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Abstract

Francisella tularensis is a gram-negative facultative bacterium that causes the disease tularemia, even upon exposure to low
numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. In
order to help understand the mechanisms by which this occurs, we performed Affymetrix microarray analysis on transcripts
from blood monocytes infected with the virulent Type A Schu S4 strain. Results showed that expression of several host
response genes were reduced such as those associated with interferon signaling, Toll-like receptor signaling, autophagy and
phagocytosis. When compared to microarrays from monocytes infected with the less virulent F. tularensis subsp. novicida,
we found qualitative differences and also a general pattern of quantitatively reduced pro-inflammatory signaling pathway
genes in the Schu S4 strain. Notably, the PI3K / Akt1 pathway appeared specifically down-regulated following Schu S4
infection and a concomitantly lower cytokine response was observed. This study identifies several new factors potentially
important in host cell subversion by the virulent Type A F. tularensis that may serve as novel targets for drug discovery.
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Introduction

Francisella tularensis is a gram-negative facultative bacterium that

is phagocytosed by mononuclear phagocytes [1] and polymor-

phonuclear leukocytes in the presence of serum [1,2], and also

enters epithelial cells [3]. F. tularensis, similar to pathogens like L.

Monocytogenes [4] is known as a stealth pathogen as it escapes the

phagosome and replicates inside the host cell cytosol [5],

eventually leading to host cell death [6,7]. How this bacterium is

able to evade normal phagolysosomal fusion and continue to

survive and proliferate is of great interest.

To help shed light on how F. tularensis survives successfully inside

the host cell, we previously performed Affymetrix oligonucleotide

microarray analysis to examine genome wide transcriptional

responses of human monocytes to the lesser virulent F. novicida subsp

novicida strain. Results showed that several pro-inflammatory

mediators were up-regulated following infection [8], many of which

had been previously described such as Interferon-c (IFNc)

[9,10,11,12], Interleukin-2 (IL-2) [9,10], Interleukin-12 (IL-12) [12],

Interleukin-23 (IL-23) [8] and Interleukin-1b (IL-1b) [13,14].

However, it has been shown that after an initial pro-inflammatory

period, there is a marked down-regulation in cytokine and signaling

responses that depend on phagosomal escape [15].

Here, we have performed a microarray analysis of human

peripheral blood monocytes after infection with the highly virulent

Type A F. tularensis subsp. tularensis Schu S4 strain. We found down-

regulation of genes in several general immune response pathways

such as phagocytosis, autophagy, IFNc signaling and Toll-like

Receptor (TLR) signaling. We have extended these studies to show

that, this down-regulation of TLR pathway genes results in

dampening of the monocyte response to subsequent stimulation

with TLR ligands. Further, the PI3K / Akt pathway, shown to be

critical for optimal cytokine responses [16,17], was preferentially

down-regulated in F. tularensis subsp. tularensis Schu S4 when

compared to F. tularensis subsp. novicida infection with a concomitant

down-regulation in cytokine production. This large-scale view of

the host response to Francisella shows a pattern of dampened

monocyte responses in several pro-inflammatory pathways follow-

ing infection by a Type A prototype strain which provides greater

insight into mechanisms underlying its highly virulent nature. The

sub-optimal response by elements of these pathways uncovers

them as potential therapeutic targets.

Materials and Methods

Cells and Reagents
THP-1 cells (ATCC) and human peripheral blood monocytes

were cultured in RPMI 1640 containing 10% heat-inactivated

FBS, 2 mM L-glutamine and 50 units / ml penicillin-streptomy-

cin. Antibodies against Akt1, MyD88 and MKP1 were from Santa
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Cruz Biotechnologies (Santa Cruz, CA). PE-Cy7-conjugated anti-

CD14 and isotype control were from BD Pharmingen (San Diego,

CA). Anti-IFNcRI was from R & D Systems (Minneapolis, MN)

and the FITC-conjugated secondary was from Caltag / Invitrogen

(Carlsbad, CA). Purified E. coli (strain 0127:B8) LPS was from

Difco (Detroit, MI) and Pam3Cys-Ser-(Lys)4 (Pam3CSK) was from

Calbiochem / EMD (San Diego, CA). Gentamicin Reagent

Solution was from Invitrogen.

Peripheral blood monocyte isolation
Human peripheral blood monocytes were isolated using either

CD14 positive or negative selection by centrifugation through a

Ficoll gradient followed by MACS (Miltenyi Biotec, Auburn, CA) in

accordance with manufacturer instructions. Flow cytometry using

CD14 antibody showed a minimum of 96% purity for each sample.

Infections
Monocytes were infected at a multiplicity of infection (MOI) of

100, with 5 million monocytes and 500 million F. tularensis novicida

or F. tularensis tularensis Schu S4, then incubated in 1 ml RPMI

with 10% FBS for 24 hours at 37u C. Bacteria were grown

overnight (approximately 18 hours) on chocolate II agar (Becton

Dickinson) at 37uC prior to use. Infections with Schu S4 were

performed in a BSL3 facility at The Ohio State University as

previously described [8].

Microarray analysis
RNA was extracted using Trizol (Invitrogen) and subsequent

labeling and hybridization to Affymetrix hgu133plus2 chips was

performed at The Ohio State University Comprehensive Cancer

Center microarray facility. Resulting data files (.CEL) were pooled

with earlier .CEL files [8] and all .CEL files were then

preprocessed and analyzed using R and BioConductor [18,19].

Expression values were calculated using the ‘‘gcrma’’ package and

both the statistical analyses for differential expression and creation

of the Venn diagram were done using the ‘‘limma’’ package [20].

Expression values and analysis results were stored in a PostgreSQL

database (http://www.postgresql.org). The data discussed in this

publication have been deposited in NCBI’s Gene Expression

Omnibus [21] and are accessible through GEO Series accession

number GSE12108 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc = GSE12108).

Cell stimulation, lysis, Western blotting and ELISAs
Uninfected and infected cells were lysed in TN1 buffer (50 mM

Tris (pH 8.0), 10 mM EDTA, 10 mM Na4P2O7, 10 mM NaF,

1% Triton X-100, 125 mM NaCl, 10 mM Na3VO4, 10 g/ml

each aprotinin and leupeptin). Postnuclear lysates were boiled in

Laemmli sample buffer and separated by SDS-PAGE, transferred

to nitrocellulose filters, probed with the antibody of interest, then

developed by ECL (Amersham Biosciences). For F. tularensis Schu

S4 infections, cell pellets were boiled in Laemmli sample buffer as

previously described [8]. Supernatants from Schu S4-infected cells

were centrifuged (100 6 g and then 10,000 6 g), then passed

through 0.22 mm filters and samples plated to ensure that there

were no viable bacteria. ELISAs were done using sandwich ELISA

kits from R & D Systems (IL-8) and eBioscience (IL-6, IL-1b).

Flow cytometry
Cells were blocked with human IgG (Jackson ImmunoResearch,

West Grove, PA, USA) in PBS for 10 minutes, then incubated with

either PE-Cy7-conjugated anti-human CD14 antibody or isotype

control (BD Pharmingen) for 60 minutes. In parallel, cells treated

with only the FITC-conjugated goat anti-mouse antibody were

prepared. Cells were then gently centrifuged, washed in PBS, and

then resuspended in PBS containing 1% paraformaldehyde. Samples

were then run on a BD FACSCalibur machine (Becton Dickinson).

Real-time PCR
Quantitative reverse-transcription PCR was performed as

described previously [13]. Briefly, RNA was isolated from human

PBM using Trizol (Invitrogen, Carlsbad, CA), subjected to reverse

transcription and then amplified using SYBR Green PCR master

mix (Eurogentec North America, San Diego, Ca). Relative Copy

Number (‘‘RCN’’) was calculated as described previously [13].

Results and Discussion

Global transcriptional responses to F. novicida and Schu
S4

Human peripheral blood monocytes were isolated from four

buffy coats and infected with the F. tularensis tularensis Schu S4 (‘‘S4’’)

strain at 100 MOI for 24 hours. The 24 hour time point was chosen

to match our previous microarrays performed with F. novicida-

infected monocytes. These samples were then subjected to

Affymetrix microarray analysis and combined with .CEL files

generated earlier from F. tularensis novicida (‘‘FN’’) infection [8] for

preprocessing and analysis. In total, 13512 transcripts were counted

as significantly different with a fold difference of 2 or more.

One of the major goals was to compare transcriptional

responses to the virulent Schu S4 versus the less virulent F.

novicida. To acquire a general overview of these responses, these

13512 transcripts were plotted in the form of a heatmap [22]

(Figure 1A). This shows great similarity in the responses to Schu

S4 and F. novicida, agreeing with earlier findings that F. novicida

shares a similar intracellular lifecycle with that of virulent

Francisella (see [23] for review). Post-infection measurement of cell

death was not feasible, but separate tests indicate that compared to

untreated, up to 50% and 20% of the cells may have been dead

following Schu S4 and F. novicida infection, respectively. Another

test with a different donor showed no differences, however. All

array chips were normalized together, mitigating the effect of

possible differences in cell viability.

To quantify the overlap in response, a Venn diagram was created

from the 13512 regulated transcripts (Figure 1B). Of these, 29% were

unique to the F. novicida versus uninfected (‘‘UT’’), 46% were shared

with both strains versus UT, and 25% were unique to S4 versus UT.

The relatively large number of response genes unique to F. novicida or

Schu S4 raised the possibility that some of these differences may help

at least in part explain the high virulence of Schu S4. Hence, we

examined several key immune response pathway genes in greater

detail with the goal of gaining greater insight into the host cell

subversion seen with Francisella. Significantly different genes were

gathered and plotted as a heatmap (Figure S1). As demonstrated by

this Figure, several genes responded differently to the two strains of

Francisella. Below we study these in greater detail.

Down-regulation of interferon pathway genes
In our initial analysis of infected monocytes [8] we found an up-

regulation of IFNc, a cytokine shown to confer host protection in

murine models [24,25,26] and found after infections in humans and

mice [27,28,29], although the strain of mice may be important [30]

as well as route of infection [31]. IFNc has been shown to

antagonize phagosomal escape [32,33], leading to improved host

cell protection. It has also been reported that Type I interferon is

induced following a cytosolic sensing event and plays a role in the

activation of the inflammasome during F. novicida infection in mice

F. novicida versus Schu S4
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[34]. Activation of the inflammasome is critical for the post-

translational processing and release of IL-1b [13,14]. Hence, we

examined the expression of interferon-related genes (Figure 2A). We

found that the IFNa receptor was down-regulated following both F.

novicida and Schu S4 infection, with a concomitant induction of

ligand expression with F. novicida but not with Schu S4. IFNb was

up-regulated after Schu S4 but not F. novicida infection. As

previously reported [8], IFNc was up-regulated, but Schu S4

elicited more than twice the response as F. novicida. However, the

IFNc receptor was down in both cases, suggesting that IFNc may

elicit a suboptimal response after both types of infections.

Jak proteins act downstream of IFN signaling, and we found

that Schu S4 caused a down-regulation in Jak2 with no change in

Jak1 nor Jak3. There was strong up-regulation of both Jak1 and

Jak3 and down-regulation of Jak2 after F. novicida infection,

however. The Suppressor of Cytokine Signaling 1 and 3 (SOCS1

and SOCS3) genes, negative regulators of IFNc-induced Jak/

STAT1 signaling [35] were up-regulated by both bacterial strains,

although a twofold greater SOCS3 than SOCS1 induction was

seen with F. novicida (Figure 2A).

Real-time PCR analysis was performed to verify IFNc, SOCS1

and SOCS3 responses (Figure 2B), and results confirmed up-

regulation of these genes, although significant up-regulation of

SOCS1 following F. novicida infection could not be verified. The

IFNc receptor was tested using flow cytometry after F. novicida

infection, and results showed clear down-regulation of this

receptor (Figure 2C). Collectively, these data indicate that there

is an overall suppression of the interferon signaling pathway, both

Type I and Type II, and suggest that the infected monocytes, even

if exposed to exogenous IFNa or IFNc, would exhibit a

suboptimal response. Indeed, in a recent study we have

demonstrated that F. novicida infection dampens the ability of

murine macrophages to respond optimally to IFNc, resulting in

reduced nitric oxide production and greater intracellular bacterial

growth [54].

Toll-like receptor signaling is compromised
Toll-like receptor signaling is responsible for sensing pathogens

and prompting cellular immune responses. Upon contact with the

host cell, Francisella elicits signaling through Toll-like Receptor 2

Figure 1. Transcriptional responses to F. novicida and F. tularensis Schu S4. A. Genes significantly different with an absolute fold change of 2
or greater after F. novicida or Schu S4 infection were pooled and used to create a heatmap. B. A Venn diagram of all significantly different genes that
were up- or down-regulated twofold or more, with 6214 genes common to both strains, 3909 unique to FN, 3389 unique to S4 and 41163 counted as
not different. FN: F. novicida (n = 4). S4: Schu S4 (n = 4). UT: untreated (n = 6).
doi:10.1371/journal.pone.0002924.g001

F. novicida versus Schu S4
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(TLR2) [36,37]; the lipopolysaccharide of Francisella elicits only

very weak TLR4 signaling [38,39] that depends on the co-receptor

CD14 for greatest activity [40]. We found that TLR1,4,5,6,7 and

8 were all down-regulated following infection with either F. novicida

or Schu S4 (Figure 3A). TLR2, however, was up-regulated with F.

novicida infection as previously reported for F. tularensis Live

Vaccine Strain [41] yet markedly down-regulated with Schu S4

(Figure 3A). Regulation of TLR2, TLR4, CD14, MyD88,

PYCARD and IRAK-M were verified by real-time PCR analysis

(Figure 3B). As CD14 interacts with both TLR4 [42] and TLR2

[43,44], the data suggest that signaling through either TLR

pathway would be suboptimal. Flow cytometry using F. novicida-

infected monocytes showed a strong down-regulation of CD14

(Figure 4A). Similarly, the downstream mediator MyD88 [45,46]

was decreased at the protein level (Figure 4B). The inflammasome

protein PYCARD (ASC) [47] was reduced following infection,

while the negative regulator IRAK-3 (IRAK-M) was increased

(Figure 3B). Further, a negative regulator of TLR pathway

activity, MKP1 (DUSP1) [48], was increased (Figure 4C),

although the 3.69-fold increase with Schu S4 did not reach

statistical significance (p = 0.057, Figure 3A). This overall pattern

of regulation suggests that after infection, TLR signaling would be

compromised.

Consistent with this, we found that the monocytic cell line THP-

1 showed significant hyporesponsiveness to TLR4 (Figure 4D, left

panel) and TLR2 (Figure 4D, right panel) stimuli following F.

novicida infection, as measured by TNFa ELISA. The same

experiment using Schu S4 led to similar results, with THP-1 cells

being hyporesponsive to TLR4 (Figure 4E, left panel) and TLR2

(Figure 4E, right panel). These results agree closely with studies in

the murine system that showed hyporesponsiveness to TLR

stimulation after Francisella infection [49,50].

Although TLR2 expression was increased after infection with F.

novicida, the down-regulation of CD14 and MyD88 along with up-

regulation of MKP1 and IRAK-3 offer a molecular mechanism for

why TLR responses are dampened following Francisella infection.

Up-regulation of the negative regulator MKP1 was not found to

be statistically significant after Schu S4 infection, but the

expression of TLR2 itself was significantly down-regulated. Hence,

although hyporesponsiveness was demonstrated following infec-

tion with either strain, the TLR2 pathway, responsible for

inflammatory responses to Francisella [36,37], may be specifically

compromised by the virulent strain.

Schu S4 down-regulates the PI3K / Akt pathway and
inflammatory cytokine production

We recently demonstrated that activation of the PI3K/Akt

pathway is critical for the activation of NFkB and the subsequent

pro-inflammatory gene transcription during F. novicida infection

[16]. Thus, we examined the regulation of this pathway by first

examining the expression of genes in the phosphoinositol and

Figure 2. Francisella-induced changes in IFNc pathway-related genes. A. List of IFN, Jak and SOCS genes regulated by Francisella infection
(both F. novicida and Schu S4) from the microarray analysis. Fold changes of genes not statistically different are denoted ‘‘NS’’. B. Real-time PCR of
IFNc, SOCS1 and SOCS3 from human PBM infected with either F. novicida (‘‘FN’’) or Schu S4 (‘‘S4’’) at 100 MOI for 24 hours (n = 8). ‘‘RCN’’ is Relative
Copy Number for the Y axis. Asterisks denote statistical significance (p#0.05) versus uninfected. C. Flow cytometry for the IFNc receptor following F.
novicida infection of human monocytes. The data are representative of three independent experiments.
doi:10.1371/journal.pone.0002924.g002

F. novicida versus Schu S4
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protein kinase B (Akt) ontology groups. We plotted the average

expression values for genes significantly different in the untreated

versus F. novicida, untreated versus Schu S4 or F. novicida versus

Schu S4 comparisons (Figure S1). Compared to untreated,

infection with both strains led to substantial down-regulation of

these pathway members. In addition, more genes were down-

regulated after Schu S4 infection compared to F. novicida such as

PIK3R1 (p85 subunit of PI3K) and Akt1 (Figure S1 and

Figure 5A). These results suggest that both strains dampen

PI3K/Akt signaling, but Schu S4 elicits a stronger dampening. We

then tested the expression of Akt1 at the protein level since it has

been shown to be critical for cytokine responses [16,17]. As

expected, Western blotting of lysates from human monocytes

infected with either F. novicida or Schu S4 indicated a strong

decrease at the protein level in Schu S4-infected cells but not in F.

novicida-infected cells (Figure 5B). This, especially in combination

with the reduced TLR2, predicts that cytokine responses would be

lower with Schu S4 than with F. novicida infection.

Consistent with reduced TLR2 and PI3K/Akt, real-time PCR

analysis showed that although IL-8, IL-6 and IL-1b were induced

by both bacterial strains, Schu S4 elicited significantly less

transcript than F. novicida (Figure 5C). Protein levels were also

significantly lower with Schu S4 as measured by ELISAs

(Figure 5D). Hence, it appears that the Schu S4 strain of Francisella

elicits a significantly lower pro-inflammatory response than the less

virulent subspecies. The suppressive effect of Schu S4 on members

of the PI3K and Toll-like receptor pathways, both necessary for

Francisella-induced NFkB-dependent gene transcription, represents

a fundamental weakness in the host inflammatory response to

Francisella infection.

In examining genes involved in other host defense mechanisms,

we found that both strains of Francisella led to decreases in MHC

Class II genes (Figure S2, panel A). Similarly, genes involved with

autophagy, a process which can also contribute to antigen

presentation [51], were down-regulated (Figure S2, panel B).

Francisella has been shown to re-enter the endocytic pathway via

autophagy following phagosomal escape and cytoplasmic replica-

tion, and this can be reversibly blocked by chloramphenicol

treatment [52]. Perhaps the down-regulation in autophagy-related

genes reflects control by Francisella during its replication phase in

the cytoplasm as suggested by Cheeroun et al.

In addition, phagocytosis-related genes were decreased includ-

ing Fcc receptors, the mannose receptor, complement components

and receptors, scavenger receptors [53] and the phagocytic

Figure 3. Toll-like receptor pathway genes affected by Francisella. A. List of TLR pathway genes from the microarray analysis. Fold changes of
genes not statistically different are denoted ‘‘NS’’. B. Real-time PCR analyses of CD14, TLR2, TLR4, MyD88, PYCARD and IRAK-M from human PBM
infected with either F. novicida (‘‘FN’’) or Schu S4 (‘‘S4’’) at an MOI of 100 for 24 hours (n = 8). ‘‘RCN’’ is Relative Copy Number for the Y axis. Asterisks
denote statistical significance (p#0.05) versus uninfected.
doi:10.1371/journal.pone.0002924.g003

F. novicida versus Schu S4
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pathway-related signaling components Fyn and Syk [54] (Figure

S3). There were some differences, however, between F. novicida

and Schu S4 with regard to regulation of various phagocytic

pathway members. Fyn and Scavenger Receptor F1 were up-

regulated in only F. novicida-infected monocytes, and FccRIIa was

significantly decreased in only Schu S4-infected monocytes.

Collectively, these data suggest that Francisella infection decreases

the ability of monocytes to ingest subsequent particles or

pathogens.

Taken together, these results point to several subversive

mechanisms that may help explain the virulence of F. tularensis

Schu S4 and reinforce its reputation as a stealth pathogen. The

quantitative differences in cytokine response may be attributable to

the qualitative differences seen, especially with p85 and Akt1

expression. The nature of these qualitative differences suggests that

Schu S4 actively suppresses, rather than simply bypasses, the host

innate immune response.

Although several categories of immune response genes were

affected, augmenting the PI3K/Akt1 pathway could be examined

as a possible means to combat Francisella infection, especially in the

event that antibiotic-resistant strains become commonplace.

Indeed, in mice it has been shown that overactive Akt1 confers

a survival advantage [17]. Francisella tularensis Schu S4 down-

regulates the PI3K and Akt1 genes, so identifying the mecha-

nism(s) by which this happens and / or examining events

downstream of Akt1 that are responsible for the survival advantage

may lead to specific ways to combat tularemia, perhaps as an

augmentation to standard antibiotic treatment.

It must also be considered that, as shown by Andersson et al.

[55] the transcriptional responses to Francisella are often dynamic.

Future transcriptional analyses on human monocytes could be

done using different timepoints. Finally, an examination of isolated

cells versus cocultured cells may yield more insights, as

intercellular communication can affect cellular responses.

Supporting Information

Figure S1 Genes with ontology entries of ‘‘phosphoinositol,’’

‘‘phosphoinositide,’’ ‘‘protein kinase B,’’ ‘‘antigen,’’ ‘‘autophagy,’’

‘‘interferon,’’ ‘‘Toll,’’ ‘‘phagocytosis,’’ ‘‘JAK-STAT’’ or ‘‘cytokine’’

that were significantly different in untreated versus F. novicida or

untreated versus Schu S4 comparisons with a fold difference of at

least 3 were chosen for the plot. Highlighted in yellow are genes

verified by either real-time PCR or Western blotting. Blue

indicates low expression and red high expression. Row-by-row

scaling was done for the color mapping.

Found at: doi:10.1371/journal.pone.0002924.s001 (2.24 MB TIF)

Figure 4. Hyporesponsiveness of TLR signaling after Francisella infection. A. Flow cytometry of CD14 in infected versus uninfected
monocytes, gating on live cells by scatter. B and C. Western blot of MyD88 (B) and MKP1 / DUSP1 (C) after F. novicida infection of THP-1 cells. Actin
reprobes (bottom panels) show equal loading. D and E. THP-1 cells were first infected with F. novicida (D) or Schu S4 (E) for 14 hours or left
uninfected. Uninfected and infected cells were then treated with gentamicin at 50 mg/ml to kill extracellular bacteria and restimulated with LPS
(500 ng/ml, D and E left panels) or Pam3CSK (100 ng/ml, D and E right panels) for 8 hours. Cell supernatants were analyzed for TNFa by ELISA. Values
from three independent infections were analyzed by student’s t-test. Asterisks denote statistical significance (p#0.05).
doi:10.1371/journal.pone.0002924.g004

F. novicida versus Schu S4
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Figure S2 Genes in antigen presentation and autophagy, from

the microarray analysis. An ‘‘NS’’ in the Fold Change column

denotes a non-significant change. A. Table of genes involved in

antigen presentation. B. Table of autophagy-related genes.

Found at: doi:10.1371/journal.pone.0002924.s002 (1.03 MB TIF)

Figure S3 Genes involved in phagocytosis, from the microarray

analysis. An ‘‘NS’’ in the Fold Change column denotes a non-

significant change.

Found at: doi:10.1371/journal.pone.0002924.s003 (1.26 MB TIF)
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novicida and Schu S4 in human monocytes (n = 4). Data were analyzed by student’s t-test. Asterisks denote statistical significance (p#0.05).
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