooperation context in interactive 
decision making. Biological Psychology 133, 54–62 (2018). 

8.  L. Kingsbury, S. Huang, J. Wang, K. Gu, P. Golshani, Y. E. Wu, W. Hong, Correlated Neural Activity and 
Encoding of Behavior across Brains of Socially Interacting Animals. Cell 178, 429-446.e16 (2019). 

9.  W. Zhang, M. M. Yartsev, Correlated Neural Activity across the Brains of Socially Interacting Bats. Cell 178, 30 
413-428.e22 (2019). 

10.  M. C. Rose, B. Styr, T. A. Schmid, J. E. Elie, M. M. Yartsev, Cortical representation of group social 
communication in bats. Science 374, eaba9584 (2021). 

11.  L. Yang, M. Li, L. Yang, H. Wang, H. Wan, Z. Shang, Functional connectivity changes in the intra- and inter-
brain during the construction of the multi-brain network of pigeons. Brain Research Bulletin 161, 147–157 35 
(2020). 

12.  K. Gugnowska, G. Novembre, N. Kohler, A. Villringer, P. E. Keller, D. Sammler, Endogenous sources of 
interbrain synchrony in duetting pianists. Cerebral Cortex 32, 4110–4127 (2022). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submitted Manuscript: Confidential 
Template revised November 2023 

21 
 

13.  M. L. Gustison, R. Muñoz-Castañeda, P. Osten, S. M. Phelps, Sexual coordination in a whole-brain map of 
prairie vole pair bonding. eLife 12 (2023). 

14.  T.-D. Vu, Y. Iwasaki, S. Shigenobu, A. Maruko, K. Oshima, E. Iioka, C.-L. Huang, T. Abe, S. Tamaki, Y.-W. 
Lin, C.-K. Chen, M.-Y. Lu, M. Hojo, H.-V. Wang, S.-F. Tzeng, H.-J. Huang, A. Kanai, T. Gojobori, T.-Y. 
Chiang, H. S. Sun, W.-H. Li, N. Okada, Behavioral and brain- transcriptomic synchronization between the 5 
two opponents of a fighting pair of the fish Betta splendens. PLOS Genetics 16, e1008831 (2020). 

15.  N. L. Goodwin, S. A. Lopez, N. S. Lee, A. K. Beery, Comparative role of reward in long-term peer and mate 
relationships in voles. Hormones and Behavior 111, 70–77 (2019). 

16.  N. S. Lee, N. L. Goodwin, K. E. Freitas, A. K. Beery, Affiliation, Aggression, and Selectivity of Peer 
Relationships in Meadow and Prairie Voles. Frontiers in Behavioral Neuroscience 13 (2019). 10 

17.  D. Avey, S. Sankararaman, A. K. Y. Yim, R. Barve, J. Milbrandt, R. D. Mitra, Single-Cell RNA-Seq 
Uncovers a Robust Transcriptional Response to Morphine by Glia. Cell Reports 24, 3619-3629.e4 (2018). 

18.  K. E. Savell, J. J. Tuscher, M. E. Zipperly, C. G. Duke, R. A. Phillips, A. J. Bauman, S. Thukral, F. A. Sultan, 
N. A. Goska, L. Ianov, J. J. Day, A dopamine-induced gene expression signature regulates neuronal function 
and cocaine response. Sci. Adv. 6, eaba4221 (2020). 15 

19.  M. N. Tran, K. R. Maynard, A. Spangler, L. A. Huuki, K. D. Montgomery, V. Sadashivaiah, M. Tippani, B. 
K. Barry, D. B. Hancock, S. C. Hicks, J. E. Kleinman, T. M. Hyde, L. Collado-Torres, A. E. Jaffe, K. 
Martinowich, Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across 
reward circuitry in the human brain. Neuron, doi: 10.1016/j.neuron.2021.09.001 (2021). 

20.  L. A. O’Connell, H. A. Hofmann, The Vertebrate mesolimbic reward system and social behavior network: A 20 
comparative synthesis. Journal of Comparative Neurology 519, 3599–3639 (2011). 

21.  B. J. Aragona, Y. Liu, Y. J. Yu, J. T. Curtis, J. M. Detwiler, T. R. Insel, Z. Wang, Nucleus accumbens 
dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nature 
Neuroscience 9, 133–139 (2006). 

22.  S. L. Resendez, P. C. Keyes, J. J. Day, C. Hambro, C. J. Austin, F. K. Maina, L. N. Eidson, K. A. Porter-25 
Stransky, N. Nevárez, J. W. McLean, M. A. Kuhnmuench, A. Z. Murphy, T. A. Mathews, B. J. Aragona, 
Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds. 
eLife 5, e15325 (2016). 

23.  J. M. Sadino, X. G. Bradeen, C. J. Kelly, L. E. Brusman, D. M. Walker, Z. R. Donaldson, Prolonged partner 
separation erodes nucleus accumbens transcriptional signatures of pair bonding in male prairie voles. eLife 12, 30 
e80517 (2023). 

24.  D. DeTomaso, N. Yosef, Hotspot identifies informative gene modules across modalities of single-cell 
genomics. Cell Systems 12, 446-456.e9 (2021). 

25.  C. A. Herring, R. K. Simmons, S. Freytag, D. Poppe, J. J. D. Moffet, J. Pflueger, S. Buckberry, D. B. Vargas-
Landin, O. Clément, E. G. Echeverría, G. J. Sutton, A. Alvarez-Franco, R. Hou, C. Pflueger, K. McDonald, J. 35 
M. Polo, A. R. R. Forrest, A. K. Nowak, I. Voineagu, L. Martelotto, R. Lister, Human prefrontal cortex gene 
regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 185, 4428-4447.e28 (2022). 

26.  S. Pan, S. R. Mayoral, H. S. Choi, J. R. Chan, M. A. Kheirbek, Preservation of a remote fear memory requires 
new myelin formation. Nat Neurosci 23, 487–499 (2020). 

27.  T. Shimizu, S. G. Nayar, M. Swire, Y. Jiang, M. Grist, M. Kaller, C. Sampaio Baptista, D. M. Bannerman, H. 40 
Johansen-Berg, K. Ogasawara, K. Tohyama, H. Li, W. D. Richardson, Oligodendrocyte dynamics dictate 
cognitive performance outcomes of working memory training in mice. Nat Commun 14, 6499 (2023). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submitted Manuscript: Confidential 
Template revised November 2023 

22 
 

28.  C. M. Bacmeister, R. Huang, L. A. Osso, M. A. Thornton, L. Conant, A. R. Chavez, A. Poleg-Polsky, E. G. 
Hughes, Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons. Nat 
Neurosci 25, 1300–1313 (2022). 

29.  R. G. Arzate-Mejía, Z. Lottenbach, V. Schindler, A. Jawaid, I. M. Mansuy, Long-Term Impact of Social 
Isolation and Molecular Underpinnings. Frontiers in Genetics 11, 589621 (2020). 5 

30.  S. F. Owen, J. D. Berke, A. C. Kreitzer, Fast-Spiking Interneurons Supply Feedforward Control of Bursting, 
Calcium, and Plasticity for Efficient Learning. Cell 172, 683-695.e15 (2018). 

31.  D. A. Burke, H. G. Rotstein, V. A. Alvarez, Striatal Local Circuitry: A New Framework for Lateral Inhibition. 
Neuron 96, 267–284 (2017). 

32.  J. D. Berke, Functional Properties of Striatal Fast-Spiking Interneurons. Front. Syst. Neurosci. 5 (2011). 10 

33.  L. E. Brusman, D. S. W. Protter, A. C. Fultz, M. U. Paulson, G. D. Chapel, I. O. Elges, R. T. Cameron, A. K. 
Beery, Z. R. Donaldson, Emergent intra-pair sex differences and organized behavior in pair bonded prairie 
voles (Microtus ochrogaster). Genes, Brain and Behavior 21, e12786 (2022). 

34.  A. F. Pierce, D. S. W. Protter, Y. L. Watanabe, G. D. Chapel, R. T. Cameron, Z. R. Donaldson, Nucleus 
accumbens dopamine release reflects the selective nature of pair bonds. Curr Biol, S0960-9822(23)01741–4 15 
(2024). 

35.  K. J. Harbert, M. Pellegrini, K. M. Gordon, Z. R. Donaldson, How prior pair-bonding experience affects 
future bonding behavior in monogamous prairie voles. Horm Behav 126, 104847 (2020). 

36.  J. Liu, K. Dietz, J. M. DeLoyht, X. Pedre, D. Kelkar, J. Kaur, V. Vialou, M. K. Lobo, D. M. Dietz, E. J. 
Nestler, J. Dupree, P. Casaccia, Impaired adult myelination in the prefrontal cortex of socially isolated mice. 20 
Nat Neurosci 15, 1621–1623 (2012). 

37.  M. Makinodan, K. M. Rosen, S. Ito, G. Corfas, A Critical Period for Social Experience–Dependent 
Oligodendrocyte Maturation and Myelination. Science 337, 1357–1360 (2012). 

38.  P. Chen, Z. Liu, Q. Zhang, D. Lin, L. Song, J. Liu, H.-F. Jiao, X. Lai, S. Zou, S. Wang, T. Zhou, B.-M. Li, L. 
Zhu, B.-X. Pan, E. Fei, DSCAM Deficiency Leads to Premature Spine Maturation and Autism-like Behaviors. 25 
The Journal of Neuroscience 42, 532 (2022). 

39.  K. Hizawa, T. Sasaki, N. Arimura, A comparative overview of DSCAM and its multifunctional roles in 
Drosophila and vertebrates. Neuroscience Research 202, 1–7 (2024). 

40.  R. C. Neff, K. A. Stangis, U. Beniwal, T. Hergenreder, B. Ye, G. G. Murphy, Cognitive behavioral 
phenotyping of DSCAM heterozygosity as a model for autism spectrum disorder. Genes, Brain and Behavior 30 
23, e70002 (2024). 

41.  R. L. Young, M. H. Ferkin, N. F. Ockendon-Powell, V. N. Orr, S. M. Phelps, Á. Pogány, C. L. Richards-
Zawacki, K. Summers, T. Székely, B. C. Trainor, A. O. Urrutia, G. Zachar, L. A. O’Connell, H. A. Hofmann, 
Conserved transcriptomic profiles underpin monogamy across vertebrates. Proc Natl Acad Sci USA 116, 
1331–1336 (2019). 35 

42.  P. Hasel, O. Dando, Z. Jiwaji, P. Baxter, A. C. Todd, S. Heron, N. M. Márkus, J. McQueen, D. W. Hampton, 
M. Torvell, S. S. Tiwari, S. McKay, A. Eraso-Pichot, A. Zorzano, R. Masgrau, E. Galea, S. Chandran, D. J. A. 
Wyllie, T. I. Simpson, G. E. Hardingham, Neurons and neuronal activity control gene expression in astrocytes 
to regulate their development and metabolism. Nat Commun 8, 15132 (2017). 

43.  E.-L. Yap, M. E. Greenberg, Activity-Regulated Transcription: Bridging the Gap between Neural Activity and 40 
Behavior. Neuron 100, 330–348 (2018). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submitted Manuscript: Confidential 
Template revised November 2023 

23 
 

44.  L. M. Igaz, M. R. M. Vianna, J. H. Medina, I. Izquierdo, Two Time Periods of Hippocampal mRNA Synthesis 
Are Required for Memory Consolidation of Fear-Motivated Learning. J. Neurosci. 22, 6781–6789 (2002). 

45.  Y. E. Wu, L. Pan, Y. Zuo, X. Li, W. Hong, Detecting Activated Cell Populations Using Single-Cell RNA-
Seq. Neuron 96, 313-329.e6 (2017). 

46.  T. Butto, M. C. Chongtham, K. Mungikar, D. Hartwich, M. Linke, N. Ruffini, K. Radyushkin, S. Schweiger, 5 
J. Winter, S. Gerber, Characterization of transcriptional profiles associated with stress-induced neuronal 
activation in Arc-GFP mice. Mol Psychiatry, 1–14 (2024). 

47.  A. M. Sardoo, S. Zhang, T. N. Ferraro, T. M. Keck, Y. Chen, Decoding brain memory formation by single-
cell RNA sequencing. Briefings in Bioinformatics 23, bbac412 (2022). 

48.  M. A. Thornton, E. G. Hughes, Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular 10 
signaling. Neuroscience Letters 727, 134916 (2020). 

49.  T. H. Ahern, M. E. Modi, J. P. Burkett, L. J. Young, Evaluation of two automated metrics for analyzing 
partner preference tests. J Neurosci Methods 182, 180–188 (2009). 

50.  Y. Hao, S. Hao, E. Andersen-Nissen, W. M. Mauck, S. Zheng, A. Butler, M. J. Lee, A. J. Wilk, C. Darby, M. 
Zager, P. Hoffman, M. Stoeckius, E. Papalexi, E. P. Mimitou, J. Jain, A. Srivastava, T. Stuart, L. M. Fleming, 15 
B. Yeung, A. J. Rogers, J. M. McElrath, C. A. Blish, R. Gottardo, P. Smibert, R. Satija, Integrated analysis of 
multimodal single-cell data. Cell 184, 3573-3587.e29 (2021). 

51.  B. C. Reiner, Y. Zhang, L. M. Stein, E. D. Perea, G. Arauco-Shapiro, J. Ben Nathan, K. Ragnini, M. R. 
Hayes, T. N. Ferraro, W. H. Berrettini, H. D. Schmidt, R. C. Crist, Single nucleus transcriptomic analysis of 
rat nucleus accumbens reveals cell type-specific patterns of gene expression associated with volitional 20 
morphine intake. Transl Psychiatry 12, 1–11 (2022). 

52.  M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biol 15, 550 (2014). 

Acknowledgments: We thank Jay Hesselberth and his lab for allowing us to use their space to 
perform the nuclei isolations. We also thank the Genomics Core at CU Anschutz for sequencing 25 
our samples. We thank Jessica Abazaris and the rest of the animal care staff at the University of 
Colorado Boulder for their excellent care of the voles, and the voles themselves for their 
sacrifice. We thank Zachary Johnson for discussing single nucleus data, and Catherine Peña and 
Yevgenia Kozorovitskiy for feedback on initial drafts of the manuscript. 
 30 

Funding: 
National Institutes of Health grant 1F31MH132278-01A1 (LEB) 
National Institutes of Health grant 5T32GM008759-20 (LEB) 
National Institutes of Health grant 1T32GM142607-01 (LEB) 
Whitehall Foundation Award (ZRD) 35 

Dana Foundation Award (ZRD) 
National Institutes of Health grant DP2MH119421 (ZRD) 
National Institutes of Health grant UF1NS122124 (ZRD) 
National Institutes of Health grant R01MH125423 (ZRD) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submitted Manuscript: Confidential 
Template revised November 2023 

24 
 

National Institutes of Health grant IOS-2045348 (ZRD) 
National Institutes of Health grant U01NS131406 (ZRD) 
National Institutes of Health grant R01HL156475 (RDD, MAA) 
Anna and John J. Sie Foundation/Global Down Syndrome Foundation (MAA). 
 5 

Author contributions:  
Conceptualization: LEB, ZRD 
Formal analysis: LEB, MAA 
Funding acquisition: ZRD, LEB, MAA, RDD 
Investigation: LEB, ACF 10 

Project management: ZRD 
Resources: ZRD 
Software: LEB, MAA 
Mentorship: ZRD, MAA 
Visualization: LEB 15 

Writing – original draft: LEB, ZRD 
Writing – review & editing: LEB, ZRD, MAA, RDD 
 
Competing interests: 
The authors declare the following competing interests: MAA and RDD have a patent for 20 
measuring transcription factor activity from eRNA activity. RDD was a co-founder of Arpeggio 
Biosciences. All other authors have no competing interests. 
 
Data and materials availability: 
All sequencing data is deposited on GEO (GSE255620) and will be made available upon 25 
publication. All code generated for the analysis of this data will be available on the Donaldson 
Lab Github (https://github.com/donaldsonlab). 
 
Ethics: 
All animal procedures were carried out in accordance with standard ethical guidelines (National 30 
Institutes of Health Guide for the Care and Use of Laboratory Animals) and approved by the 
Institutional Animal Care and Use Committee (IACUC) at the University of Colorado Boulder. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://github.com/donaldsonlab
https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


−15

−10

−5

0

5

10

−10 −5 0 5 10
UMAP_1

U
M

AP
_2

MSN-Drd1Pdyn
Oprm1
(2,075)

A B
%

 o
f C

el
ls

0

100

20

40

60

80

F-Peer F-Mate M-Peer M-Mate

C

D E
*

*

0

10

20

30

%
 o

f C
el

ls

MSN-Drd1Pdyn MSN-Drd2Penk

0

10

20

30

%
 o

f C
el

ls

*

MSN-Drd1Pdyn
(30,187)

MSN-Drd1Penk
(16,036)

MSN-Drd2Penk
(25,952)

MSN-Drd2NoPenk
(5,594)

Astrocytes
(21,910)

RadialGlia-
LikeCells

(194)

Int-Dlx2Immature
(3,731)

Int-GABAergic
(7,159)

Int-Pvalb
(2,856)

Int-SstNpy
(1,374)

Microglia
(5,161)

OPCs
(5,615) MatureOligos

(13,650)

Int-Cholinergic
(994)

MSN-Drd1Pdyn

MSN-Drd1PdynOprm1

MSN-Drd1Penk

MSN-Drd2Penk

MSN-Drd2NoPenk

Int-GABAergic

Int-Dlx2Immature

Int-SstNpy

Int-Pvalb

Int-Cholinergic

MatureOligos

OPCs

Astrocytes

Microglia

RadialGlia−LikeCells

DRD1A
DRD2

Pdy
n
Pen

k
Oprm

1

Igf
bp

l1
Dlx2 Sst Npy Vip Kit

Cha
t
Mog

Olig
2
Pdg

fra
Gja1 Aif1 Vim

Elav
l2
Gad

1
Syt1

Genes

Average Expression

0 1 2 3

% Cells Expressing

25 50 75

Total Cells: 142,488

F-Peer
F-Mate

M-Peer
M-Mate

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


DPartner
Novel

C

MSN-Drd1Pdyn
MSN-Drd1PdynOprm1

MSN-Drd1Penk
MSN-Drd2Penk

MSN-Drd2NoPenk
Int-GABAergic

Int-Dlx2Immature
Int-SstNpy

Int-Pvalb
Int-Cholinergic
MatureOligos

OPCs
Astrocytes

Microglia

Module 1 232 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Normalized Avg.
Mod. Gene exp.

Eigenvalue

0
1
2

3

4

E

F

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Rho

F-Peer

* *F-Mate

M-Peer

M-MatePa
rtn

er
 H

ud
dl

e

F-Peer *
** **** *F-Mate

M-Peer

* ** * *M-Mate

N
ov

el
 H

ud
dl

e

Partner Preference Test (PPT)
(Partner testing order randomized)

NovelPartner

Experimental timeline

14 15 16

PPT

Free interaction

Harvest tis
sue for snRNA-seq

Day 0

Pairing

F/F

Pairing Types

A B

0

25

50

75

100

125

H
ud

dl
e 

Ti
m

e 
(m

in
)

F-Peer F-Mate M-Peer M-Mate
0

25

50

75

100

%
 P

ar
tn

er
 P

re
fe

re
nc

e

F-Peer
F-Mate

M-Peer
M-Mate

**
**

**
**

M
SN

s
In

te
rn

eu
ro

ns
G

lia

M/M

F/M

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


other partner self

Classification Type

D

0 25 50 75 100

Microglia

Astrocytes

OPCs

MatureOligos

Int-Cholinergic

Int-Pvalb

Int-SstNpy

Int-Dlx2Immature

Int-GABAergic

MSN-Drd2NoPenk

MSN-Drd2Penk

MSN-Drd1Penk

MSN-Drd1PdynOprm1

MSN-Drd1Pdyn

% of Classifications

Chance

0 25 50 75 100
% of Classifications

Chance
E

Training

SVM

Pair 1

Pair 19

Vole 1

Vole 2

Vole 37

Vole 38

Testing

Trained
SVM 

Vole 1

"self"

"partner"

"other"

"other"

.........(Voles 3-36)

Classification

No cells used in training

Can predict self “Leave-one-out” (Cannot predict self)B C

%
 C

la
ss

ifi
ca

tio
ns

0

25

50

75

100

Cohort Pairing
 Type

Parents Sex

***

*

Sex +
Paring type

Cross-cage comparisons

“Other” (pairing type)“Other” (same sex)

“Partner”

A

F
Allocation of “other” classifications

Female

Male

?

Training

SVM

Pair 1

Pair 19

Vole 1

Vole 2

Vole 37

Vole 38

Testing

Trained
SVM 

Vole 1
"partner"

"other"

"other"

.........(Voles 3-36)

Classification
?

Chance

Can predict self
“Leave-one-out”

(Cannot predict self)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


G

***

1

2

3

Chance True Pair

Eu
cl

id
ea

n 
D

is
ta

nc
e

Module-6

0.1

0.2

0.3

0.4

0.5

**

Chance True Pair

Eu
cl

id
ea

n 
D

is
ta

nc
e

Module-11

H

A
Module-6

DC

axon ensheathment

cell−cell adhesion

cell communication

cell population proliferation

cognition

learning or memory

myelination

oligodendrocyte differentiation

regulation of cell migration

regulation of cell projection organization

0 10 20 30 40 50

intersection size

R
an

k−
ba

se
d 

di
st

an
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

10

20

30
** *

Module

Intra-pair Euclidean Distance

Gene A Expression Gen
e B

 Exp
res

sio
n

G
en

e 
C

 E
xp

re
ss

io
n

Rank-based distance

Dist = 1

Dist = 3

R
an

k 
by

 M
od

ul
e 

Ex
pr

es
si

on

B

F

anterograde trans−synaptic signaling

cell−cell signaling

chemical synaptic transmission

establishment of localization

metal ion transport

monoatomic ion transport

synaptic signaling

trans−synaptic signaling

transmembrane transport

transport

0 10 20 30
intersection size

E

Module-11

I

0.10

0.11

0.12

0.10 0.11 0.12 0.13
Partner 1 Avg. Gene Expr.

Pa
rtn

er
 2

 A
vg

. G
en

e 
Ex

pr
.

0.048

0.052

0.056

0.045 0.050 0.055
Partner 1 Avg. Gene Expr.

Pa
rtn

er
 2

 A
vg

. G
en

e 
Ex

pr
.

Min

Max

Rho = 0.61 
p = 0.0057

Rho = 0.59 
p = 0.0075

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

30

60

90

120

FF FM MM
Pairing Type

Fr
ee

 in
te

ra
ct

io
n 

tim
e 

(m
in

)

Free Interaction Test

Female/Female

Male/Male

Female/Male

Pairing Types

Experimental timeline

Day 14 Day 15 Day 16

PPT

Free interaction

Harvest tis
sue for snRNA-seq

Day 0

Pairing

A B

Pairing Type FF FM MM

60

80

100

0.10 0.11 0.12 0.13

Avg. Expression

Fr
ee

 in
te

ra
ct

io
n 

tim
e 

(m
in

)

Rho = 0.50
p = 0.0013

60

80

100

0.045 0.050 0.055 0.060

Avg. Expression

Fr
ee

 in
te

ra
ct

io
n 

tim
e 

(m
in

)
Rho = 0.16
p = 0.3389

D E
Module-11Module-6

60

80

100

25 50 75 100 125
Partner Huddle Time (min)
(Partner Preference Test)

Fr
ee

 in
te

ra
ct

io
n 

tim
e 

(m
in

)

Rho = 0.04
p = 0.8061

C
PPT vs. Interaction

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/


Percent of log10(p-values) < -5

0 25 50 75 100

Mean log10(p-value)

0 -3 -6 -9

Module−6 Genes

2612*
2664*
2758*
2639*
2594
2801*
2647
2617*
2737*
2736*
2911
2728*
2919
2920
2762*
2887
2766
2756
2665
2660
2658*
2659*

So
ci

al
 C

on
di

tio
n

Separated
Paired

An
im

al
 ID

Myt1
Ss18
ENSMOCG00000014622
Plpp4
Ostf1
Plod1
Zeb1
Ramp1
Zcchc24
Olig2
Bcas1
Kank1
ENSMOCG00000014021
ENSMOCG00000010996
Tmem255a
Bmp7
Sox6
ENSMOCG00000002631
Nova1
Tmem100
P4hb
Pcdh15
Dscam
Brinp3
Tspan6
Mybl1
ENSMOCG00000021063
Ackr3
Calr
Shc4
Sdc3
C1ql1
Pdgfra
Gpr17
Col9a2
ENSMOCG00000000187
Ccnd1
Scarb2
Ltbp3
Cav1
Lhfpl3
Canx
Arhgap31
Nav1
Prkg2
Ptprz1
Lims2
Nrxn2
Olig1
Traf4
Sulf2
Slc12a4
Cspg4
Orai1
Zfp488
Matn4
Rabac1
Mmp15
Slc22a17
Nlgn3
Arsb
Thsd1
Calcrl
Neu4
Lbh
Slc22a3
Cacng4
Pdia6
Slc1a1
Col9a3
Ntn1
Tnk2
Serinc5
Cav2
Sema3d
Hspa5
Saraf
Hsp90b1
Lpcat1
Cntn1
Usp24
Pdia3
Afap1l2
Stk32a
Dscaml1
Plppr1
Itm2b
Olfm2
Atp6ap1
Plppr5
Serinc1
Chst11
Xylt1
Lnx1
Prnp
Itgav
Rev3l
Ncan
Lrrn1
Csmd2
Mmp16
Col16a1
Ptgfrn
St6gal2
Midn
Sorcs3
Sstr1
Cbr3
Phlda1
ENSMOCG00000008718
ENSMOCG00000018072
Vxn
Cobl
ENSMOCG00000005542
Tmem132b
Tnr
Abhd2

−2.5 0.0 2.5 −2.5 0.0 2.5
z-score

−2 −1 0 1

Avg. z-scored expression

Male-Peer

Paired Separated

B CA

−4 −2 0 2 4

z-scored expression

M
-P

ee
r P

air
M

-P
ee

r S
ep

.
M

-M
at

e 
Pa

ir
M

-M
at

e 
Se

p.

F

E

Male-Mate D

variance: n.s. variance: p<10-5

−15

−10

−5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23Module

So
ci

al
 s

en
si

tiv
ity

 (s
ig

ni
fia

nc
e 

of
 v

ar
ia

nc
e)

lo
g1

0(
p-

va
lu

e)

Shuffled distribution
True distribution Most socially-sensitive genes

Median Separated Expression - Median Paired Expression
(Per Module Gene)

Fr
eq

ue
nc

y

Module with low social sensitivity Module with high social sensitivity

 Increasing social sensitivity

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.27.587112doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.27.587112
http://creativecommons.org/licenses/by-nc-nd/4.0/

